Spaces:
Sleeping
Sleeping
File size: 8,048 Bytes
7b7a7b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
""" run_magma.py
Accept input processed spectra and make subformula peak assignments
accordingly.
"""
import logging
from pathlib import Path
import numpy as np
import pandas as pd
import argparse
import sys
from multiprocessing import Pool
from tqdm import tqdm
from collections import defaultdict
import json
# add parent path
import os
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
# Custom import
from magma.fragmentation import FragmentEngine, ionmasses
from magma import magma_utils
from magma.fragmentation import ionmasses
# Define basic logger
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s %(levelname)s: %(message)s",
handlers=[
logging.StreamHandler(sys.stdout),
],
)
FRAGMENT_ENGINE_PARAMS = {
"max_broken_bonds": 3,
"max_water_losses": 1,
"ionisation_mode": 1,
"skip_fragmentation": 0,
"molcharge": 0,
}
PEAK_ASSIGNMENT_PARAMS = {
'lowest_penalty_filter': True,
'tolerance': 1
}
def get_args():
"""get args"""
parser = argparse.ArgumentParser()
parser.add_argument(
'--data_pth',
required=True
)
parser.add_argument(
"--output_dir",
required=True,
help="Output directory to save MAGMA files",
)
parser.add_argument(
"--workers", default=30, action="store", type=int, help="Num workers"
)
return parser.parse_args()
def get_matching_fragment(
fragment_df, mass_comparison_vector, lowest_penalty_filter: bool
):
"""get_matching_fragment.
Compare frag
Args:
fragment_df
mass_comparison_vec
lowest_penalty_filter
"""
# Step 1 - Determine and filter for fragments whose mass range cover the peak mass
matched_fragments_df = fragment_df[mass_comparison_vector]
# If no candidate fragments exist, exit function
if matched_fragments_df.shape[0] == 0:
return []
# Step 2 - If multiple candidate substructures, filter for those with the lowest penalty scores
if lowest_penalty_filter:
if matched_fragments_df.shape[0] > 1:
min_score = matched_fragments_df["score"].min()
matched_fragments_df = matched_fragments_df[
matched_fragments_df["score"] == min_score
]
# Step 3 - Save all remaining candidate fragments
matched_fragment_idxs = list(matched_fragments_df.index)
return matched_fragment_idxs
def get_fragment_mass_range(fragment_engine, fragment_df, tolerance):
"""get_fragment_mass_range.
Define min and max masses in the range that are available based upon
hydrogen diffs.
Args:
fragment_engine: Fragment engine
fragment_df: fragment_df
tolerance: Tolerance
"""
fragment_masses_np = fragment_engine.fragment_masses_np
# Build a list of the min and max mass of each fragment
fragment_mass_min_max = []
for fragment_idx in range(fragment_masses_np.shape[0]):
fragment_masses = fragment_masses_np[fragment_idx, :]
if np.sum(fragment_masses) == 0:
min_frag_mass = 0
max_frag_mass = 0
else:
min_frag_mass = (
fragment_masses[np.nonzero(fragment_masses)[0][0]] - tolerance
)
max_frag_mass = max(fragment_masses) + tolerance
fragment_mass_min_max.append((min_frag_mass, max_frag_mass))
fragment_mass_min_max = np.array(fragment_mass_min_max)
fragment_df["min_mass"] = fragment_mass_min_max[:, 0]
fragment_df["max_mass"] = fragment_mass_min_max[:, 1]
return fragment_df
def run_magma_wrapper(args):
if os.path.exists(args[-1]): # skip over ones that have been processed
return
return run_magma(*args)
def run_magma(identifier, mzs, intensities, smiles, adduct, save_filename=''):
'''YZC
Run fragmentation, assignment, and save results
'''
# Step 1 - Load fragmentation engine and generate fragments
(
max_broken_bonds,
max_water_losses,
ionisation_mode,
skip_fragmentation,
molcharge,
) = FRAGMENT_ENGINE_PARAMS.values()
try:
engine = FragmentEngine(
smiles=smiles,
max_broken_bonds=max_broken_bonds,
max_water_losses=max_water_losses,
ionisation_mode=ionisation_mode,
skip_fragmentation=skip_fragmentation,
molcharge=molcharge,
)
engine.generate_fragments()
except Exception as e:
logging.info(f"Error for spec {identifier}")
print(e)
return None
# Step 2 - Assign fragments to peaks
assignment_dict = peak_fragment_assignment(
engine,
mzs,
intensities,
adduct,
)
# Step 3 - Save assignments
if save_filename:
with open(save_filename, 'w') as f:
json.dump(assignment_dict, f)
else:
return assignment_dict
def peak_fragment_assignment(fragment_engine, mzs, intensities, adduct):
''' returns a df with columns
Args:
fragment_engine: FragmentEngine
mzs: np array of mz values
adduct: str eg. [M+H]+ [M+Na]+
Returns:
assignment_df
'''
fragments_info = fragment_engine.fragment_info
fragment_df = pd.DataFrame(
fragment_engine.fragment_info, columns=["id", "score", "bond_breaks"]
)
fragment_df = get_fragment_mass_range(fragment_engine, fragment_df, tolerance=PEAK_ASSIGNMENT_PARAMS['tolerance'])
# Need to build comparison values here
min_fragment_mass = fragment_df["min_mass"].values
max_fragment_mass = fragment_df["max_mass"].values
adduct = magma_utils.extract_adduct_ion(adduct)
charge = 1 if adduct.startswith('+') else -1
exact_masses = mzs + ionmasses[charge][adduct]
mass_comparison_matrix = np.logical_and(
exact_masses[None, :] >= min_fragment_mass[:, None],
exact_masses[None, :] <= max_fragment_mass[:, None],
)
# Iterate over each peak to find a match
assignments = defaultdict(list) # {mz, intensity, subformulas, candidates}
for k, (m, i) in enumerate(zip(mzs, intensities)):
mass_comparison_vector = mass_comparison_matrix[:, k]
matched_fragment_idxs = get_matching_fragment(
fragment_df,
mass_comparison_vector,
lowest_penalty_filter=PEAK_ASSIGNMENT_PARAMS['lowest_penalty_filter'],
)
# Save selected fragments info
subformulas = set([])
substructures = set([])
for idx in matched_fragment_idxs:
fragment_info = fragment_engine.get_fragment_info(fragments_info[idx][0], 0)
subformulas.add(fragment_info[2])
substructures.add(fragment_info[3])
subformulas = list(subformulas)
substructures = list(substructures)
assignments['mz'].append(m)
assignments['intensities'].append(i)
assignments['subformulas'].append(subformulas)
assignments['substructures'].append(substructures)
return assignments
if __name__ == "__main__":
import time
start_time = time.time()
args = get_args()
kwargs = args.__dict__
os.makedirs(args.output_dir, exist_ok=True)
df = pd.read_csv(args.data_pth, sep='\t')
df['save_filename'] = df['identifier'].apply(lambda x: os.path.join(args.output_dir, x + '.json'))
df['mzs'] = df['mzs'].apply(lambda x: np.array([float(m) for m in x.split(',')]))
df['intensities'] = df['intensities'].apply(lambda x: np.array([float(i) for i in x.split(',')]))
df = df[['identifier', 'mzs', 'intensities', 'smiles', 'adduct', 'save_filename']]
tasks = list(df.itertuples(index=False, name=None))
with Pool(processes=args.workers) as pool:
results = list(tqdm(pool.imap_unordered(run_magma_wrapper, tasks), total=len(tasks)))
# pool.starmap(run_magma, tasks)
end_time = time.time()
print(f"Program finished in: {end_time - start_time} seconds") |