Spaces:
Runtime error
Runtime error
Update app.py (#23)
Browse files- Update app.py (9f6b59fbe7f7757f88fdcc4e5ba99651ce3bab65)
app.py
CHANGED
|
@@ -39,36 +39,38 @@ def bot_streaming(message, history):
|
|
| 39 |
if type(hist[0])==tuple:
|
| 40 |
image = hist[0][0]
|
| 41 |
|
|
|
|
| 42 |
try:
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
else:
|
| 47 |
-
prompt=f"<|start_header_id|>user<|end_header_id|>\n\n<image>\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
|
| 48 |
-
print(f"prompt: {prompt}")
|
| 49 |
-
image = Image.open(image)
|
| 50 |
-
inputs = processor(prompt, image, return_tensors='pt').to(0, torch.float16)
|
| 51 |
-
|
| 52 |
-
streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": True})
|
| 53 |
-
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
|
| 54 |
-
generated_text = ""
|
| 55 |
-
|
| 56 |
-
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 57 |
-
thread.start()
|
| 58 |
-
|
| 59 |
-
text_prompt =f"<|start_header_id|>user<|end_header_id|>\n\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
|
| 60 |
-
print(f"text_prompt: {text_prompt}")
|
| 61 |
-
|
| 62 |
-
buffer = ""
|
| 63 |
-
for new_text in streamer:
|
| 64 |
-
|
| 65 |
-
buffer += new_text
|
| 66 |
-
|
| 67 |
-
generated_text_without_prompt = buffer[len(text_prompt):]
|
| 68 |
-
time.sleep(0.08)
|
| 69 |
-
yield generated_text_without_prompt
|
| 70 |
except NameError:
|
| 71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
|
| 74 |
demo = gr.ChatInterface(fn=bot_streaming, css=CSS, fill_height=True, title="LLaVA Llama-3-8B", examples=[{"text": "What is on the flower?", "files":["./bee.jpg"]},
|
|
|
|
| 39 |
if type(hist[0])==tuple:
|
| 40 |
image = hist[0][0]
|
| 41 |
|
| 42 |
+
|
| 43 |
try:
|
| 44 |
+
if image is None:
|
| 45 |
+
# Handle the case where image is None
|
| 46 |
+
gr.Error("You need to upload an image for LLaVA to work.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
except NameError:
|
| 48 |
+
# Handle the case where 'image' is not defined at all
|
| 49 |
+
gr.Error("You need to upload an image for LLaVA to work.")
|
| 50 |
+
|
| 51 |
+
prompt=f"<|start_header_id|>user<|end_header_id|>\n\n<image>\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
|
| 52 |
+
print(f"prompt: {prompt}")
|
| 53 |
+
image = Image.open(image)
|
| 54 |
+
inputs = processor(prompt, image, return_tensors='pt').to(0, torch.float16)
|
| 55 |
+
|
| 56 |
+
streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": True})
|
| 57 |
+
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
|
| 58 |
+
generated_text = ""
|
| 59 |
+
|
| 60 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 61 |
+
thread.start()
|
| 62 |
+
|
| 63 |
+
text_prompt =f"<|start_header_id|>user<|end_header_id|>\n\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
|
| 64 |
+
print(f"text_prompt: {text_prompt}")
|
| 65 |
+
|
| 66 |
+
buffer = ""
|
| 67 |
+
for new_text in streamer:
|
| 68 |
+
|
| 69 |
+
buffer += new_text
|
| 70 |
+
|
| 71 |
+
generated_text_without_prompt = buffer[len(text_prompt):]
|
| 72 |
+
time.sleep(0.08)
|
| 73 |
+
yield generated_text_without_prompt
|
| 74 |
|
| 75 |
|
| 76 |
demo = gr.ChatInterface(fn=bot_streaming, css=CSS, fill_height=True, title="LLaVA Llama-3-8B", examples=[{"text": "What is on the flower?", "files":["./bee.jpg"]},
|