{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "2cd3303a",
"metadata": {},
"outputs": [],
"source": [
"import pickle\n",
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "8ccc0bc1",
"metadata": {},
"outputs": [],
"source": [
"with open(\"/data/yzhouc01/FILIP-MS/experiments/20251110_filip-global/result_MassSpecGym_retrieval_candidates_formula.pkl\", \"rb\") as f:\n",
" result = pickle.load(f)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "8e517777",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" rank_fine | \n",
" rank_global | \n",
" rank_sum | \n",
" rank_weighted | \n",
" rank_avg | \n",
"
\n",
" \n",
" \n",
" \n",
" | R@1 | \n",
" 0.214571 | \n",
" 0.163306 | \n",
" 0.192869 | \n",
" 0.191274 | \n",
" 0.192869 | \n",
"
\n",
" \n",
" | R@5 | \n",
" 0.483140 | \n",
" 0.403566 | \n",
" 0.447425 | \n",
" 0.444862 | \n",
" 0.447425 | \n",
"
\n",
" \n",
" | R@20 | \n",
" 0.747095 | \n",
" 0.694350 | \n",
" 0.728355 | \n",
" 0.726361 | \n",
" 0.728355 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" rank_fine rank_global rank_sum rank_weighted rank_avg\n",
"R@1 0.214571 0.163306 0.192869 0.191274 0.192869\n",
"R@5 0.483140 0.403566 0.447425 0.444862 0.447425\n",
"R@20 0.747095 0.694350 0.728355 0.726361 0.728355"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data = []\n",
"for i in [1, 5, 20]:\n",
" curr_d = {}\n",
" for c in result.columns.tolist():\n",
" if c.startswith('rank'):\n",
" curr_d[c] = result[result[c] <= i].shape[0] / result.shape[0]\n",
" data.append(curr_d)\n",
"\n",
"data_df = pd.DataFrame(data, index=['R@1', 'R@5', 'R@20'])\n",
"data_df\n"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "10493857",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" rank_fine | \n",
" rank_global | \n",
" rank_sum | \n",
" rank_weighted | \n",
" rank_avg | \n",
"
\n",
" \n",
" \n",
" \n",
" | R@1 | \n",
" 0.420882 | \n",
" 0.369731 | \n",
" 0.412907 | \n",
" 0.411939 | \n",
" 0.412907 | \n",
"
\n",
" \n",
" | R@5 | \n",
" 0.744475 | \n",
" 0.707052 | \n",
" 0.738893 | \n",
" 0.737412 | \n",
" 0.738893 | \n",
"
\n",
" \n",
" | R@20 | \n",
" 0.927660 | \n",
" 0.916325 | \n",
" 0.926407 | \n",
" 0.926122 | \n",
" 0.926407 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" rank_fine rank_global rank_sum rank_weighted rank_avg\n",
"R@1 0.420882 0.369731 0.412907 0.411939 0.412907\n",
"R@5 0.744475 0.707052 0.738893 0.737412 0.738893\n",
"R@20 0.927660 0.916325 0.926407 0.926122 0.926407"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data = []\n",
"for i in [1, 5, 20]:\n",
" curr_d = {}\n",
" for c in result.columns.tolist():\n",
" if c.startswith('rank'):\n",
" curr_d[c] = result[result[c] <= i].shape[0] / result.shape[0]\n",
" data.append(curr_d)\n",
"\n",
"data_df = pd.DataFrame(data, index=['R@1', 'R@5', 'R@20'])\n",
"data_df\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1e4201db",
"metadata": {},
"outputs": [],
"source": [
"x"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "spec",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}