--- title: Flare emoji: 🔥 colorFrom: green colorTo: blue sdk: streamlit pinned: false python_version: 3.11.7 --- # 🔥 FLARE Fine-grained Learning for Aligment of spectra-molecule REpresentation ### Authors **Yan Zhou Chen, Soha Hassoun** Department of Computer Science, Tufts University --- FLARE is a framework for **ranking molecular candidates given a mass spectrum**. Beyond candidate ranking, FLARE provides **visualization of peak-to-node attribution**, enabling deeper insights into how spectral peaks correspond to molecular graph nodes. --- ## 🌐 Visualize Peak-to-Node Correspondence Explore our interactive [app](https://huggingface.co/spaces/HassounLab/FLARE) to visualize peak-to-node attributes in real time. --- ## 🛠 Set up ### Clone repository ``` git clone https://huggingface.co/spaces/HassounLab/FLARE cd flare ``` ### Set up environment and install dependencies ``` conda create -n flare python=3.11 conda activate flare pip install -r requirements.txt ``` --- ## 🚀 Usage Modify params.yaml as necessary ``` # preprocess data python subformula_assign/assign_subformulae.py --spec-files ../data/sample/data.tsv --output-dir ../data/sample/subformulae --labels-file ../data/sample/data.tsv --max-formulae 60 # train python train.py # test python test.py ``` --- ## 🙏 Acknowledgments - **Training Data**: [MassSpecGym](https://github.com/pluskal-lab/MassSpecGym) - **Subformula Assigner Code**: [MIST](https://github.com/samgoldman97/mist/tree/main_v2) --- ## 📧 Contact For questions, reach out to soha.hassoun@tufts.edu