Spaces:
Runtime error
Runtime error
| from functools import partial | |
| from itertools import islice | |
| from typing import Callable, List, Optional, Sequence, Union | |
| import torch | |
| import torch.nn.functional as F | |
| def batched(iterable, n): | |
| """Batch data into lists of length *n*. The last batch may be shorter. | |
| NOTE based on more-itertools impl, to be replaced by python 3.12 itertools.batched impl | |
| """ | |
| it = iter(iterable) | |
| while True: | |
| batch = list(islice(it, n)) | |
| if not batch: | |
| break | |
| yield batch | |
| def build_zero_shot_classifier( | |
| model, | |
| tokenizer, | |
| classnames: Sequence[str], | |
| templates: Sequence[Union[Callable, str]], | |
| num_classes_per_batch: Optional[int] = 10, | |
| device: Union[str, torch.device] = 'cpu', | |
| use_tqdm: bool = False, | |
| ): | |
| """ Build zero-shot classifier weights by iterating over class names in batches | |
| Args: | |
| model: CLIP model instance | |
| tokenizer: CLIP tokenizer instance | |
| classnames: A sequence of class (label) names | |
| templates: A sequence of callables or format() friendly strings to produce templates per class name | |
| num_classes_per_batch: The number of classes to batch together in each forward, all if None | |
| device: Device to use. | |
| use_tqdm: Enable TQDM progress bar. | |
| """ | |
| assert isinstance(templates, Sequence) and len(templates) > 0 | |
| assert isinstance(classnames, Sequence) and len(classnames) > 0 | |
| use_format = isinstance(templates[0], str) | |
| num_templates = len(templates) | |
| num_classes = len(classnames) | |
| if use_tqdm: | |
| import tqdm | |
| num_iter = 1 if num_classes_per_batch is None else ((num_classes - 1) // num_classes_per_batch + 1) | |
| iter_wrap = partial(tqdm.tqdm, total=num_iter, unit_scale=num_classes_per_batch) | |
| else: | |
| iter_wrap = iter | |
| def _process_batch(batch_classnames): | |
| num_batch_classes = len(batch_classnames) | |
| texts = [template.format(c) if use_format else template(c) for c in batch_classnames for template in templates] | |
| texts = tokenizer(texts).to(device) | |
| class_embeddings = F.normalize(model.encode_text(texts), dim=-1) | |
| class_embeddings = class_embeddings.reshape(num_batch_classes, num_templates, -1).mean(dim=1) | |
| class_embeddings = class_embeddings / class_embeddings.norm(dim=1, keepdim=True) | |
| class_embeddings = class_embeddings.T | |
| return class_embeddings | |
| with torch.no_grad(): | |
| if num_classes_per_batch: | |
| batched_embeds = [_process_batch(batch) for batch in iter_wrap(batched(classnames, num_classes_per_batch))] | |
| zeroshot_weights = torch.cat(batched_embeds, dim=1) | |
| else: | |
| zeroshot_weights = _process_batch(classnames) | |
| return zeroshot_weights | |
| def build_zero_shot_classifier_legacy( | |
| model, | |
| tokenizer, | |
| classnames: Sequence[str], | |
| templates: Sequence[Union[Callable, str]], | |
| device: Union[str, torch.device] = 'cpu', | |
| use_tqdm: bool = False, | |
| ): | |
| """ Build zero-shot classifier weights by iterating over class names 1 by 1 | |
| Args: | |
| model: CLIP model instance | |
| tokenizer: CLIP tokenizer instance | |
| classnames: A sequence of class (label) names | |
| templates: A sequence of callables or format() friendly strings to produce templates per class name | |
| device: Device to use. | |
| use_tqdm: Enable TQDM progress bar. | |
| """ | |
| assert isinstance(templates, Sequence) and len(templates) > 0 | |
| assert isinstance(classnames, Sequence) and len(classnames) > 0 | |
| if use_tqdm: | |
| import tqdm | |
| iter_wrap = tqdm.tqdm | |
| else: | |
| iter_wrap = iter | |
| use_format = isinstance(templates[0], str) | |
| with torch.no_grad(): | |
| zeroshot_weights = [] | |
| for classname in iter_wrap(classnames): | |
| texts = [template.format(classname) if use_format else template(classname) for template in templates] | |
| texts = tokenizer(texts).to(device) # tokenize | |
| class_embeddings = model.encode_text(texts) | |
| class_embedding = F.normalize(class_embeddings, dim=-1).mean(dim=0) | |
| class_embedding /= class_embedding.norm() | |
| zeroshot_weights.append(class_embedding) | |
| zeroshot_weights = torch.stack(zeroshot_weights, dim=1).to(device) | |
| return zeroshot_weights | |