Spaces:
Sleeping
Sleeping
Commit
·
b1aa639
1
Parent(s):
7b7a7b6
update
Browse files- mvp/data/datasets.py +72 -23
- mvp/data/transforms.py +2 -2
- mvp/definitions.py +3 -1
- mvp/params_formSpec.yaml +4 -3
- mvp/run.sh +1 -1
- mvp/test.py +3 -1
- mvp/utils/data.py +77 -9
mvp/data/datasets.py
CHANGED
|
@@ -19,6 +19,9 @@ import math
|
|
| 19 |
import itertools
|
| 20 |
from rdkit.Chem import AllChem
|
| 21 |
from rdkit import Chem
|
|
|
|
|
|
|
|
|
|
| 22 |
class JESTR1_MassSpecDataset(MassSpecDataset):
|
| 23 |
def __init__(
|
| 24 |
self,
|
|
@@ -90,8 +93,6 @@ class JESTR1_MassSpecDataset(MassSpecDataset):
|
|
| 90 |
item[key] = transform(spec) if transform is not None else spec
|
| 91 |
else:
|
| 92 |
item["spec"] = self.spec_transform(spec)
|
| 93 |
-
else:
|
| 94 |
-
item["spec"] = spec
|
| 95 |
|
| 96 |
if self.return_mol_freq:
|
| 97 |
item["mol_freq"] = metadata["mol_freq"]
|
|
@@ -132,7 +133,9 @@ class MassSpecDataset_PeakFormulas(JESTR1_MassSpecDataset):
|
|
| 132 |
cons_spec_dir_pth: str = None,
|
| 133 |
return_mol_freq: bool = False,
|
| 134 |
return_identifier: bool = True,
|
| 135 |
-
dtype: T.Type = torch.float32
|
|
|
|
|
|
|
| 136 |
):
|
| 137 |
"""
|
| 138 |
Args:
|
|
@@ -146,6 +149,8 @@ class MassSpecDataset_PeakFormulas(JESTR1_MassSpecDataset):
|
|
| 146 |
self.use_cons_spec = False
|
| 147 |
self.use_NL_spec = False
|
| 148 |
self.spectra_view = spectra_view
|
|
|
|
|
|
|
| 149 |
|
| 150 |
if isinstance(self.pth, str):
|
| 151 |
self.pth = Path(self.pth)
|
|
@@ -155,19 +160,7 @@ class MassSpecDataset_PeakFormulas(JESTR1_MassSpecDataset):
|
|
| 155 |
self.metadata = pd.read_csv(self.pth, sep="\t")
|
| 156 |
|
| 157 |
# load subformulas
|
| 158 |
-
|
| 159 |
-
subformulaLoader = data_utils.Subformula_Loader(spectra_view=spectra_view, dir_path=subformula_dir_pth)
|
| 160 |
-
|
| 161 |
-
form_list = self.metadata['formula'].tolist()
|
| 162 |
-
prec_mz_list = self.metadata['precursor_mz'].tolist()
|
| 163 |
-
id_to_spec = subformulaLoader(all_spec_ids, form_list, prec_mz_list)
|
| 164 |
-
|
| 165 |
-
# create subformula spectra if no subformula is available
|
| 166 |
-
tmp_ids = [spec_id for spec_id in all_spec_ids if spec_id not in id_to_spec]
|
| 167 |
-
tmp_df = self.metadata[self.metadata['identifier'].isin(tmp_ids)]
|
| 168 |
-
tmp_df['spec'] = tmp_df.apply(lambda row: data_utils.make_tmp_subformula_spectra(row), axis=1)
|
| 169 |
-
id_to_spec.update(dict(zip(tmp_df['identifier'].tolist(), tmp_df['spec'].tolist())))
|
| 170 |
-
|
| 171 |
|
| 172 |
# load fingerprints
|
| 173 |
self._load_fp(fp_dir_pth)
|
|
@@ -179,6 +172,7 @@ class MassSpecDataset_PeakFormulas(JESTR1_MassSpecDataset):
|
|
| 179 |
self._load_NL_spec(NL_spec_dir_pth)
|
| 180 |
|
| 181 |
self.metadata = self.metadata[self.metadata['identifier'].isin(id_to_spec)]
|
|
|
|
| 182 |
formula_df = pd.DataFrame.from_dict(id_to_spec, orient='index').reset_index().rename(columns={'index': 'identifier'})
|
| 183 |
self.metadata = self.metadata.merge(formula_df, on='identifier')
|
| 184 |
|
|
@@ -208,6 +202,27 @@ class MassSpecDataset_PeakFormulas(JESTR1_MassSpecDataset):
|
|
| 208 |
|
| 209 |
return item
|
| 210 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 211 |
class ContrastiveDataset(Dataset):
|
| 212 |
def __init__(
|
| 213 |
self,
|
|
@@ -255,7 +270,11 @@ class ContrastiveDataset(Dataset):
|
|
| 255 |
# standard collate
|
| 256 |
for k in batch[0].keys():
|
| 257 |
if k not in non_standard_collate:
|
| 258 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 259 |
|
| 260 |
# batch graphs
|
| 261 |
batch_mol = []
|
|
@@ -327,10 +346,13 @@ class ExpandedRetrievalDataset:
|
|
| 327 |
candidates_pth: T.Optional[T.Union[Path, str]] = None,
|
| 328 |
fp_size: int = None,
|
| 329 |
fp_radius: int = None,
|
|
|
|
| 330 |
**kwargs):
|
|
|
|
| 331 |
|
| 332 |
-
self.
|
| 333 |
-
|
|
|
|
| 334 |
|
| 335 |
if self.use_fp:
|
| 336 |
self.fpgen = AllChem.GetMorganGenerator(radius=fp_radius,fpSize=fp_size)
|
|
@@ -348,9 +370,10 @@ class ExpandedRetrievalDataset:
|
|
| 348 |
|
| 349 |
self.spec_cand = [] #(spec index, cand_smiles, true_label)
|
| 350 |
test_smiles = self.metadata[self.metadata['fold'] == "test"]['smiles'].tolist()
|
| 351 |
-
test_ms_id = self.metadata[self.metadata['fold'] == "test"]['identifier'].tolist()
|
|
|
|
|
|
|
| 352 |
|
| 353 |
-
spec_id_to_index = dict(zip(self.metadata['identifier'], self.metadata.index))
|
| 354 |
for spec_id, s in zip(test_ms_id, test_smiles):
|
| 355 |
candidates = self.candidates[s]
|
| 356 |
# mol_label = self.mol_label_transform(s)
|
|
@@ -363,7 +386,7 @@ class ExpandedRetrievalDataset:
|
|
| 363 |
print(f"Target smiles not in candidate set")
|
| 364 |
|
| 365 |
|
| 366 |
-
self.spec_cand.extend([(spec_id_to_index[spec_id], candidates[j], k) for j, k in enumerate(labels)])
|
| 367 |
|
| 368 |
def __getattr__(self, name):
|
| 369 |
return self.instance.__getattribute__(name)
|
|
@@ -376,7 +399,33 @@ class ExpandedRetrievalDataset:
|
|
| 376 |
cand_smiles = self.spec_cand[i][1]
|
| 377 |
label = self.spec_cand[i][2]
|
| 378 |
|
| 379 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 380 |
item['cand'] = self.mol_transform(cand_smiles)
|
| 381 |
item['cand_smiles'] = cand_smiles
|
| 382 |
item['label'] = label
|
|
|
|
| 19 |
import itertools
|
| 20 |
from rdkit.Chem import AllChem
|
| 21 |
from rdkit import Chem
|
| 22 |
+
from magma.run_magma import run_magma
|
| 23 |
+
import matchms
|
| 24 |
+
|
| 25 |
class JESTR1_MassSpecDataset(MassSpecDataset):
|
| 26 |
def __init__(
|
| 27 |
self,
|
|
|
|
| 93 |
item[key] = transform(spec) if transform is not None else spec
|
| 94 |
else:
|
| 95 |
item["spec"] = self.spec_transform(spec)
|
|
|
|
|
|
|
| 96 |
|
| 97 |
if self.return_mol_freq:
|
| 98 |
item["mol_freq"] = metadata["mol_freq"]
|
|
|
|
| 133 |
cons_spec_dir_pth: str = None,
|
| 134 |
return_mol_freq: bool = False,
|
| 135 |
return_identifier: bool = True,
|
| 136 |
+
dtype: T.Type = torch.float32,
|
| 137 |
+
formula_source = 'default',
|
| 138 |
+
stage: Stage = Stage.TRAIN
|
| 139 |
):
|
| 140 |
"""
|
| 141 |
Args:
|
|
|
|
| 149 |
self.use_cons_spec = False
|
| 150 |
self.use_NL_spec = False
|
| 151 |
self.spectra_view = spectra_view
|
| 152 |
+
self.formula_source = formula_source
|
| 153 |
+
self.subformula_dir_pth = subformula_dir_pth
|
| 154 |
|
| 155 |
if isinstance(self.pth, str):
|
| 156 |
self.pth = Path(self.pth)
|
|
|
|
| 160 |
self.metadata = pd.read_csv(self.pth, sep="\t")
|
| 161 |
|
| 162 |
# load subformulas
|
| 163 |
+
id_to_spec = self._load_id_to_spec(stage)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
|
| 165 |
# load fingerprints
|
| 166 |
self._load_fp(fp_dir_pth)
|
|
|
|
| 172 |
self._load_NL_spec(NL_spec_dir_pth)
|
| 173 |
|
| 174 |
self.metadata = self.metadata[self.metadata['identifier'].isin(id_to_spec)]
|
| 175 |
+
|
| 176 |
formula_df = pd.DataFrame.from_dict(id_to_spec, orient='index').reset_index().rename(columns={'index': 'identifier'})
|
| 177 |
self.metadata = self.metadata.merge(formula_df, on='identifier')
|
| 178 |
|
|
|
|
| 202 |
|
| 203 |
return item
|
| 204 |
|
| 205 |
+
def _load_id_to_spec(self, stage):
|
| 206 |
+
if stage == Stage.TRAIN:
|
| 207 |
+
self.metadata = self.metadata[self.metadata['fold'] != Stage.TEST.value]
|
| 208 |
+
else:
|
| 209 |
+
self.metadata = self.metadata[self.metadata['fold'] == Stage.TEST.value]
|
| 210 |
+
|
| 211 |
+
all_spec_ids = self.metadata['identifier'].tolist()
|
| 212 |
+
self.subformulaLoader = data_utils.Subformula_Loader(spectra_view=self.spectra_view, dir_path=self.subformula_dir_pth, formula_source=self.formula_source)
|
| 213 |
+
|
| 214 |
+
form_list = self.metadata['formula'].tolist()
|
| 215 |
+
prec_mz_list = self.metadata['precursor_mz'].tolist()
|
| 216 |
+
id_to_spec = self.subformulaLoader(all_spec_ids, form_list, prec_mz_list)
|
| 217 |
+
|
| 218 |
+
# create subformula spectra if no subformula is available
|
| 219 |
+
tmp_ids = [spec_id for spec_id in all_spec_ids if spec_id not in id_to_spec]
|
| 220 |
+
tmp_df = self.metadata[self.metadata['identifier'].isin(tmp_ids)]
|
| 221 |
+
tmp_df['spec'] = tmp_df.apply(lambda row: data_utils.make_tmp_subformula_spectra(row), axis=1)
|
| 222 |
+
id_to_spec.update(dict(zip(tmp_df['identifier'].tolist(), tmp_df['spec'].tolist())))
|
| 223 |
+
|
| 224 |
+
return id_to_spec
|
| 225 |
+
|
| 226 |
class ContrastiveDataset(Dataset):
|
| 227 |
def __init__(
|
| 228 |
self,
|
|
|
|
| 270 |
# standard collate
|
| 271 |
for k in batch[0].keys():
|
| 272 |
if k not in non_standard_collate:
|
| 273 |
+
try:
|
| 274 |
+
collated_batch[k] = default_collate([item[k] for item in batch])
|
| 275 |
+
except:
|
| 276 |
+
print(f"Error in collating key {k}")
|
| 277 |
+
raise
|
| 278 |
|
| 279 |
# batch graphs
|
| 280 |
batch_mol = []
|
|
|
|
| 346 |
candidates_pth: T.Optional[T.Union[Path, str]] = None,
|
| 347 |
fp_size: int = None,
|
| 348 |
fp_radius: int = None,
|
| 349 |
+
use_magma = False,
|
| 350 |
**kwargs):
|
| 351 |
+
|
| 352 |
|
| 353 |
+
self.use_magma = use_magma
|
| 354 |
+
|
| 355 |
+
self.instance = MassSpecDataset_PeakFormulas(**kwargs, return_mol_freq=False, stage = Stage.TEST) if use_formulas else JESTR1_MassSpecDataset(**kwargs, return_mol_freq=False)
|
| 356 |
|
| 357 |
if self.use_fp:
|
| 358 |
self.fpgen = AllChem.GetMorganGenerator(radius=fp_radius,fpSize=fp_size)
|
|
|
|
| 370 |
|
| 371 |
self.spec_cand = [] #(spec index, cand_smiles, true_label)
|
| 372 |
test_smiles = self.metadata[self.metadata['fold'] == "test"]['smiles'].tolist()
|
| 373 |
+
test_ms_id = self.metadata[self.metadata['fold'] == "test"]['identifier'].tolist()
|
| 374 |
+
|
| 375 |
+
self.spec_id_to_index = dict(zip(self.metadata['identifier'], self.metadata.index))
|
| 376 |
|
|
|
|
| 377 |
for spec_id, s in zip(test_ms_id, test_smiles):
|
| 378 |
candidates = self.candidates[s]
|
| 379 |
# mol_label = self.mol_label_transform(s)
|
|
|
|
| 386 |
print(f"Target smiles not in candidate set")
|
| 387 |
|
| 388 |
|
| 389 |
+
self.spec_cand.extend([(self.spec_id_to_index[spec_id], candidates[j], k) for j, k in enumerate(labels)])
|
| 390 |
|
| 391 |
def __getattr__(self, name):
|
| 392 |
return self.instance.__getattribute__(name)
|
|
|
|
| 399 |
cand_smiles = self.spec_cand[i][1]
|
| 400 |
label = self.spec_cand[i][2]
|
| 401 |
|
| 402 |
+
if self.use_magma:
|
| 403 |
+
item = self.instance.__getitem__(spec_i, transform_mol=False, transform_spec=False)
|
| 404 |
+
|
| 405 |
+
mzs = np.array([float(x) for x in self.metadata.iloc[spec_i]['mzs'].split(',')])
|
| 406 |
+
intensities = np.array([float(x) for x in self.metadata.iloc[spec_i]['intensities'].split(',')])
|
| 407 |
+
adduct = self.metadata.iloc[spec_i]['adduct']
|
| 408 |
+
precursor_mz = self.metadata.iloc[spec_i]['precursor_mz']
|
| 409 |
+
formula = self.metadata.iloc[spec_i]['formula']
|
| 410 |
+
spec_data = run_magma(i, mzs, intensities, cand_smiles, adduct)
|
| 411 |
+
|
| 412 |
+
spec = self.subformulaLoader.load_magma_data(spec_data, formula, precursor_mz)
|
| 413 |
+
|
| 414 |
+
spec = matchms.Spectrum(
|
| 415 |
+
mz = np.array(spec['formula_mzs']),
|
| 416 |
+
intensities = np.array(spec['formula_intensities']),
|
| 417 |
+
metadata = {'precursor_mz': precursor_mz, 'formulas': np.array(spec['formulas'])})
|
| 418 |
+
|
| 419 |
+
if isinstance(self.spec_transform, dict):
|
| 420 |
+
|
| 421 |
+
for key, transform in self.spec_transform.items():
|
| 422 |
+
item[key] = transform(spec) if transform is not None else spec
|
| 423 |
+
else:
|
| 424 |
+
item["spec"] = self.spec_transform(spec)
|
| 425 |
+
|
| 426 |
+
else:
|
| 427 |
+
item = self.instance.__getitem__(spec_i, transform_mol=False)
|
| 428 |
+
|
| 429 |
item['cand'] = self.mol_transform(cand_smiles)
|
| 430 |
item['cand_smiles'] = cand_smiles
|
| 431 |
item['label'] = label
|
mvp/data/transforms.py
CHANGED
|
@@ -160,7 +160,7 @@ class SpecFormulaMzFeaturizer(SpecTransform):
|
|
| 160 |
# print(f"Couldn't vectorize {f}, element {e} not supported")
|
| 161 |
continue
|
| 162 |
return formula_vector
|
| 163 |
-
|
| 164 |
class SpecFormulaFeaturizer(SpecTransform):
|
| 165 |
''' Uses processed mz and intensities, excludes mz values, keep peaks with formulas only'''
|
| 166 |
def __init__(
|
|
@@ -208,7 +208,7 @@ class SpecFormulaFeaturizer(SpecTransform):
|
|
| 208 |
try:
|
| 209 |
formula_vector[i][self.elem_to_pos[e]]+=ct
|
| 210 |
except:
|
| 211 |
-
print(f"Couldn't vectorize {f}, element {e} not supported")
|
| 212 |
continue
|
| 213 |
except:
|
| 214 |
print(f"Couldn't vectorize {f}, formula not supported")
|
|
|
|
| 160 |
# print(f"Couldn't vectorize {f}, element {e} not supported")
|
| 161 |
continue
|
| 162 |
return formula_vector
|
| 163 |
+
|
| 164 |
class SpecFormulaFeaturizer(SpecTransform):
|
| 165 |
''' Uses processed mz and intensities, excludes mz values, keep peaks with formulas only'''
|
| 166 |
def __init__(
|
|
|
|
| 208 |
try:
|
| 209 |
formula_vector[i][self.elem_to_pos[e]]+=ct
|
| 210 |
except:
|
| 211 |
+
# print(f"Couldn't vectorize {f}, element {e} not supported")
|
| 212 |
continue
|
| 213 |
except:
|
| 214 |
print(f"Couldn't vectorize {f}, formula not supported")
|
mvp/definitions.py
CHANGED
|
@@ -40,4 +40,6 @@ MSGYM_STANDARD_MH = {
|
|
| 40 |
}
|
| 41 |
MSGYM_STANDARD_all = { # got these from Yinkai
|
| 42 |
"mz_mean": 80.88304948022557,
|
| 43 |
-
"mz_std" : 197.4588028571758}
|
|
|
|
|
|
|
|
|
| 40 |
}
|
| 41 |
MSGYM_STANDARD_all = { # got these from Yinkai
|
| 42 |
"mz_mean": 80.88304948022557,
|
| 43 |
+
"mz_std" : 197.4588028571758}
|
| 44 |
+
|
| 45 |
+
PRECURSOR_INTENSITY = 1.1
|
mvp/params_formSpec.yaml
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
# Experiment setup
|
| 2 |
job_key: ''
|
| 3 |
-
run_name: '
|
| 4 |
run_details: ""
|
| 5 |
project_name: ''
|
| 6 |
wandb_entity_name: 'mass-spec-ml'
|
|
@@ -12,14 +12,14 @@ checkpoint_pth:
|
|
| 12 |
# Training setup
|
| 13 |
max_epochs: 2000
|
| 14 |
accelerator: 'gpu'
|
| 15 |
-
devices: [
|
| 16 |
log_every_n_steps: 250
|
| 17 |
val_check_interval: 1.0
|
| 18 |
|
| 19 |
# Data paths
|
| 20 |
candidates_pth: /r/hassounlab/spectra_data/msgym/molecules/MassSpecGym_retrieval_candidates_mass.json # "../data/MassSpecGym/data/molecules/MassSpecGym_retrieval_candidates_formula.json"
|
| 21 |
dataset_pth: /r/hassounlab/spectra_data/msgym/MassSpecGym.tsv #/data/yzhouc01/spectra_data/combined_msgym_nist23_multiplex.tsv # /r/hassounlab/spectra_data/msgym/MassSpecGym.tsv # "../data/MassSpecGym/data/sample_data.tsv"
|
| 22 |
-
subformula_dir_pth: /
|
| 23 |
split_pth:
|
| 24 |
fp_dir_pth:
|
| 25 |
cons_spec_dir_pth:
|
|
@@ -39,6 +39,7 @@ num_workers: 50
|
|
| 39 |
############################## Data transforms ##############################
|
| 40 |
# - Spectra
|
| 41 |
spectra_view: SpecFormula #SpecMzIntTokens #SpecFormula
|
|
|
|
| 42 |
# 1. Binner
|
| 43 |
max_mz: 1000
|
| 44 |
bin_width: 1
|
|
|
|
| 1 |
# Experiment setup
|
| 2 |
job_key: ''
|
| 3 |
+
run_name: 'magma_all_labels'
|
| 4 |
run_details: ""
|
| 5 |
project_name: ''
|
| 6 |
wandb_entity_name: 'mass-spec-ml'
|
|
|
|
| 12 |
# Training setup
|
| 13 |
max_epochs: 2000
|
| 14 |
accelerator: 'gpu'
|
| 15 |
+
devices: [0]
|
| 16 |
log_every_n_steps: 250
|
| 17 |
val_check_interval: 1.0
|
| 18 |
|
| 19 |
# Data paths
|
| 20 |
candidates_pth: /r/hassounlab/spectra_data/msgym/molecules/MassSpecGym_retrieval_candidates_mass.json # "../data/MassSpecGym/data/molecules/MassSpecGym_retrieval_candidates_formula.json"
|
| 21 |
dataset_pth: /r/hassounlab/spectra_data/msgym/MassSpecGym.tsv #/data/yzhouc01/spectra_data/combined_msgym_nist23_multiplex.tsv # /r/hassounlab/spectra_data/msgym/MassSpecGym.tsv # "../data/MassSpecGym/data/sample_data.tsv"
|
| 22 |
+
subformula_dir_pth: /data/yzhouc01/FILIP-MS/data/magma # /r/hassounlab/msgym_sirius # /data/yzhouc01/MVP/data/MassSpecGym/data/subformulae_default #/data/yzhouc01/spectra_data/subformulae #"../data/MassSpecGym/data/subformulae_default"
|
| 23 |
split_pth:
|
| 24 |
fp_dir_pth:
|
| 25 |
cons_spec_dir_pth:
|
|
|
|
| 39 |
############################## Data transforms ##############################
|
| 40 |
# - Spectra
|
| 41 |
spectra_view: SpecFormula #SpecMzIntTokens #SpecFormula
|
| 42 |
+
formula_source: 'magma_all' # magma_1, magma_all, sirius, default
|
| 43 |
# 1. Binner
|
| 44 |
max_mz: 1000
|
| 45 |
bin_width: 1
|
mvp/run.sh
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
-
python train.py
|
| 2 |
python test.py
|
| 3 |
python test.py --candidates_pth /r/hassounlab/spectra_data/msgym/molecules/MassSpecGym_retrieval_candidates_formula.json
|
|
|
|
| 1 |
+
# python train.py
|
| 2 |
python test.py
|
| 3 |
python test.py --candidates_pth /r/hassounlab/spectra_data/msgym/molecules/MassSpecGym_retrieval_candidates_formula.json
|
mvp/test.py
CHANGED
|
@@ -35,12 +35,14 @@ def main(params):
|
|
| 35 |
|
| 36 |
# Init paths to data files
|
| 37 |
if params['debug']:
|
| 38 |
-
|
|
|
|
| 39 |
params['split_pth']=None
|
| 40 |
params['df_test_path'] = os.path.join(params['experiment_dir'], 'debug_result.pkl')
|
| 41 |
|
| 42 |
# Load dataset
|
| 43 |
spec_featurizer = get_spec_featurizer(params['spectra_view'], params)
|
|
|
|
| 44 |
mol_featurizer = get_mol_featurizer(params['molecule_view'], params)
|
| 45 |
dataset = get_test_ms_dataset(params['spectra_view'], params['molecule_view'], spec_featurizer, mol_featurizer, params)
|
| 46 |
|
|
|
|
| 35 |
|
| 36 |
# Init paths to data files
|
| 37 |
if params['debug']:
|
| 38 |
+
|
| 39 |
+
params['dataset_pth'] = "/data/yzhouc01/MVP/data/sample/data.tsv"
|
| 40 |
params['split_pth']=None
|
| 41 |
params['df_test_path'] = os.path.join(params['experiment_dir'], 'debug_result.pkl')
|
| 42 |
|
| 43 |
# Load dataset
|
| 44 |
spec_featurizer = get_spec_featurizer(params['spectra_view'], params)
|
| 45 |
+
|
| 46 |
mol_featurizer = get_mol_featurizer(params['molecule_view'], params)
|
| 47 |
dataset = get_test_ms_dataset(params['spectra_view'], params['molecule_view'], spec_featurizer, mol_featurizer, params)
|
| 48 |
|
mvp/utils/data.py
CHANGED
|
@@ -7,7 +7,7 @@ from massspecgym.data.transforms import SpecTransform, MolTransform
|
|
| 7 |
from mvp.data.transforms import MolToGraph
|
| 8 |
import mvp.data.datasets as jestr_datasets
|
| 9 |
import typing as T
|
| 10 |
-
from mvp.definitions import MSGYM_FORMULA_VECTOR_NORM, MSGYM_STANDARD_MH
|
| 11 |
import matchms
|
| 12 |
import tqdm
|
| 13 |
|
|
@@ -30,6 +30,7 @@ class Subformula_Loader:
|
|
| 30 |
|
| 31 |
def __call__(self, ids, form_list, prec_mz_list):
|
| 32 |
id_to_form_spec = {}
|
|
|
|
| 33 |
for id, curr_form, curr_prec_mz in tqdm.tqdm(zip(ids, form_list, prec_mz_list), total=len(ids)):
|
| 34 |
data = self.load(id, curr_form, curr_prec_mz)
|
| 35 |
if data is not None:
|
|
@@ -51,10 +52,10 @@ class Subformula_Loader:
|
|
| 51 |
if curr_form not in formulas and self.use_prec_mz:
|
| 52 |
mzs = np.concatenate([mzs, [curr_prec_mz]])
|
| 53 |
formulas = np.concatenate([formulas, [curr_form]])
|
| 54 |
-
intensities = np.concatenate([intensities, [
|
| 55 |
elif curr_form in formulas and self.use_prec_mz:
|
| 56 |
idx = np.where(formulas == curr_form)[0][0]
|
| 57 |
-
intensities[idx] =
|
| 58 |
|
| 59 |
# sort by mzs
|
| 60 |
ind = mzs.argsort()
|
|
@@ -66,8 +67,75 @@ class Subformula_Loader:
|
|
| 66 |
return None
|
| 67 |
|
| 68 |
def load_magma_data(self, data, curr_form, curr_prec_mz):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
-
return
|
| 71 |
|
| 72 |
def load_sirius_data(self, data):
|
| 73 |
try:
|
|
@@ -76,9 +144,9 @@ class Subformula_Loader:
|
|
| 76 |
formulas = np.array([entry['molecularFormula'] for entry in data['fragments']])
|
| 77 |
intensities = np.array([entry['relativeIntensity'] for entry in data['fragments'] ])
|
| 78 |
|
| 79 |
-
intensities[formulas == data['molecularFormula']] =
|
| 80 |
|
| 81 |
-
if not self.use_prec_mz:
|
| 82 |
not_append_prec_mz = np.array([len(entry['peaks']) != 0 for entry in data['fragments']])
|
| 83 |
|
| 84 |
mzs = mzs[not_append_prec_mz]
|
|
@@ -102,7 +170,7 @@ class Subformula_Loader:
|
|
| 102 |
data = json.load(f)
|
| 103 |
if self.formula_source == 'sirius':
|
| 104 |
return self.load_sirius_data(data)
|
| 105 |
-
elif self.formula_source
|
| 106 |
return self.load_magma_data(data, curr_form, curr_prec_mz)
|
| 107 |
else:
|
| 108 |
return self.load_mist_data(data, curr_form, curr_prec_mz)
|
|
@@ -200,7 +268,7 @@ def get_test_ms_dataset(spectra_view: T.Union[str, T.List[str]],
|
|
| 200 |
|
| 201 |
dataset_params = {'spectra_view': spectra_view, 'pth': params['dataset_pth'], 'spec_transform': spectra_featurizer, 'mol_transform': mol_featurizer, "candidates_pth": params['candidates_pth']}
|
| 202 |
if "SpecFormula" in views or "SpecFormulaMz" in views:
|
| 203 |
-
dataset_params.update({'subformula_dir_pth': params['subformula_dir_pth']})
|
| 204 |
use_formulas = True
|
| 205 |
|
| 206 |
if params['use_cons_spec']:
|
|
@@ -223,7 +291,7 @@ def get_ms_dataset(spectra_view: str,
|
|
| 223 |
dataset_params = {'pth': params['dataset_pth'], 'spec_transform': spectra_featurizer, 'mol_transform': mol_featurizer, 'spectra_view': spectra_view}
|
| 224 |
use_formulas = False
|
| 225 |
if "SpecFormula" in spectra_view:
|
| 226 |
-
dataset_params.update({'subformula_dir_pth': params['subformula_dir_pth']})
|
| 227 |
use_formulas = True
|
| 228 |
|
| 229 |
if params['pred_fp'] or params['use_fp']:
|
|
|
|
| 7 |
from mvp.data.transforms import MolToGraph
|
| 8 |
import mvp.data.datasets as jestr_datasets
|
| 9 |
import typing as T
|
| 10 |
+
from mvp.definitions import MSGYM_FORMULA_VECTOR_NORM, MSGYM_STANDARD_MH, PRECURSOR_INTENSITY
|
| 11 |
import matchms
|
| 12 |
import tqdm
|
| 13 |
|
|
|
|
| 30 |
|
| 31 |
def __call__(self, ids, form_list, prec_mz_list):
|
| 32 |
id_to_form_spec = {}
|
| 33 |
+
print("Processing formula spectra")
|
| 34 |
for id, curr_form, curr_prec_mz in tqdm.tqdm(zip(ids, form_list, prec_mz_list), total=len(ids)):
|
| 35 |
data = self.load(id, curr_form, curr_prec_mz)
|
| 36 |
if data is not None:
|
|
|
|
| 52 |
if curr_form not in formulas and self.use_prec_mz:
|
| 53 |
mzs = np.concatenate([mzs, [curr_prec_mz]])
|
| 54 |
formulas = np.concatenate([formulas, [curr_form]])
|
| 55 |
+
intensities = np.concatenate([intensities, [PRECURSOR_INTENSITY]])
|
| 56 |
elif curr_form in formulas and self.use_prec_mz:
|
| 57 |
idx = np.where(formulas == curr_form)[0][0]
|
| 58 |
+
intensities[idx] = PRECURSOR_INTENSITY
|
| 59 |
|
| 60 |
# sort by mzs
|
| 61 |
ind = mzs.argsort()
|
|
|
|
| 67 |
return None
|
| 68 |
|
| 69 |
def load_magma_data(self, data, curr_form, curr_prec_mz):
|
| 70 |
+
|
| 71 |
+
np.random.seed(42)
|
| 72 |
+
|
| 73 |
+
formula_to_intensity = {}
|
| 74 |
+
formula_to_mz = {}
|
| 75 |
+
|
| 76 |
+
# data is None
|
| 77 |
+
if data is None:
|
| 78 |
+
if self.use_prec_mz:
|
| 79 |
+
return {'formulas': [curr_form], 'formula_mzs': [curr_prec_mz], 'formula_intensities': [PRECURSOR_INTENSITY]}
|
| 80 |
+
else:
|
| 81 |
+
return {'formulas': [], 'formula_mzs': [], 'formula_intensities': []}
|
| 82 |
+
|
| 83 |
+
# randomly choose 1 formula for each peak, keep largest intensity for each formula
|
| 84 |
+
if self.formula_source.endswith('1'):
|
| 85 |
+
for f, m, i in zip(data['subformulas'], data['mz'], data['intensities']):
|
| 86 |
+
|
| 87 |
+
if not f:
|
| 88 |
+
continue
|
| 89 |
+
selected_f = np.random.choice(f)
|
| 90 |
+
if selected_f in formula_to_intensity:
|
| 91 |
+
if i > formula_to_intensity[selected_f]:
|
| 92 |
+
formula_to_intensity[selected_f] = i
|
| 93 |
+
formula_to_mz[selected_f] = m
|
| 94 |
+
else:
|
| 95 |
+
formula_to_intensity[selected_f] = i
|
| 96 |
+
formula_to_mz[selected_f] = m
|
| 97 |
+
|
| 98 |
+
# take all formulas, divide intensity by number of formulas, keep largest intensity for each formula
|
| 99 |
+
elif self.formula_source.endswith('all'):
|
| 100 |
+
for f, m, i in zip(data['subformulas'], data['mz'], data['intensities']):
|
| 101 |
+
|
| 102 |
+
if not f:
|
| 103 |
+
continue
|
| 104 |
+
for fi in f:
|
| 105 |
+
if fi in formula_to_intensity:
|
| 106 |
+
if i/len(f) > formula_to_intensity[fi]:
|
| 107 |
+
formula_to_intensity[fi] = i/len(f)
|
| 108 |
+
formula_to_mz[fi] = m
|
| 109 |
+
else:
|
| 110 |
+
formula_to_intensity[fi] = i/len(f)
|
| 111 |
+
formula_to_mz[fi] = m
|
| 112 |
+
else:
|
| 113 |
+
raise Exception(f"Formula source not supported: {self.formula_source}")
|
| 114 |
+
|
| 115 |
+
mzs = list(formula_to_mz.values())
|
| 116 |
+
formulas = list(formula_to_mz.keys())
|
| 117 |
+
intensities = list(formula_to_intensity.values())
|
| 118 |
+
|
| 119 |
+
# add precursor mz
|
| 120 |
+
if self.use_prec_mz:
|
| 121 |
+
if curr_form in formulas:
|
| 122 |
+
intensities[formulas.index(curr_form)] = PRECURSOR_INTENSITY
|
| 123 |
+
else:
|
| 124 |
+
formulas.append(curr_form)
|
| 125 |
+
intensities.append(PRECURSOR_INTENSITY)
|
| 126 |
+
mzs.append(curr_prec_mz)
|
| 127 |
+
|
| 128 |
+
# sort by mzs
|
| 129 |
+
mzs = np.array(mzs)
|
| 130 |
+
formulas = np.array(formulas)
|
| 131 |
+
intensities = np.array(intensities)
|
| 132 |
+
|
| 133 |
+
ind = mzs.argsort()
|
| 134 |
+
mzs = mzs[ind]
|
| 135 |
+
formulas = formulas[ind]
|
| 136 |
+
intensities = intensities[ind]
|
| 137 |
|
| 138 |
+
return {'formulas': formulas, 'formula_mzs': mzs, 'formula_intensities': intensities}
|
| 139 |
|
| 140 |
def load_sirius_data(self, data):
|
| 141 |
try:
|
|
|
|
| 144 |
formulas = np.array([entry['molecularFormula'] for entry in data['fragments']])
|
| 145 |
intensities = np.array([entry['relativeIntensity'] for entry in data['fragments'] ])
|
| 146 |
|
| 147 |
+
intensities[formulas == data['molecularFormula']] = PRECURSOR_INTENSITY
|
| 148 |
|
| 149 |
+
if not self.use_prec_mz: # removing precursor formula
|
| 150 |
not_append_prec_mz = np.array([len(entry['peaks']) != 0 for entry in data['fragments']])
|
| 151 |
|
| 152 |
mzs = mzs[not_append_prec_mz]
|
|
|
|
| 170 |
data = json.load(f)
|
| 171 |
if self.formula_source == 'sirius':
|
| 172 |
return self.load_sirius_data(data)
|
| 173 |
+
elif self.formula_source.startswith('magma'):
|
| 174 |
return self.load_magma_data(data, curr_form, curr_prec_mz)
|
| 175 |
else:
|
| 176 |
return self.load_mist_data(data, curr_form, curr_prec_mz)
|
|
|
|
| 268 |
|
| 269 |
dataset_params = {'spectra_view': spectra_view, 'pth': params['dataset_pth'], 'spec_transform': spectra_featurizer, 'mol_transform': mol_featurizer, "candidates_pth": params['candidates_pth']}
|
| 270 |
if "SpecFormula" in views or "SpecFormulaMz" in views:
|
| 271 |
+
dataset_params.update({'subformula_dir_pth': params['subformula_dir_pth'], 'use_magma': params['formula_source'].startswith('magma'), 'formula_source':params['formula_source']})
|
| 272 |
use_formulas = True
|
| 273 |
|
| 274 |
if params['use_cons_spec']:
|
|
|
|
| 291 |
dataset_params = {'pth': params['dataset_pth'], 'spec_transform': spectra_featurizer, 'mol_transform': mol_featurizer, 'spectra_view': spectra_view}
|
| 292 |
use_formulas = False
|
| 293 |
if "SpecFormula" in spectra_view:
|
| 294 |
+
dataset_params.update({'subformula_dir_pth': params['subformula_dir_pth'], 'formula_source': params['formula_source']})
|
| 295 |
use_formulas = True
|
| 296 |
|
| 297 |
if params['pred_fp'] or params['use_fp']:
|