Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -67,18 +67,19 @@ import time
|
|
| 67 |
import copy
|
| 68 |
from collections import Counter
|
| 69 |
from models.soundstream_hubert_new import SoundStream
|
| 70 |
-
|
| 71 |
-
#from post_process_audio import replace_low_freq_with_energy_matched # removed post process
|
| 72 |
|
| 73 |
device = "cuda:0"
|
| 74 |
|
|
|
|
|
|
|
| 75 |
model = AutoModelForCausalLM.from_pretrained(
|
| 76 |
-
"m-a-p/YuE-s1-7B-anneal-en-
|
| 77 |
torch_dtype=torch.float16,
|
| 78 |
attn_implementation="flash_attention_2",
|
| 79 |
-
low_cpu_mem_usage=True,
|
| 80 |
).to(device)
|
| 81 |
model.eval()
|
|
|
|
| 82 |
|
| 83 |
basic_model_config = './xcodec_mini_infer/final_ckpt/config.yaml'
|
| 84 |
resume_path = './xcodec_mini_infer/final_ckpt/ckpt_00360000.pth'
|
|
@@ -92,9 +93,61 @@ codec_model = eval(model_config.generator.name)(**model_config.generator.config)
|
|
| 92 |
parameter_dict = torch.load(resume_path, map_location='cpu')
|
| 93 |
codec_model.load_state_dict(parameter_dict['codec_model'])
|
| 94 |
codec_model.eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
|
| 97 |
@spaces.GPU(duration=120)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
def generate_music(
|
| 99 |
max_new_tokens=5,
|
| 100 |
run_n_segments=2,
|
|
@@ -107,6 +160,11 @@ def generate_music(
|
|
| 107 |
cuda_idx=0,
|
| 108 |
rescale=False,
|
| 109 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
if use_audio_prompt and not audio_prompt_path:
|
| 111 |
raise FileNotFoundError("Please offer audio prompt filepath using '--audio_prompt_path', when you enable 'use_audio_prompt'!")
|
| 112 |
cuda_idx = cuda_idx
|
|
@@ -116,31 +174,7 @@ def generate_music(
|
|
| 116 |
stage1_output_dir = os.path.join(output_dir, f"stage1")
|
| 117 |
os.makedirs(stage1_output_dir, exist_ok=True)
|
| 118 |
|
| 119 |
-
|
| 120 |
-
def __init__(self, start_id, end_id):
|
| 121 |
-
self.blocked_token_ids = list(range(start_id, end_id))
|
| 122 |
-
|
| 123 |
-
def __call__(self, input_ids, scores):
|
| 124 |
-
scores[:, self.blocked_token_ids] = -float("inf")
|
| 125 |
-
return scores
|
| 126 |
-
|
| 127 |
-
def load_audio_mono(filepath, sampling_rate=16000):
|
| 128 |
-
audio, sr = torchaudio.load(filepath)
|
| 129 |
-
# Convert to mono
|
| 130 |
-
audio = torch.mean(audio, dim=0, keepdim=True)
|
| 131 |
-
# Resample if needed
|
| 132 |
-
if sr != sampling_rate:
|
| 133 |
-
resampler = Resample(orig_freq=sr, new_freq=sampling_rate)
|
| 134 |
-
audio = resampler(audio)
|
| 135 |
-
return audio
|
| 136 |
-
|
| 137 |
-
def split_lyrics(lyrics: str):
|
| 138 |
-
pattern = r"\[(\w+)\](.*?)\n(?=\[|\Z)"
|
| 139 |
-
segments = re.findall(pattern, lyrics, re.DOTALL)
|
| 140 |
-
structured_lyrics = [f"[{seg[0]}]\n{seg[1].strip()}\n\n" for seg in segments]
|
| 141 |
-
return structured_lyrics
|
| 142 |
-
|
| 143 |
-
# Call the function and print the result
|
| 144 |
stage1_output_set = []
|
| 145 |
|
| 146 |
genres = genre_txt.strip()
|
|
@@ -151,16 +185,15 @@ def generate_music(
|
|
| 151 |
prompt_texts += lyrics
|
| 152 |
|
| 153 |
random_id = uuid.uuid4()
|
| 154 |
-
|
| 155 |
-
|
|
|
|
| 156 |
top_p = 0.93
|
| 157 |
temperature = 1.0
|
| 158 |
repetition_penalty = 1.2
|
| 159 |
-
# special tokens
|
| 160 |
start_of_segment = mmtokenizer.tokenize('[start_of_segment]')
|
| 161 |
end_of_segment = mmtokenizer.tokenize('[end_of_segment]')
|
| 162 |
|
| 163 |
-
raw_output = None
|
| 164 |
|
| 165 |
# Format text prompt
|
| 166 |
run_n_segments = min(run_n_segments + 1, len(lyrics))
|
|
@@ -169,7 +202,7 @@ def generate_music(
|
|
| 169 |
|
| 170 |
for i, p in enumerate(tqdm(prompt_texts[:run_n_segments])):
|
| 171 |
section_text = p.replace('[start_of_segment]', '').replace('[end_of_segment]', '')
|
| 172 |
-
guidance_scale = 1.5 if i <= 1 else 1.2
|
| 173 |
if i == 0:
|
| 174 |
continue
|
| 175 |
if i == 1:
|
|
@@ -196,30 +229,17 @@ def generate_music(
|
|
| 196 |
|
| 197 |
prompt_ids = torch.as_tensor(prompt_ids).unsqueeze(0).to(device)
|
| 198 |
input_ids = torch.cat([raw_output, prompt_ids], dim=1) if i > 1 else prompt_ids
|
|
|
|
| 199 |
# Use window slicing in case output sequence exceeds the context of model
|
| 200 |
max_context = 16384 - max_new_tokens - 1
|
| 201 |
if input_ids.shape[-1] > max_context:
|
| 202 |
print(
|
| 203 |
f'Section {i}: output length {input_ids.shape[-1]} exceeding context length {max_context}, now using the last {max_context} tokens.')
|
| 204 |
input_ids = input_ids[:, -(max_context):]
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
min_new_tokens=100,
|
| 210 |
-
do_sample=True,
|
| 211 |
-
top_p=top_p,
|
| 212 |
-
temperature=temperature,
|
| 213 |
-
repetition_penalty=repetition_penalty,
|
| 214 |
-
eos_token_id=mmtokenizer.eoa,
|
| 215 |
-
pad_token_id=mmtokenizer.eoa,
|
| 216 |
-
logits_processor=LogitsProcessorList([BlockTokenRangeProcessor(0, 32002), BlockTokenRangeProcessor(32016, 32016)]),
|
| 217 |
-
guidance_scale=guidance_scale,
|
| 218 |
-
use_cache=True
|
| 219 |
-
)
|
| 220 |
-
if output_seq[0][-1].item() != mmtokenizer.eoa:
|
| 221 |
-
tensor_eoa = torch.as_tensor([[mmtokenizer.eoa]]).to(model.device)
|
| 222 |
-
output_seq = torch.cat((output_seq, tensor_eoa), dim=1)
|
| 223 |
if i > 1:
|
| 224 |
raw_output = torch.cat([raw_output, prompt_ids, output_seq[:, input_ids.shape[-1]:]], dim=1)
|
| 225 |
else:
|
|
@@ -240,7 +260,7 @@ def generate_music(
|
|
| 240 |
codec_ids = ids[soa_idx[i] + 1:eoa_idx[i]]
|
| 241 |
if codec_ids[0] == 32016:
|
| 242 |
codec_ids = codec_ids[1:]
|
| 243 |
-
codec_ids = codec_ids[:2 * (codec_ids.shape[0] // 2)]
|
| 244 |
vocals_ids = codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[0])
|
| 245 |
vocals.append(vocals_ids)
|
| 246 |
instrumentals_ids = codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[1])
|
|
@@ -282,7 +302,7 @@ def generate_music(
|
|
| 282 |
decoded_waveform = decoded_waveform.cpu().squeeze(0)
|
| 283 |
decodec_rlt.append(torch.as_tensor(decoded_waveform))
|
| 284 |
decodec_rlt = torch.cat(decodec_rlt, dim=-1)
|
| 285 |
-
save_path = os.path.join(recons_output_dir, os.path.splitext(os.path.basename(npy))[0] + ".mp3")
|
| 286 |
tracks.append(save_path)
|
| 287 |
save_audio(decodec_rlt, save_path, 16000)
|
| 288 |
# mix tracks
|
|
@@ -306,7 +326,11 @@ def generate_music(
|
|
| 306 |
|
| 307 |
|
| 308 |
def infer(genre_txt_content, lyrics_txt_content, num_segments=2, max_new_tokens=15):
|
| 309 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 310 |
try:
|
| 311 |
mixed_audio_data, vocal_audio_data, instrumental_audio_data = generate_music(genre_txt=genre_txt_content, lyrics_txt=lyrics_txt_content, run_n_segments=num_segments,
|
| 312 |
cuda_idx=0, max_new_tokens=max_new_tokens)
|
|
@@ -315,10 +339,10 @@ def infer(genre_txt_content, lyrics_txt_content, num_segments=2, max_new_tokens=
|
|
| 315 |
gr.Warning("An Error Occured: " + str(e))
|
| 316 |
return None, None, None
|
| 317 |
finally:
|
| 318 |
-
print("Temporary files deleted.")
|
| 319 |
|
| 320 |
|
| 321 |
-
# Gradio
|
| 322 |
with gr.Blocks() as demo:
|
| 323 |
with gr.Column():
|
| 324 |
gr.Markdown("# YuE: Open Music Foundation Models for Full-Song Generation")
|
|
@@ -352,19 +376,6 @@ with gr.Blocks() as demo:
|
|
| 352 |
|
| 353 |
gr.Examples(
|
| 354 |
examples=[
|
| 355 |
-
# ["Rap-Rock Hybrid Punk basslines Scream-rap fusion Crowd chant vocals Distorted turntable scratches Rebel male vocal",
|
| 356 |
-
# """[verse]
|
| 357 |
-
# I'm the glitch in the algorithm's perfect face
|
| 358 |
-
# Spit code red in 8-bit, corrupt the marketplace
|
| 359 |
-
# Leather jacket pixels in a digital storm
|
| 360 |
-
# Got meme knives that go viral, keep the normies warm
|
| 361 |
-
|
| 362 |
-
# [chorus]
|
| 363 |
-
# BREAK-CORE! (Break-core!)
|
| 364 |
-
# Code-slicin' through the mainframe's bore
|
| 365 |
-
# FAKE WAR! (Fake war!)
|
| 366 |
-
# Trend-detonate, I'm the feedback roar
|
| 367 |
-
# """],
|
| 368 |
[
|
| 369 |
"rap piano street tough piercing vocal hip-hop synthesizer clear vocal male",
|
| 370 |
"""[verse]
|
|
@@ -415,5 +426,5 @@ Locked inside my mind, hot flame.
|
|
| 415 |
outputs=[music_out, vocal_out, instrumental_out]
|
| 416 |
)
|
| 417 |
gr.Markdown("## Call for Contributions\nIf you find this space interesting please feel free to contribute.")
|
| 418 |
-
|
| 419 |
demo.queue().launch(show_error=True)
|
|
|
|
| 67 |
import copy
|
| 68 |
from collections import Counter
|
| 69 |
from models.soundstream_hubert_new import SoundStream
|
| 70 |
+
|
|
|
|
| 71 |
|
| 72 |
device = "cuda:0"
|
| 73 |
|
| 74 |
+
# Load model and tokenizer outside the generation function (load once)
|
| 75 |
+
print("Loading model...")
|
| 76 |
model = AutoModelForCausalLM.from_pretrained(
|
| 77 |
+
"m-a-p/YuE-s1-7B-anneal-en-cot", # "m-a-p/YuE-s1-7B-anneal-en-icl",
|
| 78 |
torch_dtype=torch.float16,
|
| 79 |
attn_implementation="flash_attention_2",
|
|
|
|
| 80 |
).to(device)
|
| 81 |
model.eval()
|
| 82 |
+
print("Model loaded.")
|
| 83 |
|
| 84 |
basic_model_config = './xcodec_mini_infer/final_ckpt/config.yaml'
|
| 85 |
resume_path = './xcodec_mini_infer/final_ckpt/ckpt_00360000.pth'
|
|
|
|
| 93 |
parameter_dict = torch.load(resume_path, map_location='cpu')
|
| 94 |
codec_model.load_state_dict(parameter_dict['codec_model'])
|
| 95 |
codec_model.eval()
|
| 96 |
+
print("Codec model loaded.")
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
class BlockTokenRangeProcessor(LogitsProcessor):
|
| 100 |
+
def __init__(self, start_id, end_id):
|
| 101 |
+
self.blocked_token_ids = list(range(start_id, end_id))
|
| 102 |
+
|
| 103 |
+
def __call__(self, input_ids, scores):
|
| 104 |
+
scores[:, self.blocked_token_ids] = -float("inf")
|
| 105 |
+
return scores
|
| 106 |
+
|
| 107 |
+
def load_audio_mono(filepath, sampling_rate=16000):
|
| 108 |
+
audio, sr = torchaudio.load(filepath)
|
| 109 |
+
# Convert to mono
|
| 110 |
+
audio = torch.mean(audio, dim=0, keepdim=True)
|
| 111 |
+
# Resample if needed
|
| 112 |
+
if sr != sampling_rate:
|
| 113 |
+
resampler = Resample(orig_freq=sr, new_freq=sampling_rate)
|
| 114 |
+
audio = resampler(audio)
|
| 115 |
+
return audio
|
| 116 |
+
|
| 117 |
+
def split_lyrics(lyrics: str):
|
| 118 |
+
pattern = r"\[(\w+)\](.*?)\n(?=\[|\Z)"
|
| 119 |
+
segments = re.findall(pattern, lyrics, re.DOTALL)
|
| 120 |
+
structured_lyrics = [f"[{seg[0]}]\n{seg[1].strip()}\n\n" for seg in segments]
|
| 121 |
+
return structured_lyrics
|
| 122 |
|
| 123 |
|
| 124 |
@spaces.GPU(duration=120)
|
| 125 |
+
def model_inference(input_ids, max_new_tokens, top_p, temperature, repetition_penalty, guidance_scale):
|
| 126 |
+
"""
|
| 127 |
+
Performs model inference to generate music tokens.
|
| 128 |
+
This function is decorated with @spaces.GPU for GPU usage in Gradio Spaces.
|
| 129 |
+
"""
|
| 130 |
+
with torch.inference_mode(), torch.autocast(device_type='cuda', dtype=torch.float16):
|
| 131 |
+
output_seq = model.generate(
|
| 132 |
+
input_ids=input_ids,
|
| 133 |
+
max_new_tokens=max_new_tokens,
|
| 134 |
+
min_new_tokens=100, # Keep min_new_tokens to avoid short generations
|
| 135 |
+
do_sample=True,
|
| 136 |
+
top_p=top_p,
|
| 137 |
+
temperature=temperature,
|
| 138 |
+
repetition_penalty=repetition_penalty,
|
| 139 |
+
eos_token_id=mmtokenizer.eoa,
|
| 140 |
+
pad_token_id=mmtokenizer.eoa,
|
| 141 |
+
logits_processor=LogitsProcessorList([BlockTokenRangeProcessor(0, 32002), BlockTokenRangeProcessor(32016, 32016)]),
|
| 142 |
+
guidance_scale=guidance_scale,
|
| 143 |
+
use_cache=True
|
| 144 |
+
)
|
| 145 |
+
if output_seq[0][-1].item() != mmtokenizer.eoa:
|
| 146 |
+
tensor_eoa = torch.as_tensor([[mmtokenizer.eoa]]).to(model.device)
|
| 147 |
+
output_seq = torch.cat((output_seq, tensor_eoa), dim=1)
|
| 148 |
+
return output_seq
|
| 149 |
+
|
| 150 |
+
|
| 151 |
def generate_music(
|
| 152 |
max_new_tokens=5,
|
| 153 |
run_n_segments=2,
|
|
|
|
| 160 |
cuda_idx=0,
|
| 161 |
rescale=False,
|
| 162 |
):
|
| 163 |
+
"""
|
| 164 |
+
Generates music based on given genre and lyrics, optionally using an audio prompt.
|
| 165 |
+
This function orchestrates the music generation process, including prompt formatting,
|
| 166 |
+
model inference, and audio post-processing.
|
| 167 |
+
"""
|
| 168 |
if use_audio_prompt and not audio_prompt_path:
|
| 169 |
raise FileNotFoundError("Please offer audio prompt filepath using '--audio_prompt_path', when you enable 'use_audio_prompt'!")
|
| 170 |
cuda_idx = cuda_idx
|
|
|
|
| 174 |
stage1_output_dir = os.path.join(output_dir, f"stage1")
|
| 175 |
os.makedirs(stage1_output_dir, exist_ok=True)
|
| 176 |
|
| 177 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
stage1_output_set = []
|
| 179 |
|
| 180 |
genres = genre_txt.strip()
|
|
|
|
| 185 |
prompt_texts += lyrics
|
| 186 |
|
| 187 |
random_id = uuid.uuid4()
|
| 188 |
+
raw_output = None
|
| 189 |
+
|
| 190 |
+
# Decoding config (moved here for better readability)
|
| 191 |
top_p = 0.93
|
| 192 |
temperature = 1.0
|
| 193 |
repetition_penalty = 1.2
|
|
|
|
| 194 |
start_of_segment = mmtokenizer.tokenize('[start_of_segment]')
|
| 195 |
end_of_segment = mmtokenizer.tokenize('[end_of_segment]')
|
| 196 |
|
|
|
|
| 197 |
|
| 198 |
# Format text prompt
|
| 199 |
run_n_segments = min(run_n_segments + 1, len(lyrics))
|
|
|
|
| 202 |
|
| 203 |
for i, p in enumerate(tqdm(prompt_texts[:run_n_segments])):
|
| 204 |
section_text = p.replace('[start_of_segment]', '').replace('[end_of_segment]', '')
|
| 205 |
+
guidance_scale = 1.5 if i <= 1 else 1.2 # Guidance scale adjusted based on segment index
|
| 206 |
if i == 0:
|
| 207 |
continue
|
| 208 |
if i == 1:
|
|
|
|
| 229 |
|
| 230 |
prompt_ids = torch.as_tensor(prompt_ids).unsqueeze(0).to(device)
|
| 231 |
input_ids = torch.cat([raw_output, prompt_ids], dim=1) if i > 1 else prompt_ids
|
| 232 |
+
|
| 233 |
# Use window slicing in case output sequence exceeds the context of model
|
| 234 |
max_context = 16384 - max_new_tokens - 1
|
| 235 |
if input_ids.shape[-1] > max_context:
|
| 236 |
print(
|
| 237 |
f'Section {i}: output length {input_ids.shape[-1]} exceeding context length {max_context}, now using the last {max_context} tokens.')
|
| 238 |
input_ids = input_ids[:, -(max_context):]
|
| 239 |
+
|
| 240 |
+
output_seq = model_inference(input_ids, max_new_tokens, top_p, temperature, repetition_penalty, guidance_scale)
|
| 241 |
+
|
| 242 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 243 |
if i > 1:
|
| 244 |
raw_output = torch.cat([raw_output, prompt_ids, output_seq[:, input_ids.shape[-1]:]], dim=1)
|
| 245 |
else:
|
|
|
|
| 260 |
codec_ids = ids[soa_idx[i] + 1:eoa_idx[i]]
|
| 261 |
if codec_ids[0] == 32016:
|
| 262 |
codec_ids = codec_ids[1:]
|
| 263 |
+
codec_ids = codec_ids[:2 * (codec_ids.shape[0] // 2)] # Ensure even length for reshape
|
| 264 |
vocals_ids = codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[0])
|
| 265 |
vocals.append(vocals_ids)
|
| 266 |
instrumentals_ids = codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[1])
|
|
|
|
| 302 |
decoded_waveform = decoded_waveform.cpu().squeeze(0)
|
| 303 |
decodec_rlt.append(torch.as_tensor(decoded_waveform))
|
| 304 |
decodec_rlt = torch.cat(decodec_rlt, dim=-1)
|
| 305 |
+
save_path = os.path.join(recons_output_dir, os.path.splitext(os.path.basename(npy))[0] + ".mp3") # Save as mp3 for gradio
|
| 306 |
tracks.append(save_path)
|
| 307 |
save_audio(decodec_rlt, save_path, 16000)
|
| 308 |
# mix tracks
|
|
|
|
| 326 |
|
| 327 |
|
| 328 |
def infer(genre_txt_content, lyrics_txt_content, num_segments=2, max_new_tokens=15):
|
| 329 |
+
"""
|
| 330 |
+
Gradio interface function to generate music.
|
| 331 |
+
This function takes genre, lyrics, and generation parameters from Gradio inputs,
|
| 332 |
+
calls the music generation pipeline, and returns the audio outputs.
|
| 333 |
+
"""
|
| 334 |
try:
|
| 335 |
mixed_audio_data, vocal_audio_data, instrumental_audio_data = generate_music(genre_txt=genre_txt_content, lyrics_txt=lyrics_txt_content, run_n_segments=num_segments,
|
| 336 |
cuda_idx=0, max_new_tokens=max_new_tokens)
|
|
|
|
| 339 |
gr.Warning("An Error Occured: " + str(e))
|
| 340 |
return None, None, None
|
| 341 |
finally:
|
| 342 |
+
print("Temporary files deleted.") # This message is printed regardless of success/failure
|
| 343 |
|
| 344 |
|
| 345 |
+
# Gradio Interface
|
| 346 |
with gr.Blocks() as demo:
|
| 347 |
with gr.Column():
|
| 348 |
gr.Markdown("# YuE: Open Music Foundation Models for Full-Song Generation")
|
|
|
|
| 376 |
|
| 377 |
gr.Examples(
|
| 378 |
examples=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 379 |
[
|
| 380 |
"rap piano street tough piercing vocal hip-hop synthesizer clear vocal male",
|
| 381 |
"""[verse]
|
|
|
|
| 426 |
outputs=[music_out, vocal_out, instrumental_out]
|
| 427 |
)
|
| 428 |
gr.Markdown("## Call for Contributions\nIf you find this space interesting please feel free to contribute.")
|
| 429 |
+
|
| 430 |
demo.queue().launch(show_error=True)
|