Spaces:
Running
Running
File size: 15,289 Bytes
ecde958 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 |
"""
REST API Server for Multi-lingual TTS
FastAPI-based server with OpenAPI documentation
Hackathon API Specification:
- GET /Get_Inference with text, lang, speaker_wav parameters
"""
import os
import io
import time
import logging
import tempfile
from typing import Optional, List
from pathlib import Path
import numpy as np
from fastapi import (
FastAPI,
HTTPException,
Query,
Response,
BackgroundTasks,
UploadFile,
File,
)
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import StreamingResponse, FileResponse, JSONResponse
from pydantic import BaseModel, Field
import soundfile as sf
from .engine import TTSEngine, TTSOutput
from .config import (
LANGUAGE_CONFIGS,
get_available_languages,
get_available_voices,
STYLE_PRESETS,
)
# Language name to voice key mapping (for hackathon API)
LANG_TO_VOICE = {
"hindi": "hi_female",
"bengali": "bn_female",
"marathi": "mr_female",
"telugu": "te_female",
"kannada": "kn_female",
"bhojpuri": "bho_female",
"chhattisgarhi": "hne_female",
"maithili": "mai_female",
"magahi": "mag_female",
"english": "en_female",
"gujarati": "gu_mms",
}
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Initialize FastAPI app
app = FastAPI(
title="Voice Tech for All - Multi-lingual TTS API",
description="""
A multi-lingual Text-to-Speech API supporting 10+ Indian languages.
## Features
- 10 Indian languages with male/female voices
- Real-time speech synthesis
- Text normalization for Indian languages
- Speed control
- Multiple audio formats (WAV, MP3)
## Supported Languages
Hindi, Bengali, Marathi, Telugu, Kannada, Bhojpuri,
Chhattisgarhi, Maithili, Magahi, English
## Use Case
Built for an LLM-based healthcare assistant for pregnant mothers
in low-income communities.
""",
version="1.0.0",
contact={
"name": "Voice Tech for All Hackathon",
"url": "https://huggingface.co/SYSPIN",
},
license_info={
"name": "CC BY 4.0",
"url": "https://creativecommons.org/licenses/by/4.0/",
},
)
# CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Initialize TTS Engine (lazy loading)
_engine: Optional[TTSEngine] = None
def get_engine() -> TTSEngine:
"""Get or create TTS engine instance"""
global _engine
if _engine is None:
_engine = TTSEngine(device="auto")
return _engine
# Request/Response Models
class SynthesizeRequest(BaseModel):
"""Request body for text synthesis"""
text: str = Field(
..., description="Text to synthesize", min_length=1, max_length=5000
)
voice: str = Field(
"hi_male", description="Voice key (e.g., hi_male, bn_female, gu_mms)"
)
speed: float = Field(1.0, description="Speech speed (0.5-2.0)", ge=0.5, le=2.0)
pitch: float = Field(1.0, description="Pitch multiplier (0.5-2.0)", ge=0.5, le=2.0)
energy: float = Field(1.0, description="Energy/volume (0.5-2.0)", ge=0.5, le=2.0)
style: Optional[str] = Field(
None, description="Style preset (happy, sad, calm, excited, etc.)"
)
normalize: bool = Field(True, description="Apply text normalization")
class Config:
schema_extra = {
"example": {
"text": "નમસ્તે, હું તમારી કેવી રીતે મદદ કરી શકું?",
"voice": "gu_mms",
"speed": 1.0,
"pitch": 1.0,
"energy": 1.0,
"style": "calm",
"normalize": True,
}
}
class SynthesizeResponse(BaseModel):
"""Response metadata for synthesis"""
success: bool
duration: float
sample_rate: int
voice: str
text: str
inference_time: float
class VoiceInfo(BaseModel):
"""Information about a voice"""
key: str
name: str
language_code: str
gender: str
loaded: bool
downloaded: bool
model_type: str = "vits"
class HealthResponse(BaseModel):
"""Health check response"""
status: str
device: str
loaded_voices: List[str]
available_voices: int
style_presets: List[str]
# API Endpoints
@app.get("/", response_class=JSONResponse)
async def root():
"""API root - welcome message"""
return {
"message": "Voice Tech for All - Multi-lingual TTS API",
"docs": "/docs",
"health": "/health",
"synthesize": "/synthesize",
}
@app.get("/health", response_model=HealthResponse)
async def health_check():
"""Health check endpoint"""
engine = get_engine()
return HealthResponse(
status="healthy",
device=str(engine.device),
loaded_voices=engine.get_loaded_voices(),
available_voices=len(LANGUAGE_CONFIGS),
style_presets=list(STYLE_PRESETS.keys()),
)
@app.get("/voices", response_model=List[VoiceInfo])
async def list_voices():
"""List all available voices"""
engine = get_engine()
voices = engine.get_available_voices()
return [
VoiceInfo(
key=key,
name=info["name"],
language_code=info["code"],
gender=info["gender"],
loaded=info["loaded"],
downloaded=info["downloaded"],
model_type=info.get("type", "vits"),
)
for key, info in voices.items()
]
@app.get("/styles")
async def list_styles():
"""List available style presets for prosody control"""
return {
"presets": STYLE_PRESETS,
"description": {
"speed": "Speech rate multiplier (0.5-2.0)",
"pitch": "Pitch multiplier (0.5-2.0), >1 = higher",
"energy": "Volume/energy multiplier (0.5-2.0)",
},
}
@app.get("/languages")
async def list_languages():
"""List supported languages"""
return get_available_languages()
@app.post("/synthesize", response_class=Response)
async def synthesize_audio(request: SynthesizeRequest):
"""
Synthesize speech from text
Returns WAV audio file directly
"""
engine = get_engine()
# Validate voice
if request.voice not in LANGUAGE_CONFIGS:
raise HTTPException(
status_code=400,
detail=f"Unknown voice: {request.voice}. Use /voices to see available options.",
)
try:
start_time = time.time()
# Synthesize
output = engine.synthesize(
text=request.text,
voice=request.voice,
speed=request.speed,
pitch=request.pitch,
energy=request.energy,
style=request.style,
normalize_text=request.normalize,
)
inference_time = time.time() - start_time
# Convert to WAV bytes
buffer = io.BytesIO()
sf.write(buffer, output.audio, output.sample_rate, format="WAV")
buffer.seek(0)
# Return audio with metadata headers
return Response(
content=buffer.read(),
media_type="audio/wav",
headers={
"X-Duration": str(output.duration),
"X-Sample-Rate": str(output.sample_rate),
"X-Voice": output.voice,
"X-Style": output.style or "default",
"X-Inference-Time": str(inference_time),
},
)
except Exception as e:
logger.error(f"Synthesis error: {e}")
raise HTTPException(status_code=500, detail=str(e))
@app.post("/synthesize/stream")
async def synthesize_stream(request: SynthesizeRequest):
"""
Synthesize speech and stream the audio
Returns streaming WAV audio
"""
engine = get_engine()
if request.voice not in LANGUAGE_CONFIGS:
raise HTTPException(status_code=400, detail=f"Unknown voice: {request.voice}")
try:
output = engine.synthesize(
text=request.text,
voice=request.voice,
speed=request.speed,
pitch=request.pitch,
energy=request.energy,
style=request.style,
normalize_text=request.normalize,
)
# Create streaming response
buffer = io.BytesIO()
sf.write(buffer, output.audio, output.sample_rate, format="WAV")
buffer.seek(0)
return StreamingResponse(
buffer,
media_type="audio/wav",
headers={"Content-Disposition": "attachment; filename=speech.wav"},
)
except Exception as e:
logger.error(f"Streaming error: {e}")
raise HTTPException(status_code=500, detail=str(e))
@app.get("/synthesize/get")
async def synthesize_get(
text: str = Query(
..., description="Text to synthesize", min_length=1, max_length=1000
),
voice: str = Query("hi_male", description="Voice key"),
speed: float = Query(1.0, description="Speech speed", ge=0.5, le=2.0),
pitch: float = Query(1.0, description="Pitch", ge=0.5, le=2.0),
energy: float = Query(1.0, description="Energy", ge=0.5, le=2.0),
style: Optional[str] = Query(None, description="Style preset"),
):
"""
GET endpoint for simple synthesis
Useful for testing and simple integrations
"""
request = SynthesizeRequest(
text=text, voice=voice, speed=speed, pitch=pitch, energy=energy, style=style
)
return await synthesize_audio(request)
@app.api_route("/Get_Inference", methods=["GET", "POST"])
async def get_inference(
text: str = Query(
...,
description="The input text to be converted into speech. For English, text must be lowercase.",
),
lang: str = Query(
...,
description="Language of input text. Supported: bhojpuri, bengali, english, gujarati, hindi, chhattisgarhi, kannada, magahi, maithili, marathi, telugu",
),
speaker_wav: UploadFile = File(
...,
description="A reference WAV file representing the speaker's voice (mandatory per hackathon spec).",
),
):
"""
Hackathon API - Generate speech audio from text
This endpoint follows the Voice Tech for All hackathon specification.
Supports both GET and POST methods with multipart form data.
Parameters:
- text: Input text to synthesize (query param)
- lang: Language (query param) - bhojpuri, bengali, english, gujarati, hindi, chhattisgarhi, kannada, magahi, maithili, marathi, telugu
- speaker_wav: Reference WAV file (multipart file upload, mandatory)
Returns:
- 200 OK: WAV audio file as streaming response
"""
engine = get_engine()
# Normalize language name
lang_lower = lang.lower().strip()
# Enforce lowercase for English text (per spec)
if lang_lower == "english":
text = text.lower()
# Map language to voice
if lang_lower not in LANG_TO_VOICE:
supported = list(LANG_TO_VOICE.keys())
raise HTTPException(
status_code=400,
detail=f"Unsupported language: {lang}. Supported languages: {', '.join(supported)}",
)
voice = LANG_TO_VOICE[lang_lower]
# Read speaker_wav (mandatory per spec)
# Note: Current VITS models don't support voice cloning, but we accept the file
# for API compatibility and validation. In future, this could be used for voice adaptation.
try:
speaker_audio_bytes = await speaker_wav.read()
logger.info(
f"Received speaker reference WAV: {len(speaker_audio_bytes)} bytes, filename: {speaker_wav.filename}"
)
# Validate it's a valid audio file (basic check)
if len(speaker_audio_bytes) < 44: # Minimum WAV header size
raise HTTPException(
status_code=400,
detail="Invalid speaker_wav: file too small to be a valid WAV",
)
except HTTPException:
raise
except Exception as e:
logger.error(f"Could not read speaker_wav: {e}")
raise HTTPException(
status_code=400, detail=f"Failed to read speaker_wav file: {str(e)}"
)
try:
# Synthesize audio
output = engine.synthesize(
text=text,
voice=voice,
speed=1.0,
normalize_text=True,
)
# Convert to WAV bytes
buffer = io.BytesIO()
sf.write(buffer, output.audio, output.sample_rate, format="WAV")
buffer.seek(0)
# Return as streaming response (per spec)
return StreamingResponse(
buffer,
media_type="audio/wav",
headers={
"Content-Disposition": "attachment; filename=output.wav",
"X-Duration": str(output.duration),
"X-Sample-Rate": str(output.sample_rate),
"X-Language": lang,
"X-Voice": voice,
},
)
except Exception as e:
logger.error(f"Synthesis error: {e}")
raise HTTPException(status_code=500, detail=str(e))
@app.post("/preload")
async def preload_voice(voice: str):
"""Preload a voice model into memory"""
engine = get_engine()
if voice not in LANGUAGE_CONFIGS:
raise HTTPException(status_code=400, detail=f"Unknown voice: {voice}")
try:
engine.load_voice(voice)
return {"message": f"Voice {voice} loaded successfully"}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/unload")
async def unload_voice(voice: str):
"""Unload a voice model from memory"""
engine = get_engine()
engine.unload_voice(voice)
return {"message": f"Voice {voice} unloaded"}
@app.post("/batch")
async def batch_synthesize(
texts: List[str], voice: str = "hi_male", speed: float = 1.0
):
"""
Synthesize multiple texts
Returns a list of base64-encoded audio
"""
import base64
engine = get_engine()
if voice not in LANGUAGE_CONFIGS:
raise HTTPException(status_code=400, detail=f"Unknown voice: {voice}")
results = []
for text in texts:
output = engine.synthesize(text, voice, speed)
buffer = io.BytesIO()
sf.write(buffer, output.audio, output.sample_rate, format="WAV")
buffer.seek(0)
results.append(
{
"text": text,
"audio_base64": base64.b64encode(buffer.read()).decode(),
"duration": output.duration,
}
)
return results
# Startup/Shutdown events
@app.on_event("startup")
async def startup_event():
"""Initialize on startup"""
logger.info("Starting TTS API server...")
# Optionally preload default voice
# get_engine().load_voice("hi_male")
@app.on_event("shutdown")
async def shutdown_event():
"""Cleanup on shutdown"""
logger.info("Shutting down TTS API server...")
def start_server(host: str = "0.0.0.0", port: int = 8000, reload: bool = False):
"""Start the API server"""
import uvicorn
uvicorn.run("src.api:app", host=host, port=port, reload=reload, log_level="info")
if __name__ == "__main__":
start_server()
|