Spaces:
Running
Running
Update neural_acoustic_distance.py
Browse files- neural_acoustic_distance.py +122 -119
neural_acoustic_distance.py
CHANGED
|
@@ -107,126 +107,129 @@ def run(model_id, layer, filename_x, filename_y):
|
|
| 107 |
return d, c, n
|
| 108 |
|
| 109 |
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
st.write(
|
| 113 |
-
"This tool visualizes pronunciation differences between two recordings of the same word. The two recordings have to be wave files containing a single spoken word. \n\n\
|
| 114 |
-
Choose any wav2vec 2.0 compatible model identifier on the [Hugging Face Model Hub](https://huggingface.co/models?filter=wav2vec2) and select the output layer you want to use.\n\n\
|
| 115 |
-
To upload your own recordings select 'custom upload' in the audio file selection step. The first recording is put on the x-axis of the plot and the second one will be the reference recording for computing distance.\n\
|
| 116 |
-
You should already see an example plot of two sample recordings.\n\n\
|
| 117 |
-
This visualization tool is part of [neural representations for modeling variation in speech](https://doi.org/10.1016/j.wocn.2022.101137). \n\
|
| 118 |
-
Please see our paper for further details.")
|
| 119 |
-
|
| 120 |
-
st.subheader("Model selection:")
|
| 121 |
-
|
| 122 |
-
model_id = st.selectbox("Select the wav2vec 2.0 model you want to use:",
|
| 123 |
-
("facebook/wav2vec2-large-960h", "facebook/wav2vec2-large", "facebook/wav2vec2-large-xlsr-53",
|
| 124 |
-
"facebook/wav2vec2-xls-r-300m", "other"),
|
| 125 |
-
index=0)
|
| 126 |
-
|
| 127 |
-
if model_id == "other":
|
| 128 |
-
model_id = st.text_input("Enter the wav2vec 2.0 model you want to use:",
|
| 129 |
-
value="facebook/wav2vec2-large-960h",
|
| 130 |
-
key="model")
|
| 131 |
-
|
| 132 |
-
print(f"\n### Start new run\n") # test
|
| 133 |
-
|
| 134 |
-
try:
|
| 135 |
-
cfg = AutoConfig.from_pretrained(model_id)
|
| 136 |
-
layer = st.number_input("Select the layer you want to use:", min_value=1, max_value=cfg.num_hidden_layers, value=10)
|
| 137 |
-
except OSError:
|
| 138 |
-
st.error(
|
| 139 |
-
"Please select a wav2vec 2.0 compatible model identifier on the [Hugging Face Model Hub](https://huggingface.co/models?filter=wav2vec2)."
|
| 140 |
-
)
|
| 141 |
-
layer = None
|
| 142 |
-
|
| 143 |
-
print('1. Model selected', datetime.now().strftime('%d-%m-%Y %H:%M:%S')) # test
|
| 144 |
-
|
| 145 |
-
st.subheader("Audio file selection:")
|
| 146 |
-
|
| 147 |
-
filename_x = st.selectbox("Filename (x-axis):",
|
| 148 |
-
("falling_huud_mobiel_201145.wav", "falling_hood_mobiel_203936.wav", "custom upload"))
|
| 149 |
-
|
| 150 |
-
if filename_x == "falling_huud_mobiel_201145.wav":
|
| 151 |
-
filename_x = "./examples/falling_huud_mobiel_201145.wav"
|
| 152 |
-
play_audio(filename_x)
|
| 153 |
-
if filename_x == "falling_hood_mobiel_203936.wav":
|
| 154 |
-
filename_x = "./examples/falling_hood_mobiel_203936.wav"
|
| 155 |
-
play_audio(filename_x)
|
| 156 |
-
|
| 157 |
-
filename_y = st.selectbox("Filename (y-axis):",
|
| 158 |
-
("falling_hood_mobiel_203936.wav", "falling_huud_mobiel_201145.wav", "custom upload"))
|
| 159 |
-
|
| 160 |
-
if filename_y == "falling_huud_mobiel_201145.wav":
|
| 161 |
-
filename_y = "./examples/falling_huud_mobiel_201145.wav"
|
| 162 |
-
play_audio(filename_y)
|
| 163 |
-
if filename_y == "falling_hood_mobiel_203936.wav":
|
| 164 |
-
filename_y = "./examples/falling_hood_mobiel_203936.wav"
|
| 165 |
-
play_audio(filename_y)
|
| 166 |
-
|
| 167 |
-
if filename_x == "custom upload":
|
| 168 |
-
filename_x = st.file_uploader("Choose a file (x-axis)", key="f_x")
|
| 169 |
-
if filename_y == "custom upload":
|
| 170 |
-
filename_y = st.file_uploader("Choose a file (y-axis)", key="f_y")
|
| 171 |
-
|
| 172 |
-
print('2. Files selected', datetime.now().strftime('%d-%m-%Y %H:%M:%S')) # test
|
| 173 |
-
|
| 174 |
-
if filename_x is not None and filename_y is not None and layer is not None:
|
| 175 |
-
print(f"\nX: {filename_x}\nY: {filename_y}")
|
| 176 |
-
|
| 177 |
-
d, c, n = run(model_id, layer, filename_x, filename_y)
|
| 178 |
-
# d_b, c_b, n_b = run(featurizer_b)
|
| 179 |
-
|
| 180 |
-
fig, axes = plt.subplots(figsize=(4, 2.5))
|
| 181 |
-
|
| 182 |
-
print('6. Plot init', datetime.now().strftime('%d-%m-%Y %H:%M:%S')) # test
|
| 183 |
-
|
| 184 |
-
window_size = 9
|
| 185 |
-
rate = 20
|
| 186 |
-
x = np.arange(0, len(c) * rate, rate)
|
| 187 |
-
offset = (window_size - 1) // 2
|
| 188 |
-
x_ = x[offset:-offset]
|
| 189 |
-
|
| 190 |
-
# Target layer
|
| 191 |
-
axes.plot(x, c, alpha=0.5, color="gray", linestyle="--")
|
| 192 |
-
axes.scatter(x, c, np.array(n) * 10, color="gray")
|
| 193 |
-
c_ = np.convolve(c, np.ones(window_size) / window_size, mode="valid")
|
| 194 |
-
axes.plot(x_, c_)
|
| 195 |
-
|
| 196 |
-
# Last layer
|
| 197 |
-
# axes.plot(x, c_b, alpha=0.5, color="gray", linestyle="--")
|
| 198 |
-
# axes.scatter(x, c_b, np.array(n_b) * 10, color="gray")
|
| 199 |
-
# c_b_ = np.convolve(c_b, np.ones(window_size) / window_size, mode="valid")
|
| 200 |
-
# axes.plot(x_, c_b_, linestyle="--")
|
| 201 |
-
|
| 202 |
-
axes.set_xlabel("time (ms)")
|
| 203 |
-
axes.set_ylabel("distance per frame")
|
| 204 |
-
axes.hlines(y=d, xmin=0, xmax=np.max(x), linestyles="dashdot")
|
| 205 |
-
|
| 206 |
-
plt.tight_layout(pad=0)
|
| 207 |
-
plt_id = randrange(0, 10)
|
| 208 |
-
plt.savefig("./output/plot" + str(plt_id) + ".pdf")
|
| 209 |
-
st.pyplot(fig)
|
| 210 |
-
|
| 211 |
-
print('7. Plot filled', datetime.now().strftime('%d-%m-%Y %H:%M:%S')) # test
|
| 212 |
-
|
| 213 |
-
if os.path.isfile("./output/plot.pdf"):
|
| 214 |
-
st.caption(" Visualization of neural acoustic distances\
|
| 215 |
-
per frame (based on wav2vec 2.0) with the pronunciation of\
|
| 216 |
-
the first filename on the x-axis and distances to the pronunciation\
|
| 217 |
-
of second filename on the y-axis. The horizontal line represents\
|
| 218 |
-
the global distance value (i.e. the average of all individual frames).\
|
| 219 |
-
The blue continuous line represents the moving average distance based on 9 frames,\
|
| 220 |
-
corresponding to 180ms. As a result of the moving average, the blue line does not cover the entire duration of\
|
| 221 |
-
the sample. Larger bullet sizes indicate that multiple\
|
| 222 |
-
frames in the pronunciation on the y-axis are aligned to a single frame in the pronunciation on the x-axis.")
|
| 223 |
-
|
| 224 |
-
with open("./output/plot.pdf", "rb") as file:
|
| 225 |
-
btn = st.download_button(label="Download plot", data=file, file_name="plot.pdf", mime="image/pdf")
|
| 226 |
-
|
| 227 |
-
print('8. End', datetime.now().strftime('%d-%m-%Y %H:%M:%S')) # test
|
| 228 |
-
print(f"9. RAM used: {psutil.Process().memory_info().rss / (1024 * 1024):.2f} MB") # test
|
| 229 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 230 |
for name in dir():
|
| 231 |
if not name.startswith('_'):
|
| 232 |
del globals()[name]
|
|
|
|
| 107 |
return d, c, n
|
| 108 |
|
| 109 |
|
| 110 |
+
def main():
|
| 111 |
+
st.title("Word-level Neural Acoustic Distance Visualizer")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
|
| 113 |
+
st.write(
|
| 114 |
+
"This tool visualizes pronunciation differences between two recordings of the same word. The two recordings have to be wave files containing a single spoken word. \n\n\
|
| 115 |
+
Choose any wav2vec 2.0 compatible model identifier on the [Hugging Face Model Hub](https://huggingface.co/models?filter=wav2vec2) and select the output layer you want to use.\n\n\
|
| 116 |
+
To upload your own recordings select 'custom upload' in the audio file selection step. The first recording is put on the x-axis of the plot and the second one will be the reference recording for computing distance.\n\
|
| 117 |
+
You should already see an example plot of two sample recordings.\n\n\
|
| 118 |
+
This visualization tool is part of [neural representations for modeling variation in speech](https://doi.org/10.1016/j.wocn.2022.101137). \n\
|
| 119 |
+
Please see our paper for further details.")
|
| 120 |
+
|
| 121 |
+
st.subheader("Model selection:")
|
| 122 |
+
|
| 123 |
+
model_id = st.selectbox("Select the wav2vec 2.0 model you want to use:",
|
| 124 |
+
("facebook/wav2vec2-large-960h", "facebook/wav2vec2-large", "facebook/wav2vec2-large-xlsr-53",
|
| 125 |
+
"facebook/wav2vec2-xls-r-300m", "other"),
|
| 126 |
+
index=0)
|
| 127 |
+
|
| 128 |
+
if model_id == "other":
|
| 129 |
+
model_id = st.text_input("Enter the wav2vec 2.0 model you want to use:",
|
| 130 |
+
value="facebook/wav2vec2-large-960h",
|
| 131 |
+
key="model")
|
| 132 |
+
|
| 133 |
+
print(f"\n### Start new run\n") # test
|
| 134 |
+
|
| 135 |
+
try:
|
| 136 |
+
cfg = AutoConfig.from_pretrained(model_id)
|
| 137 |
+
layer = st.number_input("Select the layer you want to use:", min_value=1, max_value=cfg.num_hidden_layers, value=10)
|
| 138 |
+
except OSError:
|
| 139 |
+
st.error(
|
| 140 |
+
"Please select a wav2vec 2.0 compatible model identifier on the [Hugging Face Model Hub](https://huggingface.co/models?filter=wav2vec2)."
|
| 141 |
+
)
|
| 142 |
+
layer = None
|
| 143 |
+
|
| 144 |
+
print('1. Model selected', datetime.now().strftime('%d-%m-%Y %H:%M:%S')) # test
|
| 145 |
+
|
| 146 |
+
st.subheader("Audio file selection:")
|
| 147 |
+
|
| 148 |
+
filename_x = st.selectbox("Filename (x-axis):",
|
| 149 |
+
("falling_huud_mobiel_201145.wav", "falling_hood_mobiel_203936.wav", "custom upload"))
|
| 150 |
+
|
| 151 |
+
if filename_x == "falling_huud_mobiel_201145.wav":
|
| 152 |
+
filename_x = "./examples/falling_huud_mobiel_201145.wav"
|
| 153 |
+
play_audio(filename_x)
|
| 154 |
+
if filename_x == "falling_hood_mobiel_203936.wav":
|
| 155 |
+
filename_x = "./examples/falling_hood_mobiel_203936.wav"
|
| 156 |
+
play_audio(filename_x)
|
| 157 |
+
|
| 158 |
+
filename_y = st.selectbox("Filename (y-axis):",
|
| 159 |
+
("falling_hood_mobiel_203936.wav", "falling_huud_mobiel_201145.wav", "custom upload"))
|
| 160 |
+
|
| 161 |
+
if filename_y == "falling_huud_mobiel_201145.wav":
|
| 162 |
+
filename_y = "./examples/falling_huud_mobiel_201145.wav"
|
| 163 |
+
play_audio(filename_y)
|
| 164 |
+
if filename_y == "falling_hood_mobiel_203936.wav":
|
| 165 |
+
filename_y = "./examples/falling_hood_mobiel_203936.wav"
|
| 166 |
+
play_audio(filename_y)
|
| 167 |
+
|
| 168 |
+
if filename_x == "custom upload":
|
| 169 |
+
filename_x = st.file_uploader("Choose a file (x-axis)", key="f_x")
|
| 170 |
+
if filename_y == "custom upload":
|
| 171 |
+
filename_y = st.file_uploader("Choose a file (y-axis)", key="f_y")
|
| 172 |
+
|
| 173 |
+
print('2. Files selected', datetime.now().strftime('%d-%m-%Y %H:%M:%S')) # test
|
| 174 |
+
|
| 175 |
+
if filename_x is not None and filename_y is not None and layer is not None:
|
| 176 |
+
print(f"\nX: {filename_x}\nY: {filename_y}")
|
| 177 |
+
|
| 178 |
+
d, c, n = run(model_id, layer, filename_x, filename_y)
|
| 179 |
+
# d_b, c_b, n_b = run(featurizer_b)
|
| 180 |
+
|
| 181 |
+
fig, axes = plt.subplots(figsize=(4, 2.5))
|
| 182 |
+
|
| 183 |
+
print('6. Plot init', datetime.now().strftime('%d-%m-%Y %H:%M:%S')) # test
|
| 184 |
+
|
| 185 |
+
window_size = 9
|
| 186 |
+
rate = 20
|
| 187 |
+
x = np.arange(0, len(c) * rate, rate)
|
| 188 |
+
offset = (window_size - 1) // 2
|
| 189 |
+
x_ = x[offset:-offset]
|
| 190 |
+
|
| 191 |
+
# Target layer
|
| 192 |
+
axes.plot(x, c, alpha=0.5, color="gray", linestyle="--")
|
| 193 |
+
axes.scatter(x, c, np.array(n) * 10, color="gray")
|
| 194 |
+
c_ = np.convolve(c, np.ones(window_size) / window_size, mode="valid")
|
| 195 |
+
axes.plot(x_, c_)
|
| 196 |
+
|
| 197 |
+
# Last layer
|
| 198 |
+
# axes.plot(x, c_b, alpha=0.5, color="gray", linestyle="--")
|
| 199 |
+
# axes.scatter(x, c_b, np.array(n_b) * 10, color="gray")
|
| 200 |
+
# c_b_ = np.convolve(c_b, np.ones(window_size) / window_size, mode="valid")
|
| 201 |
+
# axes.plot(x_, c_b_, linestyle="--")
|
| 202 |
+
|
| 203 |
+
axes.set_xlabel("time (ms)")
|
| 204 |
+
axes.set_ylabel("distance per frame")
|
| 205 |
+
axes.hlines(y=d, xmin=0, xmax=np.max(x), linestyles="dashdot")
|
| 206 |
+
|
| 207 |
+
plt.tight_layout(pad=0)
|
| 208 |
+
plt_id = randrange(0, 10)
|
| 209 |
+
plt.savefig("./output/plot" + str(plt_id) + ".pdf")
|
| 210 |
+
st.pyplot(fig)
|
| 211 |
+
|
| 212 |
+
print('7. Plot filled', datetime.now().strftime('%d-%m-%Y %H:%M:%S')) # test
|
| 213 |
+
|
| 214 |
+
if os.path.isfile("./output/plot.pdf"):
|
| 215 |
+
st.caption(" Visualization of neural acoustic distances\
|
| 216 |
+
per frame (based on wav2vec 2.0) with the pronunciation of\
|
| 217 |
+
the first filename on the x-axis and distances to the pronunciation\
|
| 218 |
+
of second filename on the y-axis. The horizontal line represents\
|
| 219 |
+
the global distance value (i.e. the average of all individual frames).\
|
| 220 |
+
The blue continuous line represents the moving average distance based on 9 frames,\
|
| 221 |
+
corresponding to 180ms. As a result of the moving average, the blue line does not cover the entire duration of\
|
| 222 |
+
the sample. Larger bullet sizes indicate that multiple\
|
| 223 |
+
frames in the pronunciation on the y-axis are aligned to a single frame in the pronunciation on the x-axis.")
|
| 224 |
+
|
| 225 |
+
with open("./output/plot.pdf", "rb") as file:
|
| 226 |
+
btn = st.download_button(label="Download plot", data=file, file_name="plot.pdf", mime="image/pdf")
|
| 227 |
+
|
| 228 |
+
print('8. End', datetime.now().strftime('%d-%m-%Y %H:%M:%S')) # test
|
| 229 |
+
print(f"9. RAM used: {psutil.Process().memory_info().rss / (1024 * 1024):.2f} MB") # test
|
| 230 |
+
|
| 231 |
+
main()
|
| 232 |
+
|
| 233 |
for name in dir():
|
| 234 |
if not name.startswith('_'):
|
| 235 |
del globals()[name]
|