File size: 7,457 Bytes
c65d76d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
""" assign_subformulae.py

Copied from https://github.com/samgoldman97/mist/blob/main_v2/src/mist/subformulae/assign_subformulae.py

Given a set of spectra and candidates from a labels file, assign subformulae and save to JSON files.

"""

from pathlib import Path
import argparse
from functools import partial
import numpy as np
import pandas as pd
import json
import os
from tqdm import tqdm
import utils


def get_args():
    """get args"""
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--feature-id",
        default="ID",
        help="ID key in mgf input"
    )
    parser.add_argument(
        "--spec-files",
        default="data/paired_spectra/canopus_train/spec_files/",
        help="Spec files; either MGF or directory.",
    )
    parser.add_argument("--output-dir", default=None,
                        help="Name of output dir.")
    parser.add_argument(
        "--labels-file",
        default="data/paired_spectra/canopus_train/labels.tsv",
        help="Labels file",
    )
    parser.add_argument(
        "--debug", action="store_true", default=False, help="Debug flag."
    )
    parser.add_argument(
        "--mass-diff-type",
        default="ppm",
        type=str,
        help="Type of mass difference - absolute differece (abs) or relative difference (ppm).",
    )
    parser.add_argument(
        "--mass-diff-thresh",
        action="store",
        default=20,
        type=float,
        help="Threshold of mass difference.",
    )
    parser.add_argument(
        "--inten-thresh",
        action="store",
        default=0.001,
        type=float,
        help="Threshold of MS2 subpeak intensity (normalized to 1).",
    )
    parser.add_argument(
        "--max-formulae",
        action="store",
        default=50,
        type=int,
        help="Max number of peaks to keep",
    )
    parser.add_argument(
        "--num-workers", action="store", default=32, type=int, help="num workers"
    )
    return parser.parse_args()


def process_spec_file(spec_name: str, spec_files: str, max_inten=0.001, max_peaks=60):
    """_summary_

    Args:
        spec_name (str): _description_
        spec_files (str): _description_
        max_inten (float, optional): _description_. Defaults to 0.001.
        max_peaks (int, optional): _description_. Defaults to 60.

    Returns:
        _type_: _description_
    """
    spec_file = Path(spec_files) / f"{spec_name}.ms"

    meta, tuples = utils.parse_spectra(spec_file)
    spec = utils.process_spec_file(meta, tuples)
    return spec_name, spec


def assign_subforms(spec_files, labels_file,
                    mass_diff_thresh: int = 20,
                    mass_diff_type: str = "ppm",
                    inten_thresh: float = 0.001,
                    output_dir=None,
                    num_workers: int = 32,
                    feature_id="ID",
                    max_formulae: int = 50,
                    debug=False):
    """_summary_

    Args:
        spec_files (_type_): _description_
        labels_file (_type_): _description_
        mass_diff_thresh (int, optional): _description_. Defaults to 20.
        mass_diff_type (str, optional): _description_. Defaults to "ppm".
        inten_thresh (float, optional): _description_. Defaults to 0.001.
        output_dir (_type_, optional): _description_. Defaults to None.
        num_workers (int, optional): _description_. Defaults to 32.
        feature_id (str, optional): _description_. Defaults to "ID".
        max_formulae (int, optional): _description_. Defaults to 50.
        debug (bool, optional): _description_. Defaults to False.

    Raises:
        ValueError: _description_
    """
    spec_files = Path(spec_files)
    label_path = Path(labels_file)

    # Read in labels
    labels_df = pd.read_csv(label_path, sep="\t").astype(str)
    if spec_files.suffix == ".tsv": # YZC msgym-like data
        labels_df.rename(columns={'identifier': 'spec',
            'adduct': 'ionization'}, inplace=True)

    if debug:
        labels_df = labels_df[:50]

    # Define output directory name
    output_dir = Path(output_dir)
    if output_dir is None:
        subform_dir = label_path.parent / "subformulae"
        output_dir_name = f"subform_{max_formulae}"
        output_dir = subform_dir / output_dir_name

    output_dir.mkdir(exist_ok=True, parents=True)

    if spec_files.suffix == ".mgf":
        # Input specs
        parsed_specs = utils.parse_spectra_mgf(spec_files)
        input_specs = [utils.process_spec_file(*i) for i in parsed_specs]
        spec_names = [i[0][feature_id] for i in parsed_specs]
        input_specs = list(zip(spec_names, input_specs))
    elif spec_files.is_dir():
        spec_fn_lst = labels_df["spec"].to_list()
        proc_spec_full = partial(
            process_spec_file,
            spec_files=spec_files,
            max_inten=inten_thresh,
            max_peaks=max_formulae,
        )
        # input_specs = [proc_spec_full(i) for i in tqdm(spec_fn_lst)]
        input_specs = utils.chunked_parallel(
            spec_fn_lst, proc_spec_full, chunks=100, max_cpu=max(num_workers, 1)
        )

    elif spec_files.suffix == '.tsv':
        parsed_specs = utils.parse_spectra_msgym(labels_df)
        input_specs = [utils.process_spec_file(*i) for i in parsed_specs]
        spec_names = [i[0][feature_id] for i in parsed_specs]
        input_specs = list(zip(spec_names, input_specs))
    else:
        raise ValueError(f"Spec files arg {spec_files} is not a dir or mgf")
    

    # input_specs contains a list of tuples (spec, subpeak tuple array)
    input_specs_dict = {tup[0]: tup[1] for tup in input_specs}
    export_dicts, spec_names = [], []
    for _, row in labels_df.iterrows():
        spec = str(row["spec"])
        new_entry = {
            "spec": input_specs_dict[spec],
            "form": row["formula"],
            "mass_diff_type": mass_diff_type,
            "spec_name": spec,
            "mass_diff_thresh": mass_diff_thresh,
            "ion_type": row["ionization"],
        }
        spec_names.append(spec)
        export_dicts.append(new_entry)

    # Build dicts
    print(f"There are {len(export_dicts)} spec-cand pairs this spec files")
    def export_wrapper(x): return utils.get_output_dict(**x)
    if debug:
        output_dict_lst = [export_wrapper(i) for i in export_dicts[:10]]
    else:
        output_dict_lst = utils.chunked_parallel(
            export_dicts, export_wrapper, chunks=100, max_cpu=max(num_workers, 1)
        )
    assert len(export_dicts) == len(output_dict_lst)

    # Write all output jsons to files
    os.makedirs(output_dir, exist_ok=True)
    print(f"Writing output to {output_dir}")
    for output_dict, spec_name in tqdm(zip(output_dict_lst, spec_names)):
        with open(output_dir / f"{spec_name}.json", "w") as f:
            json.dump(output_dict, f, indent=4)
            f.close()

if __name__ == "__main__":
    args = get_args()
    assign_subforms(spec_files=args.spec_files, 
                    labels_file=args.labels_file,
                    mass_diff_thresh=args.mass_diff_thresh,
                    mass_diff_type=args.mass_diff_type,
                    inten_thresh=args.inten_thresh,
                    output_dir=args.output_dir,
                    num_workers=args.num_workers,
                    feature_id=args.feature_id,
                    max_formulae=args.max_formulae,
                    debug=args.debug)