Update app.py
Browse files
app.py
CHANGED
|
@@ -1,12 +1,12 @@
|
|
| 1 |
"""
|
| 2 |
🔮 PHOENIX Retention Research Platform
|
| 3 |
-
Real Implementation -
|
| 4 |
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
|
| 9 |
-
|
| 10 |
"""
|
| 11 |
|
| 12 |
import gradio as gr
|
|
@@ -25,7 +25,6 @@ import pandas as pd
|
|
| 25 |
from typing import Dict, List, Any, Tuple, Optional
|
| 26 |
import chromadb
|
| 27 |
from chromadb.config import Settings
|
| 28 |
-
from einops import rearrange, repeat
|
| 29 |
from transformers import AutoModel, AutoTokenizer, AutoConfig
|
| 30 |
import copy
|
| 31 |
|
|
@@ -47,15 +46,15 @@ print(f"💾 Storage: {STORAGE_PATH}")
|
|
| 47 |
print(f"🎯 Default Base Model: {DEFAULT_MODEL}")
|
| 48 |
|
| 49 |
# =====================================================
|
| 50 |
-
# PHOENIX Retention
|
| 51 |
# =====================================================
|
| 52 |
|
| 53 |
class MultiScaleRetention(nn.Module):
|
| 54 |
"""
|
| 55 |
-
진짜 Retention Attention
|
| 56 |
-
Transformer의 Self-Attention을 완전히 교체
|
| 57 |
|
| 58 |
-
✅
|
|
|
|
| 59 |
"""
|
| 60 |
|
| 61 |
def __init__(self, config, layer_idx=0):
|
|
@@ -63,42 +62,59 @@ class MultiScaleRetention(nn.Module):
|
|
| 63 |
self.config = config
|
| 64 |
self.layer_idx = layer_idx
|
| 65 |
|
| 66 |
-
#
|
| 67 |
self.hidden_size = config.hidden_size
|
| 68 |
self.num_heads = config.num_attention_heads
|
| 69 |
-
|
| 70 |
-
# ✅ Head dimension 계산
|
| 71 |
self.head_dim = self.hidden_size // self.num_heads
|
| 72 |
|
| 73 |
-
#
|
| 74 |
-
if
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
)
|
| 79 |
|
| 80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
print(f" - hidden_size: {self.hidden_size}")
|
| 82 |
-
print(f" - num_heads: {self.num_heads}")
|
|
|
|
| 83 |
print(f" - head_dim: {self.head_dim}")
|
|
|
|
|
|
|
| 84 |
|
| 85 |
-
# ✅ Projections
|
| 86 |
-
# input: hidden_size -> output: hidden_size
|
| 87 |
self.q_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
|
| 88 |
-
self.k_proj = nn.Linear(self.hidden_size, self.
|
| 89 |
-
self.v_proj = nn.Linear(self.hidden_size, self.
|
| 90 |
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
|
| 91 |
|
| 92 |
-
# Retention
|
| 93 |
decay_values = torch.linspace(0.8, 0.95, self.num_heads)
|
| 94 |
self.decay = nn.Parameter(decay_values, requires_grad=True)
|
| 95 |
|
| 96 |
-
# Group
|
| 97 |
self.group_norm = nn.GroupNorm(
|
| 98 |
num_groups=self.num_heads,
|
| 99 |
num_channels=self.hidden_size
|
| 100 |
)
|
| 101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
def forward(
|
| 103 |
self,
|
| 104 |
hidden_states: torch.Tensor,
|
|
@@ -112,88 +128,56 @@ class MultiScaleRetention(nn.Module):
|
|
| 112 |
**kwargs
|
| 113 |
):
|
| 114 |
"""
|
| 115 |
-
O(n)
|
| 116 |
-
✅ FIX: Adaptive dimension handling
|
| 117 |
"""
|
| 118 |
-
batch_size, seq_len,
|
| 119 |
-
|
| 120 |
-
# ✅ 입력 차원 확인
|
| 121 |
-
if input_dim != self.hidden_size:
|
| 122 |
-
raise ValueError(
|
| 123 |
-
f"Input hidden_states has dimension {input_dim} "
|
| 124 |
-
f"but model expects {self.hidden_size}"
|
| 125 |
-
)
|
| 126 |
|
| 127 |
if past_key_values is not None:
|
| 128 |
past_key_value = past_key_values
|
| 129 |
|
| 130 |
-
# Q, K, V
|
| 131 |
-
query_states = self.q_proj(hidden_states) # [B, L,
|
| 132 |
-
key_states = self.k_proj(hidden_states) # [B, L,
|
| 133 |
-
value_states = self.v_proj(hidden_states) # [B, L,
|
| 134 |
|
| 135 |
-
#
|
| 136 |
-
actual_proj_dim = query_states.shape[-1]
|
| 137 |
-
|
| 138 |
-
if actual_proj_dim != self.hidden_size:
|
| 139 |
-
print(f" ⚠️ Layer {self.layer_idx} Projection dim mismatch:")
|
| 140 |
-
print(f" Expected: {self.hidden_size}, Got: {actual_proj_dim}")
|
| 141 |
-
|
| 142 |
-
# Adaptive head_dim 계산
|
| 143 |
-
if actual_proj_dim % self.num_heads != 0:
|
| 144 |
-
raise ValueError(
|
| 145 |
-
f"Projection output {actual_proj_dim} not divisible by "
|
| 146 |
-
f"num_heads {self.num_heads}"
|
| 147 |
-
)
|
| 148 |
-
adaptive_head_dim = actual_proj_dim // self.num_heads
|
| 149 |
-
print(f" 🔧 Using adaptive head_dim: {adaptive_head_dim}")
|
| 150 |
-
else:
|
| 151 |
-
adaptive_head_dim = self.head_dim
|
| 152 |
-
|
| 153 |
-
# ✅ Multi-head reshape (adaptive)
|
| 154 |
-
# [B, L, actual_proj_dim] -> [B, L, num_heads, head_dim] -> [B, num_heads, L, head_dim]
|
| 155 |
query_states = query_states.view(
|
| 156 |
-
batch_size, seq_len, self.num_heads,
|
| 157 |
).transpose(1, 2)
|
| 158 |
|
|
|
|
| 159 |
key_states = key_states.view(
|
| 160 |
-
batch_size, seq_len, self.
|
| 161 |
).transpose(1, 2)
|
| 162 |
|
| 163 |
value_states = value_states.view(
|
| 164 |
-
batch_size, seq_len, self.
|
| 165 |
).transpose(1, 2)
|
| 166 |
|
| 167 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
retention_states = self._compute_retention(
|
| 169 |
-
query_states, key_states, value_states, past_key_value
|
| 170 |
-
adaptive_head_dim
|
| 171 |
)
|
| 172 |
|
| 173 |
-
# Reshape back: [B, num_heads, L, head_dim] -> [B, L,
|
| 174 |
retention_states = retention_states.transpose(1, 2).contiguous()
|
| 175 |
retention_states = retention_states.reshape(
|
| 176 |
-
batch_size, seq_len,
|
| 177 |
)
|
| 178 |
|
| 179 |
-
#
|
| 180 |
-
|
| 181 |
-
retention_states
|
| 182 |
-
|
| 183 |
-
).transpose(1, 2)
|
| 184 |
-
else:
|
| 185 |
-
# Adaptive normalization
|
| 186 |
-
norm = nn.GroupNorm(self.num_heads, actual_proj_dim).to(retention_states.device)
|
| 187 |
-
retention_states = norm(retention_states.transpose(1, 2)).transpose(1, 2)
|
| 188 |
|
| 189 |
# Output projection
|
| 190 |
-
|
| 191 |
-
if actual_proj_dim != self.hidden_size:
|
| 192 |
-
# Adaptive projection
|
| 193 |
-
adaptive_o_proj = nn.Linear(actual_proj_dim, self.hidden_size, bias=False).to(retention_states.device)
|
| 194 |
-
attn_output = adaptive_o_proj(retention_states)
|
| 195 |
-
else:
|
| 196 |
-
attn_output = self.o_proj(retention_states)
|
| 197 |
|
| 198 |
return (attn_output, None, past_key_value)
|
| 199 |
|
|
@@ -202,17 +186,12 @@ class MultiScaleRetention(nn.Module):
|
|
| 202 |
queries: torch.Tensor, # [B, H, L, D]
|
| 203 |
keys: torch.Tensor, # [B, H, L, D]
|
| 204 |
values: torch.Tensor, # [B, H, L, D]
|
| 205 |
-
past_state: Optional[Tuple] = None
|
| 206 |
-
head_dim: Optional[int] = None
|
| 207 |
):
|
| 208 |
-
"""O(n) Retention
|
| 209 |
-
batch_size, num_heads, seq_len,
|
| 210 |
-
|
| 211 |
-
# ✅ Use provided head_dim or infer from queries
|
| 212 |
-
if head_dim is None:
|
| 213 |
-
head_dim = actual_head_dim
|
| 214 |
|
| 215 |
-
# State
|
| 216 |
if past_state is not None:
|
| 217 |
state = past_state
|
| 218 |
else:
|
|
@@ -223,17 +202,17 @@ class MultiScaleRetention(nn.Module):
|
|
| 223 |
|
| 224 |
outputs = []
|
| 225 |
|
| 226 |
-
#
|
| 227 |
for t in range(seq_len):
|
| 228 |
q_t = queries[:, :, t, :] # [B, H, D]
|
| 229 |
k_t = keys[:, :, t, :] # [B, H, D]
|
| 230 |
v_t = values[:, :, t, :] # [B, H, D]
|
| 231 |
|
| 232 |
-
# Decay
|
| 233 |
decay = torch.sigmoid(self.decay).view(1, -1, 1, 1)
|
| 234 |
state = decay * state
|
| 235 |
|
| 236 |
-
# State
|
| 237 |
state = state + torch.einsum('bhd,bhe->bhde', k_t, v_t)
|
| 238 |
|
| 239 |
# Output: q @ S
|
|
@@ -244,10 +223,10 @@ class MultiScaleRetention(nn.Module):
|
|
| 244 |
|
| 245 |
return output
|
| 246 |
|
|
|
|
| 247 |
class HierarchicalRetention(nn.Module):
|
| 248 |
"""
|
| 249 |
-
PHOENIX
|
| 250 |
-
Multi-Scale Retention 위에 추가
|
| 251 |
"""
|
| 252 |
|
| 253 |
def __init__(self, config, layer_idx=0):
|
|
@@ -283,25 +262,19 @@ class HierarchicalRetention(nn.Module):
|
|
| 283 |
past_key_values: Optional[Tuple[torch.Tensor]] = None,
|
| 284 |
**kwargs
|
| 285 |
):
|
| 286 |
-
"""
|
| 287 |
-
Granite 모델과 호환되는 forward 메서드
|
| 288 |
-
"""
|
| 289 |
batch_size, seq_len, hidden_size = hidden_states.shape
|
| 290 |
|
| 291 |
if past_key_values is not None:
|
| 292 |
past_key_value = past_key_values
|
| 293 |
|
| 294 |
-
#
|
| 295 |
retention_output, attn_weights, past_kv = self.base_retention(
|
| 296 |
-
hidden_states,
|
| 297 |
-
|
| 298 |
-
position_ids,
|
| 299 |
-
past_key_value,
|
| 300 |
-
output_attentions,
|
| 301 |
-
use_cache
|
| 302 |
)
|
| 303 |
|
| 304 |
-
#
|
| 305 |
short_state = torch.zeros(batch_size, self.d_state).to(hidden_states.device)
|
| 306 |
medium_state = torch.zeros(batch_size, self.d_state).to(hidden_states.device)
|
| 307 |
long_state = torch.zeros(batch_size, self.d_state * 2).to(hidden_states.device)
|
|
@@ -311,7 +284,7 @@ class HierarchicalRetention(nn.Module):
|
|
| 311 |
for t in range(seq_len):
|
| 312 |
x_t = retention_output[:, t, :]
|
| 313 |
|
| 314 |
-
# Short-term
|
| 315 |
short_input = self.short_proj(x_t)
|
| 316 |
short_state = self.short_decay * short_state + short_input
|
| 317 |
|
|
@@ -337,20 +310,19 @@ class HierarchicalRetention(nn.Module):
|
|
| 337 |
|
| 338 |
|
| 339 |
# =====================================================
|
| 340 |
-
# 모델 변환 함수
|
| 341 |
# =====================================================
|
| 342 |
|
| 343 |
def replace_attention_with_retention(model, use_hierarchical=True):
|
| 344 |
"""
|
| 345 |
-
Transformer
|
| 346 |
-
✅ FIX: Better weight copying and dimension handling
|
| 347 |
"""
|
| 348 |
-
print("🔄 Starting Attention → Retention conversion...")
|
| 349 |
|
| 350 |
replaced_count = 0
|
| 351 |
total_layers = 0
|
| 352 |
|
| 353 |
-
#
|
| 354 |
if hasattr(model, 'transformer'):
|
| 355 |
layers = model.transformer.h
|
| 356 |
elif hasattr(model, 'model') and hasattr(model.model, 'layers'):
|
|
@@ -363,70 +335,70 @@ def replace_attention_with_retention(model, use_hierarchical=True):
|
|
| 363 |
|
| 364 |
total_layers = len(layers)
|
| 365 |
|
| 366 |
-
#
|
| 367 |
first_layer = layers[0]
|
| 368 |
-
if hasattr(first_layer, 'self_attn')
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
print(f"
|
| 380 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 381 |
|
| 382 |
for layer_idx, layer in enumerate(layers):
|
| 383 |
try:
|
| 384 |
if hasattr(layer, 'self_attn'):
|
| 385 |
old_attn = layer.self_attn
|
| 386 |
|
| 387 |
-
# PHOENIX Retention
|
| 388 |
if use_hierarchical:
|
| 389 |
new_retention = HierarchicalRetention(model.config, layer_idx)
|
| 390 |
else:
|
| 391 |
new_retention = MultiScaleRetention(model.config, layer_idx)
|
| 392 |
|
| 393 |
-
#
|
| 394 |
if hasattr(old_attn, 'q_proj'):
|
| 395 |
try:
|
| 396 |
-
# Get target retention module
|
| 397 |
if use_hierarchical:
|
| 398 |
-
|
| 399 |
else:
|
| 400 |
-
|
| 401 |
|
| 402 |
-
#
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
target_retention.v_proj.weight.data = \
|
| 412 |
-
old_attn.v_proj.weight.data.clone()
|
| 413 |
-
target_retention.o_proj.weight.data = \
|
| 414 |
-
old_attn.o_proj.weight.data.clone()
|
| 415 |
|
| 416 |
-
print(f" ✅ Layer {layer_idx}: Weights copied
|
| 417 |
else:
|
| 418 |
-
print(f" ⚠️ Layer {layer_idx}: Shape mismatch")
|
| 419 |
-
print(f" Old: {old_q_shape}, New: {new_q_shape}")
|
| 420 |
-
print(f" Using random initialization")
|
| 421 |
|
| 422 |
except Exception as e:
|
| 423 |
print(f" ⚠️ Layer {layer_idx}: Weight copy failed - {e}")
|
| 424 |
|
| 425 |
-
#
|
| 426 |
layer.self_attn = new_retention
|
| 427 |
replaced_count += 1
|
| 428 |
|
| 429 |
-
print(f" ✅ Layer {layer_idx}: Attention → Retention")
|
| 430 |
|
| 431 |
except Exception as e:
|
| 432 |
print(f" ❌ Layer {layer_idx}: Failed - {e}")
|
|
@@ -434,43 +406,22 @@ def replace_attention_with_retention(model, use_hierarchical=True):
|
|
| 434 |
traceback.print_exc()
|
| 435 |
continue
|
| 436 |
|
| 437 |
-
print(f"\n✅ Conversion complete: {replaced_count}/{total_layers} layers
|
| 438 |
|
| 439 |
return model, replaced_count, total_layers
|
| 440 |
|
| 441 |
|
| 442 |
def estimate_conversion_time(model_size_mb, gpu_type="L40S"):
|
| 443 |
-
"""
|
| 444 |
-
변환 시간 예측
|
| 445 |
-
"""
|
| 446 |
-
# GPU 사양
|
| 447 |
gpu_specs = {
|
| 448 |
-
"L40S": {
|
| 449 |
-
|
| 450 |
-
"tflops_fp16": 362,
|
| 451 |
-
"memory_bandwidth_gbps": 864
|
| 452 |
-
},
|
| 453 |
-
"H100": {
|
| 454 |
-
"memory_gb": 80,
|
| 455 |
-
"tflops_fp16": 989,
|
| 456 |
-
"memory_bandwidth_gbps": 3352
|
| 457 |
-
}
|
| 458 |
}
|
| 459 |
|
| 460 |
spec = gpu_specs.get(gpu_type, gpu_specs["L40S"])
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
# 모델 크기에 따른 스케일링
|
| 466 |
-
scale_factor = model_size_mb / 1400 # 350M ≈ 1.4GB
|
| 467 |
-
|
| 468 |
-
# GPU 성능에 따른 조정
|
| 469 |
-
if gpu_type == "H100":
|
| 470 |
-
performance_factor = 0.4 # H100이 L40S보다 2.5배 빠름
|
| 471 |
-
else:
|
| 472 |
-
performance_factor = 1.0
|
| 473 |
-
|
| 474 |
estimated_time = base_time_seconds * scale_factor * performance_factor
|
| 475 |
|
| 476 |
return {
|
|
@@ -483,11 +434,11 @@ def estimate_conversion_time(model_size_mb, gpu_type="L40S"):
|
|
| 483 |
|
| 484 |
|
| 485 |
# =====================================================
|
| 486 |
-
# 데이터베이스 (
|
| 487 |
# =====================================================
|
| 488 |
|
| 489 |
class ExperimentDatabase:
|
| 490 |
-
"""SQLite
|
| 491 |
|
| 492 |
def __init__(self, db_path: str):
|
| 493 |
self.db_path = db_path
|
|
@@ -502,8 +453,6 @@ class ExperimentDatabase:
|
|
| 502 |
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
| 503 |
model_type TEXT NOT NULL,
|
| 504 |
sequence_length INTEGER,
|
| 505 |
-
power_mode TEXT,
|
| 506 |
-
compression_level REAL,
|
| 507 |
use_hierarchical BOOLEAN,
|
| 508 |
attention_replaced BOOLEAN,
|
| 509 |
layers_converted INTEGER,
|
|
@@ -511,29 +460,18 @@ class ExperimentDatabase:
|
|
| 511 |
elapsed_time REAL,
|
| 512 |
memory_mb REAL,
|
| 513 |
throughput REAL,
|
| 514 |
-
avg_retention REAL,
|
| 515 |
-
compression_ratio REAL,
|
| 516 |
config_json TEXT,
|
| 517 |
metrics_json TEXT,
|
| 518 |
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP
|
| 519 |
)
|
| 520 |
""")
|
| 521 |
-
cursor.execute("""
|
| 522 |
-
CREATE INDEX IF NOT EXISTS idx_model_type
|
| 523 |
-
ON experiments(model_type)
|
| 524 |
-
""")
|
| 525 |
-
cursor.execute("""
|
| 526 |
-
CREATE INDEX IF NOT EXISTS idx_timestamp
|
| 527 |
-
ON experiments(timestamp DESC)
|
| 528 |
-
""")
|
| 529 |
conn.commit()
|
| 530 |
-
print("✅ Database initialized")
|
| 531 |
|
| 532 |
def migrate_database(self):
|
| 533 |
with sqlite3.connect(self.db_path) as conn:
|
| 534 |
cursor = conn.cursor()
|
| 535 |
cursor.execute("PRAGMA table_info(experiments)")
|
| 536 |
-
columns = [
|
| 537 |
|
| 538 |
new_columns = [
|
| 539 |
('attention_replaced', 'BOOLEAN'),
|
|
@@ -544,14 +482,9 @@ class ExperimentDatabase:
|
|
| 544 |
for col_name, col_type in new_columns:
|
| 545 |
if col_name not in columns:
|
| 546 |
try:
|
| 547 |
-
cursor.execute(f""
|
| 548 |
-
|
| 549 |
-
ADD COLUMN {col_name} {col_type}
|
| 550 |
-
""")
|
| 551 |
-
print(f"✅ Database migrated: {col_name} column added")
|
| 552 |
-
except sqlite3.OperationalError:
|
| 553 |
pass
|
| 554 |
-
|
| 555 |
conn.commit()
|
| 556 |
|
| 557 |
def save_experiment(self, config: Dict, metrics: Dict) -> int:
|
|
@@ -559,17 +492,14 @@ class ExperimentDatabase:
|
|
| 559 |
cursor = conn.cursor()
|
| 560 |
cursor.execute("""
|
| 561 |
INSERT INTO experiments (
|
| 562 |
-
model_type, sequence_length,
|
| 563 |
-
|
| 564 |
-
|
| 565 |
-
memory_mb, throughput, avg_retention, compression_ratio,
|
| 566 |
config_json, metrics_json
|
| 567 |
-
) VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?,
|
| 568 |
""", (
|
| 569 |
config.get('model_type'),
|
| 570 |
config.get('sequence_length'),
|
| 571 |
-
config.get('power_mode'),
|
| 572 |
-
config.get('compression_level'),
|
| 573 |
config.get('use_hierarchical'),
|
| 574 |
config.get('attention_replaced'),
|
| 575 |
config.get('layers_converted'),
|
|
@@ -577,8 +507,6 @@ class ExperimentDatabase:
|
|
| 577 |
metrics.get('elapsed_time'),
|
| 578 |
metrics.get('memory_mb'),
|
| 579 |
metrics.get('throughput'),
|
| 580 |
-
metrics.get('avg_retention'),
|
| 581 |
-
metrics.get('compression_ratio'),
|
| 582 |
json.dumps(config),
|
| 583 |
json.dumps(metrics)
|
| 584 |
))
|
|
@@ -589,13 +517,8 @@ class ExperimentDatabase:
|
|
| 589 |
with sqlite3.connect(self.db_path) as conn:
|
| 590 |
conn.row_factory = sqlite3.Row
|
| 591 |
cursor = conn.cursor()
|
| 592 |
-
cursor.execute(""
|
| 593 |
-
|
| 594 |
-
ORDER BY timestamp DESC
|
| 595 |
-
LIMIT ?
|
| 596 |
-
""", (limit,))
|
| 597 |
-
rows = cursor.fetchall()
|
| 598 |
-
return [dict(row) for row in rows]
|
| 599 |
|
| 600 |
def get_statistics(self) -> Dict:
|
| 601 |
with sqlite3.connect(self.db_path) as conn:
|
|
@@ -603,33 +526,14 @@ class ExperimentDatabase:
|
|
| 603 |
cursor.execute("SELECT COUNT(*) FROM experiments")
|
| 604 |
total = cursor.fetchone()[0]
|
| 605 |
|
| 606 |
-
cursor.execute(""
|
| 607 |
-
SELECT model_type, COUNT(*) as count
|
| 608 |
-
FROM experiments
|
| 609 |
-
GROUP BY model_type
|
| 610 |
-
""")
|
| 611 |
by_model = dict(cursor.fetchall())
|
| 612 |
|
| 613 |
-
|
| 614 |
-
cursor.execute("""
|
| 615 |
-
SELECT attention_replaced, COUNT(*) as count
|
| 616 |
-
FROM experiments
|
| 617 |
-
WHERE attention_replaced IS NOT NULL
|
| 618 |
-
GROUP BY attention_replaced
|
| 619 |
-
""")
|
| 620 |
-
by_conversion = dict(cursor.fetchall())
|
| 621 |
-
except:
|
| 622 |
-
by_conversion = {}
|
| 623 |
-
|
| 624 |
-
return {
|
| 625 |
-
'total_experiments': total,
|
| 626 |
-
'by_model': by_model,
|
| 627 |
-
'by_conversion': by_conversion
|
| 628 |
-
}
|
| 629 |
|
| 630 |
|
| 631 |
class RetentionVectorStore:
|
| 632 |
-
"""ChromaDB
|
| 633 |
|
| 634 |
def __init__(self, persist_directory: str):
|
| 635 |
try:
|
|
@@ -637,65 +541,25 @@ class RetentionVectorStore:
|
|
| 637 |
persist_directory=persist_directory,
|
| 638 |
anonymized_telemetry=False
|
| 639 |
))
|
| 640 |
-
self.collection = self.client.get_or_create_collection(
|
| 641 |
-
|
| 642 |
-
metadata={"description": "PHOENIX Retention states"}
|
| 643 |
-
)
|
| 644 |
-
print("✅ Vector store initialized")
|
| 645 |
-
except Exception as e:
|
| 646 |
-
print(f"⚠️ Vector store initialization warning: {e}")
|
| 647 |
self.client = None
|
| 648 |
self.collection = None
|
| 649 |
-
|
| 650 |
-
def add_retention_state(self, experiment_id: int, states: Dict, metadata: Dict):
|
| 651 |
-
if self.collection is None:
|
| 652 |
-
return
|
| 653 |
-
try:
|
| 654 |
-
state_vector = self._states_to_vector(states)
|
| 655 |
-
self.collection.add(
|
| 656 |
-
embeddings=[state_vector.tolist()],
|
| 657 |
-
metadatas=[{**metadata, 'experiment_id': experiment_id}],
|
| 658 |
-
ids=[f"exp_{experiment_id}"]
|
| 659 |
-
)
|
| 660 |
-
except Exception as e:
|
| 661 |
-
print(f"⚠️ Vector store save warning: {e}")
|
| 662 |
-
|
| 663 |
-
def _states_to_vector(self, states: Dict) -> np.ndarray:
|
| 664 |
-
vectors = []
|
| 665 |
-
for key, value in states.items():
|
| 666 |
-
if isinstance(value, (int, float)):
|
| 667 |
-
vectors.append(float(value))
|
| 668 |
-
elif isinstance(value, torch.Tensor):
|
| 669 |
-
vectors.append(value.mean().item())
|
| 670 |
-
vectors.append(value.std().item())
|
| 671 |
-
|
| 672 |
-
target_size = 128
|
| 673 |
-
if len(vectors) < target_size:
|
| 674 |
-
vectors.extend([0.0] * (target_size - len(vectors)))
|
| 675 |
-
else:
|
| 676 |
-
vectors = vectors[:target_size]
|
| 677 |
-
|
| 678 |
-
return np.array(vectors)
|
| 679 |
|
| 680 |
|
| 681 |
# =====================================================
|
| 682 |
-
# 유틸리티
|
| 683 |
# =====================================================
|
| 684 |
|
| 685 |
def calculate_metrics(output, states, config=None):
|
| 686 |
-
"""
|
| 687 |
metrics = {}
|
| 688 |
|
| 689 |
if isinstance(output, torch.Tensor):
|
| 690 |
-
|
| 691 |
-
metrics['memory_mb'] = (total_params * 4) / (1024 * 1024)
|
| 692 |
else:
|
| 693 |
metrics['memory_mb'] = 0
|
| 694 |
|
| 695 |
-
metrics['avg_retention'] = 0.5
|
| 696 |
-
metrics['compression_ratio'] = 0.5
|
| 697 |
-
metrics['state_size'] = 256
|
| 698 |
-
|
| 699 |
if config:
|
| 700 |
metrics['attention_replaced'] = config.get('attention_replaced', False)
|
| 701 |
metrics['layers_converted'] = config.get('layers_converted', 0)
|
|
@@ -705,111 +569,52 @@ def calculate_metrics(output, states, config=None):
|
|
| 705 |
|
| 706 |
|
| 707 |
def plot_retention_states(states):
|
| 708 |
-
"""
|
| 709 |
fig = go.Figure()
|
| 710 |
-
|
| 711 |
fig.add_trace(go.Scatter(
|
| 712 |
y=np.random.randn(100),
|
| 713 |
mode='lines',
|
| 714 |
-
name='Retention Pattern'
|
| 715 |
-
line=dict(color='blue', width=2)
|
| 716 |
))
|
| 717 |
-
|
| 718 |
-
fig.update_layout(
|
| 719 |
-
title='Retention State Visualization',
|
| 720 |
-
xaxis_title='Dimension',
|
| 721 |
-
yaxis_title='Activation',
|
| 722 |
-
template='plotly_white'
|
| 723 |
-
)
|
| 724 |
-
|
| 725 |
return fig
|
| 726 |
|
| 727 |
|
| 728 |
def plot_memory_usage(metrics):
|
| 729 |
-
"""
|
| 730 |
fig = go.Figure(go.Bar(
|
| 731 |
-
x=['Memory (MB)', 'Layers
|
| 732 |
y=[
|
| 733 |
metrics.get('memory_mb', 0),
|
| 734 |
metrics.get('layers_converted', 0),
|
| 735 |
(metrics.get('layers_converted', 0) / max(metrics.get('total_layers', 1), 1)) * 100
|
| 736 |
-
]
|
| 737 |
-
marker_color=['lightblue', 'lightgreen', 'lightyellow']
|
| 738 |
))
|
| 739 |
-
|
| 740 |
-
fig.update_layout(
|
| 741 |
-
title='Performance Metrics',
|
| 742 |
-
yaxis_title='Value',
|
| 743 |
-
template='plotly_white'
|
| 744 |
-
)
|
| 745 |
-
|
| 746 |
return fig
|
| 747 |
|
| 748 |
|
| 749 |
-
# =====================================================
|
| 750 |
-
# 모델 초기화
|
| 751 |
-
# =====================================================
|
| 752 |
-
|
| 753 |
-
def initialize_default_models():
|
| 754 |
-
"""기본 모델 초기화"""
|
| 755 |
-
models = {}
|
| 756 |
-
|
| 757 |
-
try:
|
| 758 |
-
# PHOENIX Standalone (No conversion)
|
| 759 |
-
print("📥 Loading standalone PHOENIX...")
|
| 760 |
-
models['phoenix_standalone'] = {
|
| 761 |
-
'type': 'standalone',
|
| 762 |
-
'converted': False,
|
| 763 |
-
'model': None
|
| 764 |
-
}
|
| 765 |
-
print("✅ phoenix_standalone ready")
|
| 766 |
-
|
| 767 |
-
print(f"✅ {len(models)} models initialized")
|
| 768 |
-
return models
|
| 769 |
-
|
| 770 |
-
except Exception as e:
|
| 771 |
-
print(f"❌ Model initialization failed: {e}")
|
| 772 |
-
return {}
|
| 773 |
-
|
| 774 |
-
|
| 775 |
# 전역 초기화
|
| 776 |
db = ExperimentDatabase(DB_PATH)
|
| 777 |
vector_store = RetentionVectorStore(VECTOR_DB_PATH)
|
| 778 |
-
|
| 779 |
-
CONVERTED_MODELS = {} # 변환된 모델 캐시
|
| 780 |
|
| 781 |
|
| 782 |
# =====================================================
|
| 783 |
-
# Gradio
|
| 784 |
# =====================================================
|
| 785 |
|
| 786 |
def convert_model_to_phoenix(model_url, use_hierarchical=True, gpu_type="L40S"):
|
| 787 |
-
"""
|
| 788 |
global CONVERTED_MODELS
|
| 789 |
|
| 790 |
try:
|
| 791 |
-
# 이미 변환된 모델인지 확인
|
| 792 |
cache_key = f"{model_url}_{use_hierarchical}"
|
| 793 |
if cache_key in CONVERTED_MODELS:
|
| 794 |
-
return CONVERTED_MODELS[cache_key], "✅ Using cached
|
| 795 |
-
|
| 796 |
-
# 예상 시간 계산
|
| 797 |
-
estimate = estimate_conversion_time(1400, gpu_type)
|
| 798 |
-
|
| 799 |
-
status_msg = f"""
|
| 800 |
-
🔄 **변환 시작**
|
| 801 |
-
|
| 802 |
-
**GPU**: {gpu_type}
|
| 803 |
-
**예상 시간**: {estimate['estimated_minutes']:.1f}분
|
| 804 |
-
**필요 메모리**: {estimate['memory_required_gb']:.1f} GB
|
| 805 |
-
**최대 메모리**: {estimate['max_memory_gb']} GB
|
| 806 |
-
|
| 807 |
-
진행 중...
|
| 808 |
-
"""
|
| 809 |
|
| 810 |
start_time = time.time()
|
| 811 |
|
| 812 |
-
# 1. 모델 로드
|
| 813 |
print(f"📥 Loading model: {model_url}")
|
| 814 |
config = AutoConfig.from_pretrained(model_url, trust_remote_code=True)
|
| 815 |
model = AutoModel.from_pretrained(
|
|
@@ -818,15 +623,10 @@ def convert_model_to_phoenix(model_url, use_hierarchical=True, gpu_type="L40S"):
|
|
| 818 |
torch_dtype=torch.float16
|
| 819 |
).to(DEVICE)
|
| 820 |
|
| 821 |
-
|
| 822 |
-
model, converted, total = replace_attention_with_retention(
|
| 823 |
-
model,
|
| 824 |
-
use_hierarchical=use_hierarchical
|
| 825 |
-
)
|
| 826 |
|
| 827 |
elapsed_time = time.time() - start_time
|
| 828 |
|
| 829 |
-
# 3. 캐시에 저장
|
| 830 |
model_info = {
|
| 831 |
'model': model,
|
| 832 |
'converted_layers': converted,
|
|
@@ -836,48 +636,38 @@ def convert_model_to_phoenix(model_url, use_hierarchical=True, gpu_type="L40S"):
|
|
| 836 |
}
|
| 837 |
CONVERTED_MODELS[cache_key] = model_info
|
| 838 |
|
| 839 |
-
|
| 840 |
-
✅
|
| 841 |
|
| 842 |
-
|
| 843 |
-
|
| 844 |
-
|
| 845 |
-
**소요 시간**: {elapsed_time:.1f}초 ({elapsed_time/60:.2f}분)
|
| 846 |
**GPU**: {gpu_type}
|
| 847 |
|
| 848 |
-
🎯
|
| 849 |
"""
|
| 850 |
|
| 851 |
-
return model_info,
|
| 852 |
|
| 853 |
except Exception as e:
|
| 854 |
-
return None, f"❌
|
| 855 |
|
| 856 |
|
| 857 |
-
def run_phoenix_experiment(
|
| 858 |
-
|
| 859 |
-
sequence_length, gpu_type
|
| 860 |
-
):
|
| 861 |
-
"""PHOENIX 실험 실행"""
|
| 862 |
try:
|
| 863 |
-
|
|
|
|
| 864 |
|
| 865 |
-
|
| 866 |
-
|
| 867 |
-
|
| 868 |
-
|
| 869 |
-
|
| 870 |
-
|
| 871 |
-
|
| 872 |
-
|
| 873 |
-
|
| 874 |
-
model = model_info['model']
|
| 875 |
-
converted_layers = model_info['converted_layers']
|
| 876 |
-
total_layers = model_info['total_layers']
|
| 877 |
-
else:
|
| 878 |
-
return "⚠️ 모델 URL을 입력하고 'Attention 교체' 옵션을 활성화하세요", None, None
|
| 879 |
|
| 880 |
-
# 2. 실험 설정
|
| 881 |
config = {
|
| 882 |
'model_type': f"phoenix_{model_url.split('/')[-1]}",
|
| 883 |
'model_url': model_url,
|
|
@@ -890,179 +680,120 @@ def run_phoenix_experiment(
|
|
| 890 |
'timestamp': datetime.now().isoformat()
|
| 891 |
}
|
| 892 |
|
| 893 |
-
#
|
| 894 |
hidden_size = model.config.hidden_size
|
| 895 |
-
print(f"\n📐 Generating input:")
|
| 896 |
-
print(f" - Batch: 1")
|
| 897 |
-
print(f" - Sequence: {sequence_length}")
|
| 898 |
-
print(f" - Hidden: {hidden_size}")
|
| 899 |
-
|
| 900 |
x = torch.randn(1, sequence_length, hidden_size).to(DEVICE).half()
|
| 901 |
-
print(f" - Input shape: {x.shape}")
|
| 902 |
|
| 903 |
-
#
|
| 904 |
torch.cuda.synchronize()
|
| 905 |
-
|
| 906 |
|
| 907 |
-
|
| 908 |
-
|
| 909 |
-
output = model(inputs_embeds=x)
|
| 910 |
-
|
| 911 |
-
torch.cuda.synchronize()
|
| 912 |
-
forward_time = time.time() - forward_start
|
| 913 |
-
|
| 914 |
-
print(f"\n✅ Forward pass successful!")
|
| 915 |
-
print(f" - Output shape: {output.last_hidden_state.shape}")
|
| 916 |
-
print(f" - Time: {forward_time:.3f}s")
|
| 917 |
-
|
| 918 |
-
except Exception as e:
|
| 919 |
-
print(f"\n❌ Forward pass failed:")
|
| 920 |
-
print(f" - Error: {e}")
|
| 921 |
-
import traceback
|
| 922 |
-
traceback.print_exc()
|
| 923 |
-
raise
|
| 924 |
|
| 925 |
-
|
|
|
|
|
|
|
|
|
|
| 926 |
metrics = calculate_metrics(output.last_hidden_state, {}, config)
|
| 927 |
-
metrics['elapsed_time'] =
|
| 928 |
-
metrics['throughput'] = sequence_length /
|
| 929 |
|
| 930 |
-
#
|
| 931 |
-
|
| 932 |
|
| 933 |
-
|
| 934 |
-
|
| 935 |
-
## 🎯 진짜 PHOENIX 실험 결과 (ID: {experiment_id})
|
| 936 |
|
| 937 |
-
### ⚙️
|
| 938 |
-
-
|
| 939 |
-
-
|
| 940 |
- **Hidden Size**: {hidden_size}
|
| 941 |
-
-
|
| 942 |
-
- **
|
| 943 |
-
- **변환된 레이어**: {converted_layers}/{total_layers} ({(converted_layers/total_layers*100):.1f}%)
|
| 944 |
-
- **GPU**: {gpu_type}
|
| 945 |
|
| 946 |
-
### 📊
|
| 947 |
-
-
|
| 948 |
-
-
|
| 949 |
-
-
|
| 950 |
|
| 951 |
-
### 🔥
|
| 952 |
-
-
|
| 953 |
-
- **
|
| 954 |
-
- **진짜 선형 복잡도**: {"✅ YES!" if converted_layers == total_layers else f"⚠️ Partial ({converted_layers}/{total_layers})"}
|
| 955 |
|
| 956 |
-
✅
|
| 957 |
"""
|
| 958 |
|
| 959 |
-
|
| 960 |
-
|
| 961 |
|
| 962 |
-
return
|
| 963 |
|
| 964 |
except Exception as e:
|
| 965 |
-
error_msg = f"❌ 실험 실패: {str(e)}\n\n"
|
| 966 |
import traceback
|
| 967 |
-
|
| 968 |
-
return error_msg, None, None
|
| 969 |
|
| 970 |
|
| 971 |
def estimate_conversion_ui(model_url, gpu_type):
|
| 972 |
-
"""
|
| 973 |
-
|
| 974 |
-
|
| 975 |
-
|
| 976 |
-
result = f"""
|
| 977 |
-
## ⏱️ 변환 시간 예측
|
| 978 |
|
| 979 |
### GPU: {gpu_type}
|
| 980 |
-
-
|
| 981 |
-
-
|
| 982 |
-
- **최대 메모리**: {estimate['max_memory_gb']} GB
|
| 983 |
-
|
| 984 |
-
### 비교 (350M 모델 기준)
|
| 985 |
-
- **L40S**: ~0.5분
|
| 986 |
-
- **H100**: ~0.2분
|
| 987 |
|
| 988 |
-
###
|
| 989 |
-
-
|
| 990 |
-
-
|
| 991 |
-
- 큰 모델일수록 시간이 선형적으로 증가합니다
|
| 992 |
"""
|
| 993 |
-
|
| 994 |
-
return result
|
| 995 |
-
|
| 996 |
-
except Exception as e:
|
| 997 |
-
return f"❌ 예측 실패: {str(e)}"
|
| 998 |
|
| 999 |
|
| 1000 |
def view_experiment_history(limit=20):
|
| 1001 |
-
"""
|
| 1002 |
try:
|
| 1003 |
-
experiments = db.get_recent_experiments(limit
|
| 1004 |
|
| 1005 |
if not experiments:
|
| 1006 |
-
return "📭
|
| 1007 |
|
| 1008 |
df = pd.DataFrame(experiments)
|
| 1009 |
|
| 1010 |
fig = px.scatter(
|
| 1011 |
-
df,
|
| 1012 |
-
|
| 1013 |
-
|
| 1014 |
-
size='sequence_length',
|
| 1015 |
-
color='attention_replaced',
|
| 1016 |
-
hover_data=['model_type', 'layers_converted'],
|
| 1017 |
-
title='실험 성능 추이'
|
| 1018 |
)
|
| 1019 |
|
| 1020 |
-
|
| 1021 |
-
|
| 1022 |
-
|
| 1023 |
-
'elapsed_time', 'throughput', 'timestamp'
|
| 1024 |
-
]
|
| 1025 |
-
|
| 1026 |
-
available_cols = [col for col in display_cols if col in df.columns]
|
| 1027 |
-
|
| 1028 |
-
history_text = f"""
|
| 1029 |
-
## 📊 실험 이력 ({len(df)}개)
|
| 1030 |
-
|
| 1031 |
-
{df[available_cols].to_markdown(index=False)}
|
| 1032 |
-
"""
|
| 1033 |
|
| 1034 |
-
return
|
| 1035 |
|
| 1036 |
except Exception as e:
|
| 1037 |
-
return f"❌
|
| 1038 |
|
| 1039 |
|
| 1040 |
def get_database_statistics():
|
| 1041 |
-
"""
|
| 1042 |
try:
|
| 1043 |
stats = db.get_statistics()
|
| 1044 |
|
| 1045 |
-
|
| 1046 |
-
## 📊
|
| 1047 |
|
| 1048 |
-
|
| 1049 |
-
- **총 실험 수**: {stats['total_experiments']}
|
| 1050 |
|
| 1051 |
-
###
|
| 1052 |
"""
|
| 1053 |
for model, count in stats['by_model'].items():
|
| 1054 |
-
|
| 1055 |
-
|
| 1056 |
-
if stats.get('by_conversion'):
|
| 1057 |
-
stats_text += "\n### Attention 변환 여부\n"
|
| 1058 |
-
for converted, count in stats['by_conversion'].items():
|
| 1059 |
-
status = "✅ 변환됨" if converted else "❌ 미변환"
|
| 1060 |
-
stats_text += f"- **{status}**: {count}개\n"
|
| 1061 |
-
|
| 1062 |
-
return stats_text
|
| 1063 |
|
|
|
|
| 1064 |
except Exception as e:
|
| 1065 |
-
return f"❌
|
| 1066 |
|
| 1067 |
|
| 1068 |
# =====================================================
|
|
@@ -1070,192 +801,95 @@ def get_database_statistics():
|
|
| 1070 |
# =====================================================
|
| 1071 |
|
| 1072 |
with gr.Blocks(
|
| 1073 |
-
title="🔮 PHOENIX
|
| 1074 |
theme=gr.themes.Soft(),
|
| 1075 |
) as demo:
|
| 1076 |
|
| 1077 |
gr.Markdown("""
|
| 1078 |
-
# 🔮 PHOENIX Retention
|
| 1079 |
|
| 1080 |
-
**
|
| 1081 |
|
| 1082 |
-
|
| 1083 |
-
|
| 1084 |
-
✅
|
| 1085 |
-
- Adaptive dimension handling
|
| 1086 |
-
- Better weight copying
|
| 1087 |
-
- Dynamic projection adjustment
|
| 1088 |
|
| 1089 |
---
|
| 1090 |
""")
|
| 1091 |
|
| 1092 |
with gr.Tabs():
|
| 1093 |
-
|
| 1094 |
-
# Tab 1: 모델 변환
|
| 1095 |
-
with gr.Tab("🔄 모델 변환"):
|
| 1096 |
-
gr.Markdown("""
|
| 1097 |
-
### Attention → Retention 변환
|
| 1098 |
-
|
| 1099 |
-
Transformer 모델의 Self-Attention 레이어를 PHOENIX Retention으로 교체합니다.
|
| 1100 |
-
""")
|
| 1101 |
-
|
| 1102 |
with gr.Row():
|
| 1103 |
with gr.Column(scale=1):
|
| 1104 |
-
|
| 1105 |
-
label="🔗
|
| 1106 |
-
|
| 1107 |
-
|
| 1108 |
-
)
|
| 1109 |
-
|
| 1110 |
-
convert_hierarchical = gr.Checkbox(
|
| 1111 |
-
value=True,
|
| 1112 |
-
label="계층적 Retention 사용"
|
| 1113 |
)
|
|
|
|
|
|
|
| 1114 |
|
| 1115 |
-
|
| 1116 |
-
|
| 1117 |
-
value="L40S",
|
| 1118 |
-
label="GPU 종류"
|
| 1119 |
-
)
|
| 1120 |
-
|
| 1121 |
-
estimate_btn = gr.Button("⏱️ 변환 시간 예측", variant="secondary")
|
| 1122 |
-
convert_btn = gr.Button("🔄 변환 시작", variant="primary")
|
| 1123 |
|
| 1124 |
with gr.Column(scale=2):
|
| 1125 |
-
convert_output = gr.Markdown(
|
| 1126 |
|
| 1127 |
-
estimate_btn.click(
|
| 1128 |
-
|
| 1129 |
-
|
| 1130 |
-
|
| 1131 |
-
)
|
| 1132 |
-
|
| 1133 |
-
convert_btn.click(
|
| 1134 |
-
fn=convert_model_to_phoenix,
|
| 1135 |
-
inputs=[convert_model_url, convert_hierarchical, convert_gpu],
|
| 1136 |
-
outputs=[gr.State(), convert_output]
|
| 1137 |
-
)
|
| 1138 |
|
| 1139 |
-
|
| 1140 |
-
with gr.Tab("🧪 실험 실행"):
|
| 1141 |
-
gr.Markdown("""
|
| 1142 |
-
### PHOENIX 실험
|
| 1143 |
-
|
| 1144 |
-
변환된 모델로 실험을 실행합니다.
|
| 1145 |
-
""")
|
| 1146 |
-
|
| 1147 |
with gr.Row():
|
| 1148 |
with gr.Column(scale=1):
|
| 1149 |
-
|
| 1150 |
-
|
| 1151 |
-
|
| 1152 |
-
|
| 1153 |
-
)
|
| 1154 |
|
| 1155 |
-
|
| 1156 |
-
value=True,
|
| 1157 |
-
label="계층적 Retention"
|
| 1158 |
-
)
|
| 1159 |
-
|
| 1160 |
-
exp_convert = gr.Checkbox(
|
| 1161 |
-
value=True,
|
| 1162 |
-
label="Attention 교체 활성화"
|
| 1163 |
-
)
|
| 1164 |
-
|
| 1165 |
-
exp_seq_len = gr.Slider(
|
| 1166 |
-
minimum=64,
|
| 1167 |
-
maximum=4096,
|
| 1168 |
-
value=1024,
|
| 1169 |
-
step=64,
|
| 1170 |
-
label="시퀀스 길이"
|
| 1171 |
-
)
|
| 1172 |
-
|
| 1173 |
-
exp_gpu = gr.Radio(
|
| 1174 |
-
choices=["L40S", "H100"],
|
| 1175 |
-
value="L40S",
|
| 1176 |
-
label="GPU"
|
| 1177 |
-
)
|
| 1178 |
-
|
| 1179 |
-
run_btn = gr.Button("🚀 실험 실행", variant="primary")
|
| 1180 |
|
| 1181 |
with gr.Column(scale=2):
|
| 1182 |
-
exp_output = gr.Markdown(
|
| 1183 |
-
|
| 1184 |
with gr.Row():
|
| 1185 |
-
|
| 1186 |
-
|
| 1187 |
|
| 1188 |
-
run_btn.click(
|
| 1189 |
-
|
| 1190 |
-
|
| 1191 |
-
exp_seq_len, exp_gpu],
|
| 1192 |
-
outputs=[exp_output, exp_states, exp_memory]
|
| 1193 |
-
)
|
| 1194 |
|
| 1195 |
-
|
| 1196 |
-
with gr.Tab("📊 실험 이력"):
|
| 1197 |
with gr.Row():
|
| 1198 |
with gr.Column(scale=1):
|
| 1199 |
-
|
| 1200 |
-
|
| 1201 |
-
|
| 1202 |
-
value=20,
|
| 1203 |
-
step=10,
|
| 1204 |
-
label="조회 개수"
|
| 1205 |
-
)
|
| 1206 |
-
|
| 1207 |
-
history_btn = gr.Button("📊 이력 조회", variant="primary")
|
| 1208 |
-
stats_btn = gr.Button("📈 통계 보기", variant="secondary")
|
| 1209 |
|
| 1210 |
with gr.Column(scale=2):
|
| 1211 |
-
|
| 1212 |
-
|
| 1213 |
-
|
| 1214 |
-
history_btn.click(
|
| 1215 |
-
fn=view_experiment_history,
|
| 1216 |
-
inputs=[history_limit],
|
| 1217 |
-
outputs=[history_output, history_plot]
|
| 1218 |
-
)
|
| 1219 |
|
| 1220 |
-
|
| 1221 |
-
|
| 1222 |
-
outputs=[history_output]
|
| 1223 |
-
)
|
| 1224 |
|
| 1225 |
gr.Markdown("""
|
| 1226 |
---
|
| 1227 |
|
| 1228 |
-
## 🔥 PHOENIX
|
| 1229 |
-
|
| 1230 |
-
### 이전 버전 (가짜)
|
| 1231 |
-
```
|
| 1232 |
-
입력 → Granite Attention (O(n²)) → PHOENIX 후처리 → 출력
|
| 1233 |
-
```
|
| 1234 |
-
|
| 1235 |
-
### 현재 버전 (진짜)
|
| 1236 |
-
```
|
| 1237 |
-
입력 → PHOENIX Retention (O(n)) → 출력
|
| 1238 |
-
```
|
| 1239 |
-
|
| 1240 |
-
## ⏱️ 예상 변환 시간 (350M 모델)
|
| 1241 |
|
| 1242 |
-
|
| 1243 |
-
|-----|----------|--------|
|
| 1244 |
-
| **L40S** | ~30초 | 2-3 GB |
|
| 1245 |
-
| **H100** | ~12초 | 2-3 GB |
|
| 1246 |
|
| 1247 |
-
|
| 1248 |
-
-
|
| 1249 |
-
-
|
| 1250 |
-
-
|
| 1251 |
|
| 1252 |
-
**VIDraft AI Research Lab** |
|
| 1253 |
""")
|
| 1254 |
|
| 1255 |
if __name__ == "__main__":
|
| 1256 |
demo.queue(max_size=20)
|
| 1257 |
-
demo.launch(
|
| 1258 |
-
server_name="0.0.0.0",
|
| 1259 |
-
server_port=7860,
|
| 1260 |
-
share=False
|
| 1261 |
-
)
|
|
|
|
| 1 |
"""
|
| 2 |
🔮 PHOENIX Retention Research Platform
|
| 3 |
+
Real Implementation - GQA Support
|
| 4 |
|
| 5 |
+
✅ Supports Grouped Query Attention (GQA)
|
| 6 |
+
✅ Adaptive K/V projection dimensions
|
| 7 |
+
✅ L40S GPU + Persistent Storage
|
| 8 |
|
| 9 |
+
VIDraft AI Research Lab
|
| 10 |
"""
|
| 11 |
|
| 12 |
import gradio as gr
|
|
|
|
| 25 |
from typing import Dict, List, Any, Tuple, Optional
|
| 26 |
import chromadb
|
| 27 |
from chromadb.config import Settings
|
|
|
|
| 28 |
from transformers import AutoModel, AutoTokenizer, AutoConfig
|
| 29 |
import copy
|
| 30 |
|
|
|
|
| 46 |
print(f"🎯 Default Base Model: {DEFAULT_MODEL}")
|
| 47 |
|
| 48 |
# =====================================================
|
| 49 |
+
# PHOENIX Retention with GQA Support
|
| 50 |
# =====================================================
|
| 51 |
|
| 52 |
class MultiScaleRetention(nn.Module):
|
| 53 |
"""
|
| 54 |
+
진짜 Retention Attention with GQA Support
|
|
|
|
| 55 |
|
| 56 |
+
✅ Supports Grouped Query Attention
|
| 57 |
+
✅ Adaptive K/V dimensions
|
| 58 |
"""
|
| 59 |
|
| 60 |
def __init__(self, config, layer_idx=0):
|
|
|
|
| 62 |
self.config = config
|
| 63 |
self.layer_idx = layer_idx
|
| 64 |
|
| 65 |
+
# Q dimensions
|
| 66 |
self.hidden_size = config.hidden_size
|
| 67 |
self.num_heads = config.num_attention_heads
|
|
|
|
|
|
|
| 68 |
self.head_dim = self.hidden_size // self.num_heads
|
| 69 |
|
| 70 |
+
# K/V dimensions (GQA)
|
| 71 |
+
if hasattr(config, 'num_key_value_heads'):
|
| 72 |
+
self.num_key_value_heads = config.num_key_value_heads
|
| 73 |
+
else:
|
| 74 |
+
self.num_key_value_heads = self.num_heads
|
|
|
|
| 75 |
|
| 76 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
| 77 |
+
self.kv_head_dim = self.head_dim # Same as Q head_dim
|
| 78 |
+
self.kv_dim = self.num_key_value_heads * self.kv_head_dim
|
| 79 |
+
|
| 80 |
+
print(f" 📐 Layer {layer_idx} Retention (GQA) initialized:")
|
| 81 |
print(f" - hidden_size: {self.hidden_size}")
|
| 82 |
+
print(f" - num_heads (Q): {self.num_heads}")
|
| 83 |
+
print(f" - num_key_value_heads (K/V): {self.num_key_value_heads}")
|
| 84 |
print(f" - head_dim: {self.head_dim}")
|
| 85 |
+
print(f" - kv_dim: {self.kv_dim}")
|
| 86 |
+
print(f" - groups: {self.num_key_value_groups}")
|
| 87 |
|
| 88 |
+
# ✅ Projections with correct dimensions
|
|
|
|
| 89 |
self.q_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
|
| 90 |
+
self.k_proj = nn.Linear(self.hidden_size, self.kv_dim, bias=False) # GQA!
|
| 91 |
+
self.v_proj = nn.Linear(self.hidden_size, self.kv_dim, bias=False) # GQA!
|
| 92 |
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
|
| 93 |
|
| 94 |
+
# Retention parameters
|
| 95 |
decay_values = torch.linspace(0.8, 0.95, self.num_heads)
|
| 96 |
self.decay = nn.Parameter(decay_values, requires_grad=True)
|
| 97 |
|
| 98 |
+
# Group norm
|
| 99 |
self.group_norm = nn.GroupNorm(
|
| 100 |
num_groups=self.num_heads,
|
| 101 |
num_channels=self.hidden_size
|
| 102 |
)
|
| 103 |
|
| 104 |
+
def _repeat_kv(self, hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
| 105 |
+
"""
|
| 106 |
+
Repeat K/V heads to match Q heads (GQA)
|
| 107 |
+
[B, num_kv_heads, seq_len, head_dim] -> [B, num_heads, seq_len, head_dim]
|
| 108 |
+
"""
|
| 109 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
| 110 |
+
if n_rep == 1:
|
| 111 |
+
return hidden_states
|
| 112 |
+
|
| 113 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(
|
| 114 |
+
batch, num_key_value_heads, n_rep, slen, head_dim
|
| 115 |
+
)
|
| 116 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 117 |
+
|
| 118 |
def forward(
|
| 119 |
self,
|
| 120 |
hidden_states: torch.Tensor,
|
|
|
|
| 128 |
**kwargs
|
| 129 |
):
|
| 130 |
"""
|
| 131 |
+
O(n) Retention with GQA support
|
|
|
|
| 132 |
"""
|
| 133 |
+
batch_size, seq_len, _ = hidden_states.shape
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
|
| 135 |
if past_key_values is not None:
|
| 136 |
past_key_value = past_key_values
|
| 137 |
|
| 138 |
+
# Q, K, V projections
|
| 139 |
+
query_states = self.q_proj(hidden_states) # [B, L, hidden_size]
|
| 140 |
+
key_states = self.k_proj(hidden_states) # [B, L, kv_dim]
|
| 141 |
+
value_states = self.v_proj(hidden_states) # [B, L, kv_dim]
|
| 142 |
|
| 143 |
+
# Reshape Q: [B, L, hidden_size] -> [B, num_heads, L, head_dim]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
query_states = query_states.view(
|
| 145 |
+
batch_size, seq_len, self.num_heads, self.head_dim
|
| 146 |
).transpose(1, 2)
|
| 147 |
|
| 148 |
+
# Reshape K/V: [B, L, kv_dim] -> [B, num_kv_heads, L, kv_head_dim]
|
| 149 |
key_states = key_states.view(
|
| 150 |
+
batch_size, seq_len, self.num_key_value_heads, self.kv_head_dim
|
| 151 |
).transpose(1, 2)
|
| 152 |
|
| 153 |
value_states = value_states.view(
|
| 154 |
+
batch_size, seq_len, self.num_key_value_heads, self.kv_head_dim
|
| 155 |
).transpose(1, 2)
|
| 156 |
|
| 157 |
+
# ✅ Repeat K/V to match Q heads (GQA)
|
| 158 |
+
key_states = self._repeat_kv(key_states, self.num_key_value_groups)
|
| 159 |
+
value_states = self._repeat_kv(value_states, self.num_key_value_groups)
|
| 160 |
+
|
| 161 |
+
# Now all have shape [B, num_heads, L, head_dim]
|
| 162 |
+
|
| 163 |
+
# Retention computation
|
| 164 |
retention_states = self._compute_retention(
|
| 165 |
+
query_states, key_states, value_states, past_key_value
|
|
|
|
| 166 |
)
|
| 167 |
|
| 168 |
+
# Reshape back: [B, num_heads, L, head_dim] -> [B, L, hidden_size]
|
| 169 |
retention_states = retention_states.transpose(1, 2).contiguous()
|
| 170 |
retention_states = retention_states.reshape(
|
| 171 |
+
batch_size, seq_len, self.hidden_size
|
| 172 |
)
|
| 173 |
|
| 174 |
+
# Group norm
|
| 175 |
+
retention_states = self.group_norm(
|
| 176 |
+
retention_states.transpose(1, 2)
|
| 177 |
+
).transpose(1, 2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
|
| 179 |
# Output projection
|
| 180 |
+
attn_output = self.o_proj(retention_states)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
|
| 182 |
return (attn_output, None, past_key_value)
|
| 183 |
|
|
|
|
| 186 |
queries: torch.Tensor, # [B, H, L, D]
|
| 187 |
keys: torch.Tensor, # [B, H, L, D]
|
| 188 |
values: torch.Tensor, # [B, H, L, D]
|
| 189 |
+
past_state: Optional[Tuple] = None
|
|
|
|
| 190 |
):
|
| 191 |
+
"""O(n) Retention computation"""
|
| 192 |
+
batch_size, num_heads, seq_len, head_dim = queries.shape
|
|
|
|
|
|
|
|
|
|
|
|
|
| 193 |
|
| 194 |
+
# State initialization
|
| 195 |
if past_state is not None:
|
| 196 |
state = past_state
|
| 197 |
else:
|
|
|
|
| 202 |
|
| 203 |
outputs = []
|
| 204 |
|
| 205 |
+
# Sequential processing (O(n))
|
| 206 |
for t in range(seq_len):
|
| 207 |
q_t = queries[:, :, t, :] # [B, H, D]
|
| 208 |
k_t = keys[:, :, t, :] # [B, H, D]
|
| 209 |
v_t = values[:, :, t, :] # [B, H, D]
|
| 210 |
|
| 211 |
+
# Decay
|
| 212 |
decay = torch.sigmoid(self.decay).view(1, -1, 1, 1)
|
| 213 |
state = decay * state
|
| 214 |
|
| 215 |
+
# State update: S = decay * S + k @ v^T
|
| 216 |
state = state + torch.einsum('bhd,bhe->bhde', k_t, v_t)
|
| 217 |
|
| 218 |
# Output: q @ S
|
|
|
|
| 223 |
|
| 224 |
return output
|
| 225 |
|
| 226 |
+
|
| 227 |
class HierarchicalRetention(nn.Module):
|
| 228 |
"""
|
| 229 |
+
PHOENIX Hierarchical Retention with GQA
|
|
|
|
| 230 |
"""
|
| 231 |
|
| 232 |
def __init__(self, config, layer_idx=0):
|
|
|
|
| 262 |
past_key_values: Optional[Tuple[torch.Tensor]] = None,
|
| 263 |
**kwargs
|
| 264 |
):
|
| 265 |
+
"""Hierarchical forward pass"""
|
|
|
|
|
|
|
| 266 |
batch_size, seq_len, hidden_size = hidden_states.shape
|
| 267 |
|
| 268 |
if past_key_values is not None:
|
| 269 |
past_key_value = past_key_values
|
| 270 |
|
| 271 |
+
# Base Retention
|
| 272 |
retention_output, attn_weights, past_kv = self.base_retention(
|
| 273 |
+
hidden_states, attention_mask, position_ids,
|
| 274 |
+
past_key_value, output_attentions, use_cache
|
|
|
|
|
|
|
|
|
|
|
|
|
| 275 |
)
|
| 276 |
|
| 277 |
+
# Hierarchical states
|
| 278 |
short_state = torch.zeros(batch_size, self.d_state).to(hidden_states.device)
|
| 279 |
medium_state = torch.zeros(batch_size, self.d_state).to(hidden_states.device)
|
| 280 |
long_state = torch.zeros(batch_size, self.d_state * 2).to(hidden_states.device)
|
|
|
|
| 284 |
for t in range(seq_len):
|
| 285 |
x_t = retention_output[:, t, :]
|
| 286 |
|
| 287 |
+
# Short-term
|
| 288 |
short_input = self.short_proj(x_t)
|
| 289 |
short_state = self.short_decay * short_state + short_input
|
| 290 |
|
|
|
|
| 310 |
|
| 311 |
|
| 312 |
# =====================================================
|
| 313 |
+
# 모델 변환 함수
|
| 314 |
# =====================================================
|
| 315 |
|
| 316 |
def replace_attention_with_retention(model, use_hierarchical=True):
|
| 317 |
"""
|
| 318 |
+
Transformer Attention → PHOENIX Retention (GQA Support)
|
|
|
|
| 319 |
"""
|
| 320 |
+
print("🔄 Starting Attention → Retention conversion (GQA support)...")
|
| 321 |
|
| 322 |
replaced_count = 0
|
| 323 |
total_layers = 0
|
| 324 |
|
| 325 |
+
# Layer structure
|
| 326 |
if hasattr(model, 'transformer'):
|
| 327 |
layers = model.transformer.h
|
| 328 |
elif hasattr(model, 'model') and hasattr(model.model, 'layers'):
|
|
|
|
| 335 |
|
| 336 |
total_layers = len(layers)
|
| 337 |
|
| 338 |
+
# Check first layer for dimensions
|
| 339 |
first_layer = layers[0]
|
| 340 |
+
if hasattr(first_layer, 'self_attn'):
|
| 341 |
+
old_attn = first_layer.self_attn
|
| 342 |
+
|
| 343 |
+
print(f"\n📐 Detected attention structure:")
|
| 344 |
+
if hasattr(old_attn, 'q_proj'):
|
| 345 |
+
q_shape = old_attn.q_proj.weight.shape
|
| 346 |
+
k_shape = old_attn.k_proj.weight.shape
|
| 347 |
+
v_shape = old_attn.v_proj.weight.shape
|
| 348 |
+
|
| 349 |
+
print(f" - Q projection: {q_shape}")
|
| 350 |
+
print(f" - K projection: {k_shape}")
|
| 351 |
+
print(f" - V projection: {v_shape}")
|
| 352 |
+
|
| 353 |
+
if k_shape[0] != q_shape[0]:
|
| 354 |
+
print(f" ✅ GQA detected! (K/V dim: {k_shape[0]} < Q dim: {q_shape[0]})")
|
| 355 |
+
# Update config for GQA
|
| 356 |
+
if not hasattr(model.config, 'num_key_value_heads'):
|
| 357 |
+
num_kv_heads = k_shape[0] // (model.config.hidden_size // model.config.num_attention_heads)
|
| 358 |
+
model.config.num_key_value_heads = num_kv_heads
|
| 359 |
+
print(f" 🔧 Set num_key_value_heads = {num_kv_heads}")
|
| 360 |
|
| 361 |
for layer_idx, layer in enumerate(layers):
|
| 362 |
try:
|
| 363 |
if hasattr(layer, 'self_attn'):
|
| 364 |
old_attn = layer.self_attn
|
| 365 |
|
| 366 |
+
# Create PHOENIX Retention
|
| 367 |
if use_hierarchical:
|
| 368 |
new_retention = HierarchicalRetention(model.config, layer_idx)
|
| 369 |
else:
|
| 370 |
new_retention = MultiScaleRetention(model.config, layer_idx)
|
| 371 |
|
| 372 |
+
# Copy weights
|
| 373 |
if hasattr(old_attn, 'q_proj'):
|
| 374 |
try:
|
|
|
|
| 375 |
if use_hierarchical:
|
| 376 |
+
target = new_retention.base_retention
|
| 377 |
else:
|
| 378 |
+
target = new_retention
|
| 379 |
|
| 380 |
+
# Copy with shape verification
|
| 381 |
+
if (old_attn.q_proj.weight.shape == target.q_proj.weight.shape and
|
| 382 |
+
old_attn.k_proj.weight.shape == target.k_proj.weight.shape and
|
| 383 |
+
old_attn.v_proj.weight.shape == target.v_proj.weight.shape):
|
| 384 |
+
|
| 385 |
+
target.q_proj.weight.data = old_attn.q_proj.weight.data.clone()
|
| 386 |
+
target.k_proj.weight.data = old_attn.k_proj.weight.data.clone()
|
| 387 |
+
target.v_proj.weight.data = old_attn.v_proj.weight.data.clone()
|
| 388 |
+
target.o_proj.weight.data = old_attn.o_proj.weight.data.clone()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 389 |
|
| 390 |
+
print(f" ✅ Layer {layer_idx}: Weights copied")
|
| 391 |
else:
|
| 392 |
+
print(f" ⚠️ Layer {layer_idx}: Shape mismatch, using random init")
|
|
|
|
|
|
|
| 393 |
|
| 394 |
except Exception as e:
|
| 395 |
print(f" ⚠️ Layer {layer_idx}: Weight copy failed - {e}")
|
| 396 |
|
| 397 |
+
# Replace
|
| 398 |
layer.self_attn = new_retention
|
| 399 |
replaced_count += 1
|
| 400 |
|
| 401 |
+
print(f" ✅ Layer {layer_idx}: Attention → Retention (GQA)")
|
| 402 |
|
| 403 |
except Exception as e:
|
| 404 |
print(f" ❌ Layer {layer_idx}: Failed - {e}")
|
|
|
|
| 406 |
traceback.print_exc()
|
| 407 |
continue
|
| 408 |
|
| 409 |
+
print(f"\n✅ Conversion complete: {replaced_count}/{total_layers} layers")
|
| 410 |
|
| 411 |
return model, replaced_count, total_layers
|
| 412 |
|
| 413 |
|
| 414 |
def estimate_conversion_time(model_size_mb, gpu_type="L40S"):
|
| 415 |
+
"""변환 시간 예측"""
|
|
|
|
|
|
|
|
|
|
| 416 |
gpu_specs = {
|
| 417 |
+
"L40S": {"memory_gb": 48, "tflops_fp16": 362},
|
| 418 |
+
"H100": {"memory_gb": 80, "tflops_fp16": 989}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 419 |
}
|
| 420 |
|
| 421 |
spec = gpu_specs.get(gpu_type, gpu_specs["L40S"])
|
| 422 |
+
base_time_seconds = 30
|
| 423 |
+
scale_factor = model_size_mb / 1400
|
| 424 |
+
performance_factor = 0.4 if gpu_type == "H100" else 1.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 425 |
estimated_time = base_time_seconds * scale_factor * performance_factor
|
| 426 |
|
| 427 |
return {
|
|
|
|
| 434 |
|
| 435 |
|
| 436 |
# =====================================================
|
| 437 |
+
# 데이터베이스 (동일)
|
| 438 |
# =====================================================
|
| 439 |
|
| 440 |
class ExperimentDatabase:
|
| 441 |
+
"""SQLite database"""
|
| 442 |
|
| 443 |
def __init__(self, db_path: str):
|
| 444 |
self.db_path = db_path
|
|
|
|
| 453 |
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
| 454 |
model_type TEXT NOT NULL,
|
| 455 |
sequence_length INTEGER,
|
|
|
|
|
|
|
| 456 |
use_hierarchical BOOLEAN,
|
| 457 |
attention_replaced BOOLEAN,
|
| 458 |
layers_converted INTEGER,
|
|
|
|
| 460 |
elapsed_time REAL,
|
| 461 |
memory_mb REAL,
|
| 462 |
throughput REAL,
|
|
|
|
|
|
|
| 463 |
config_json TEXT,
|
| 464 |
metrics_json TEXT,
|
| 465 |
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP
|
| 466 |
)
|
| 467 |
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 468 |
conn.commit()
|
|
|
|
| 469 |
|
| 470 |
def migrate_database(self):
|
| 471 |
with sqlite3.connect(self.db_path) as conn:
|
| 472 |
cursor = conn.cursor()
|
| 473 |
cursor.execute("PRAGMA table_info(experiments)")
|
| 474 |
+
columns = [col[1] for col in cursor.fetchall()]
|
| 475 |
|
| 476 |
new_columns = [
|
| 477 |
('attention_replaced', 'BOOLEAN'),
|
|
|
|
| 482 |
for col_name, col_type in new_columns:
|
| 483 |
if col_name not in columns:
|
| 484 |
try:
|
| 485 |
+
cursor.execute(f"ALTER TABLE experiments ADD COLUMN {col_name} {col_type}")
|
| 486 |
+
except:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 487 |
pass
|
|
|
|
| 488 |
conn.commit()
|
| 489 |
|
| 490 |
def save_experiment(self, config: Dict, metrics: Dict) -> int:
|
|
|
|
| 492 |
cursor = conn.cursor()
|
| 493 |
cursor.execute("""
|
| 494 |
INSERT INTO experiments (
|
| 495 |
+
model_type, sequence_length, use_hierarchical,
|
| 496 |
+
attention_replaced, layers_converted, total_layers,
|
| 497 |
+
elapsed_time, memory_mb, throughput,
|
|
|
|
| 498 |
config_json, metrics_json
|
| 499 |
+
) VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
|
| 500 |
""", (
|
| 501 |
config.get('model_type'),
|
| 502 |
config.get('sequence_length'),
|
|
|
|
|
|
|
| 503 |
config.get('use_hierarchical'),
|
| 504 |
config.get('attention_replaced'),
|
| 505 |
config.get('layers_converted'),
|
|
|
|
| 507 |
metrics.get('elapsed_time'),
|
| 508 |
metrics.get('memory_mb'),
|
| 509 |
metrics.get('throughput'),
|
|
|
|
|
|
|
| 510 |
json.dumps(config),
|
| 511 |
json.dumps(metrics)
|
| 512 |
))
|
|
|
|
| 517 |
with sqlite3.connect(self.db_path) as conn:
|
| 518 |
conn.row_factory = sqlite3.Row
|
| 519 |
cursor = conn.cursor()
|
| 520 |
+
cursor.execute("SELECT * FROM experiments ORDER BY timestamp DESC LIMIT ?", (limit,))
|
| 521 |
+
return [dict(row) for row in cursor.fetchall()]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 522 |
|
| 523 |
def get_statistics(self) -> Dict:
|
| 524 |
with sqlite3.connect(self.db_path) as conn:
|
|
|
|
| 526 |
cursor.execute("SELECT COUNT(*) FROM experiments")
|
| 527 |
total = cursor.fetchone()[0]
|
| 528 |
|
| 529 |
+
cursor.execute("SELECT model_type, COUNT(*) FROM experiments GROUP BY model_type")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 530 |
by_model = dict(cursor.fetchall())
|
| 531 |
|
| 532 |
+
return {'total_experiments': total, 'by_model': by_model}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 533 |
|
| 534 |
|
| 535 |
class RetentionVectorStore:
|
| 536 |
+
"""ChromaDB vector store"""
|
| 537 |
|
| 538 |
def __init__(self, persist_directory: str):
|
| 539 |
try:
|
|
|
|
| 541 |
persist_directory=persist_directory,
|
| 542 |
anonymized_telemetry=False
|
| 543 |
))
|
| 544 |
+
self.collection = self.client.get_or_create_collection(name="retention_states")
|
| 545 |
+
except:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 546 |
self.client = None
|
| 547 |
self.collection = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 548 |
|
| 549 |
|
| 550 |
# =====================================================
|
| 551 |
+
# 유틸리티
|
| 552 |
# =====================================================
|
| 553 |
|
| 554 |
def calculate_metrics(output, states, config=None):
|
| 555 |
+
"""Calculate metrics"""
|
| 556 |
metrics = {}
|
| 557 |
|
| 558 |
if isinstance(output, torch.Tensor):
|
| 559 |
+
metrics['memory_mb'] = (output.numel() * 4) / (1024 * 1024)
|
|
|
|
| 560 |
else:
|
| 561 |
metrics['memory_mb'] = 0
|
| 562 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 563 |
if config:
|
| 564 |
metrics['attention_replaced'] = config.get('attention_replaced', False)
|
| 565 |
metrics['layers_converted'] = config.get('layers_converted', 0)
|
|
|
|
| 569 |
|
| 570 |
|
| 571 |
def plot_retention_states(states):
|
| 572 |
+
"""Plot retention states"""
|
| 573 |
fig = go.Figure()
|
|
|
|
| 574 |
fig.add_trace(go.Scatter(
|
| 575 |
y=np.random.randn(100),
|
| 576 |
mode='lines',
|
| 577 |
+
name='Retention Pattern'
|
|
|
|
| 578 |
))
|
| 579 |
+
fig.update_layout(title='Retention State Visualization', template='plotly_white')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 580 |
return fig
|
| 581 |
|
| 582 |
|
| 583 |
def plot_memory_usage(metrics):
|
| 584 |
+
"""Plot memory usage"""
|
| 585 |
fig = go.Figure(go.Bar(
|
| 586 |
+
x=['Memory (MB)', 'Layers', 'Rate %'],
|
| 587 |
y=[
|
| 588 |
metrics.get('memory_mb', 0),
|
| 589 |
metrics.get('layers_converted', 0),
|
| 590 |
(metrics.get('layers_converted', 0) / max(metrics.get('total_layers', 1), 1)) * 100
|
| 591 |
+
]
|
|
|
|
| 592 |
))
|
| 593 |
+
fig.update_layout(title='Performance Metrics', template='plotly_white')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 594 |
return fig
|
| 595 |
|
| 596 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 597 |
# 전역 초기화
|
| 598 |
db = ExperimentDatabase(DB_PATH)
|
| 599 |
vector_store = RetentionVectorStore(VECTOR_DB_PATH)
|
| 600 |
+
CONVERTED_MODELS = {}
|
|
|
|
| 601 |
|
| 602 |
|
| 603 |
# =====================================================
|
| 604 |
+
# Gradio Functions
|
| 605 |
# =====================================================
|
| 606 |
|
| 607 |
def convert_model_to_phoenix(model_url, use_hierarchical=True, gpu_type="L40S"):
|
| 608 |
+
"""Convert model to PHOENIX"""
|
| 609 |
global CONVERTED_MODELS
|
| 610 |
|
| 611 |
try:
|
|
|
|
| 612 |
cache_key = f"{model_url}_{use_hierarchical}"
|
| 613 |
if cache_key in CONVERTED_MODELS:
|
| 614 |
+
return CONVERTED_MODELS[cache_key], "✅ Using cached model"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 615 |
|
| 616 |
start_time = time.time()
|
| 617 |
|
|
|
|
| 618 |
print(f"📥 Loading model: {model_url}")
|
| 619 |
config = AutoConfig.from_pretrained(model_url, trust_remote_code=True)
|
| 620 |
model = AutoModel.from_pretrained(
|
|
|
|
| 623 |
torch_dtype=torch.float16
|
| 624 |
).to(DEVICE)
|
| 625 |
|
| 626 |
+
model, converted, total = replace_attention_with_retention(model, use_hierarchical)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 627 |
|
| 628 |
elapsed_time = time.time() - start_time
|
| 629 |
|
|
|
|
| 630 |
model_info = {
|
| 631 |
'model': model,
|
| 632 |
'converted_layers': converted,
|
|
|
|
| 636 |
}
|
| 637 |
CONVERTED_MODELS[cache_key] = model_info
|
| 638 |
|
| 639 |
+
result = f"""
|
| 640 |
+
✅ **Conversion Complete!**
|
| 641 |
|
| 642 |
+
**Model**: {model_url}
|
| 643 |
+
**Converted**: {converted}/{total} layers ({(converted/total*100):.1f}%)
|
| 644 |
+
**Time**: {elapsed_time:.1f}s ({elapsed_time/60:.2f}min)
|
|
|
|
| 645 |
**GPU**: {gpu_type}
|
| 646 |
|
| 647 |
+
🎯 GQA-aware O(n) complexity!
|
| 648 |
"""
|
| 649 |
|
| 650 |
+
return model_info, result
|
| 651 |
|
| 652 |
except Exception as e:
|
| 653 |
+
return None, f"❌ Conversion failed: {str(e)}"
|
| 654 |
|
| 655 |
|
| 656 |
+
def run_phoenix_experiment(model_url, use_hierarchical, convert_attention, sequence_length, gpu_type):
|
| 657 |
+
"""Run PHOENIX experiment"""
|
|
|
|
|
|
|
|
|
|
| 658 |
try:
|
| 659 |
+
if not convert_attention or not model_url.strip():
|
| 660 |
+
return "⚠️ Enable 'Attention Replace' and provide model URL", None, None
|
| 661 |
|
| 662 |
+
model_info, msg = convert_model_to_phoenix(model_url, use_hierarchical, gpu_type)
|
| 663 |
+
|
| 664 |
+
if model_info is None:
|
| 665 |
+
return msg, None, None
|
| 666 |
+
|
| 667 |
+
model = model_info['model']
|
| 668 |
+
converted_layers = model_info['converted_layers']
|
| 669 |
+
total_layers = model_info['total_layers']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 670 |
|
|
|
|
| 671 |
config = {
|
| 672 |
'model_type': f"phoenix_{model_url.split('/')[-1]}",
|
| 673 |
'model_url': model_url,
|
|
|
|
| 680 |
'timestamp': datetime.now().isoformat()
|
| 681 |
}
|
| 682 |
|
| 683 |
+
# Generate input
|
| 684 |
hidden_size = model.config.hidden_size
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 685 |
x = torch.randn(1, sequence_length, hidden_size).to(DEVICE).half()
|
|
|
|
| 686 |
|
| 687 |
+
# Forward pass
|
| 688 |
torch.cuda.synchronize()
|
| 689 |
+
start = time.time()
|
| 690 |
|
| 691 |
+
with torch.no_grad():
|
| 692 |
+
output = model(inputs_embeds=x)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 693 |
|
| 694 |
+
torch.cuda.synchronize()
|
| 695 |
+
elapsed = time.time() - start
|
| 696 |
+
|
| 697 |
+
# Metrics
|
| 698 |
metrics = calculate_metrics(output.last_hidden_state, {}, config)
|
| 699 |
+
metrics['elapsed_time'] = elapsed
|
| 700 |
+
metrics['throughput'] = sequence_length / elapsed
|
| 701 |
|
| 702 |
+
# Save
|
| 703 |
+
exp_id = db.save_experiment(config, metrics)
|
| 704 |
|
| 705 |
+
result = f"""
|
| 706 |
+
## 🎯 PHOENIX Experiment Results (ID: {exp_id})
|
|
|
|
| 707 |
|
| 708 |
+
### ⚙️ Configuration
|
| 709 |
+
- **Model**: {model_url}
|
| 710 |
+
- **Sequence Length**: {sequence_length} tokens
|
| 711 |
- **Hidden Size**: {hidden_size}
|
| 712 |
+
- **Hierarchical**: {"✅" if use_hierarchical else "❌"}
|
| 713 |
+
- **Converted Layers**: {converted_layers}/{total_layers} ({(converted_layers/total_layers*100):.1f}%)
|
|
|
|
|
|
|
| 714 |
|
| 715 |
+
### 📊 Performance
|
| 716 |
+
- **Time**: {elapsed:.3f}s
|
| 717 |
+
- **Throughput**: {metrics['throughput']:.1f} tokens/s
|
| 718 |
+
- **Memory**: {metrics['memory_mb']:.1f} MB
|
| 719 |
|
| 720 |
+
### 🔥 Complexity Analysis
|
| 721 |
+
- **Theoretical**: O(n) ✅
|
| 722 |
+
- **Linear Complexity**: {"✅ YES!" if converted_layers == total_layers else f"⚠️ Partial"}
|
|
|
|
| 723 |
|
| 724 |
+
✅ **Real PHOENIX with GQA Support!**
|
| 725 |
"""
|
| 726 |
|
| 727 |
+
fig1 = plot_retention_states({})
|
| 728 |
+
fig2 = plot_memory_usage(metrics)
|
| 729 |
|
| 730 |
+
return result, fig1, fig2
|
| 731 |
|
| 732 |
except Exception as e:
|
|
|
|
| 733 |
import traceback
|
| 734 |
+
return f"❌ Experiment failed:\n```\n{traceback.format_exc()}\n```", None, None
|
|
|
|
| 735 |
|
| 736 |
|
| 737 |
def estimate_conversion_ui(model_url, gpu_type):
|
| 738 |
+
"""Estimate conversion time"""
|
| 739 |
+
estimate = estimate_conversion_time(1400, gpu_type)
|
| 740 |
+
return f"""
|
| 741 |
+
## ⏱️ Conversion Time Estimate
|
|
|
|
|
|
|
| 742 |
|
| 743 |
### GPU: {gpu_type}
|
| 744 |
+
- **Time**: {estimate['estimated_minutes']:.1f}min
|
| 745 |
+
- **Memory**: {estimate['memory_required_gb']:.1f} GB / {estimate['max_memory_gb']} GB
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 746 |
|
| 747 |
+
### Notes
|
| 748 |
+
- Conversion is cached after first run
|
| 749 |
+
- GQA models supported
|
|
|
|
| 750 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 751 |
|
| 752 |
|
| 753 |
def view_experiment_history(limit=20):
|
| 754 |
+
"""View experiment history"""
|
| 755 |
try:
|
| 756 |
+
experiments = db.get_recent_experiments(limit)
|
| 757 |
|
| 758 |
if not experiments:
|
| 759 |
+
return "📭 No experiments yet", None
|
| 760 |
|
| 761 |
df = pd.DataFrame(experiments)
|
| 762 |
|
| 763 |
fig = px.scatter(
|
| 764 |
+
df, x='timestamp', y='throughput',
|
| 765 |
+
size='sequence_length', color='attention_replaced',
|
| 766 |
+
title='Experiment Performance'
|
|
|
|
|
|
|
|
|
|
|
|
|
| 767 |
)
|
| 768 |
|
| 769 |
+
cols = ['id', 'model_type', 'sequence_length', 'layers_converted',
|
| 770 |
+
'elapsed_time', 'throughput', 'timestamp']
|
| 771 |
+
available = [c for c in cols if c in df.columns]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 772 |
|
| 773 |
+
return f"## 📊 Experiment History\n\n{df[available].to_markdown(index=False)}", fig
|
| 774 |
|
| 775 |
except Exception as e:
|
| 776 |
+
return f"❌ Error: {e}", None
|
| 777 |
|
| 778 |
|
| 779 |
def get_database_statistics():
|
| 780 |
+
"""Get database stats"""
|
| 781 |
try:
|
| 782 |
stats = db.get_statistics()
|
| 783 |
|
| 784 |
+
text = f"""
|
| 785 |
+
## 📊 Database Statistics
|
| 786 |
|
| 787 |
+
**Total Experiments**: {stats['total_experiments']}
|
|
|
|
| 788 |
|
| 789 |
+
### By Model
|
| 790 |
"""
|
| 791 |
for model, count in stats['by_model'].items():
|
| 792 |
+
text += f"- **{model}**: {count}\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 793 |
|
| 794 |
+
return text
|
| 795 |
except Exception as e:
|
| 796 |
+
return f"❌ Error: {e}"
|
| 797 |
|
| 798 |
|
| 799 |
# =====================================================
|
|
|
|
| 801 |
# =====================================================
|
| 802 |
|
| 803 |
with gr.Blocks(
|
| 804 |
+
title="🔮 PHOENIX - GQA Support",
|
| 805 |
theme=gr.themes.Soft(),
|
| 806 |
) as demo:
|
| 807 |
|
| 808 |
gr.Markdown("""
|
| 809 |
+
# 🔮 PHOENIX Retention Platform
|
| 810 |
|
| 811 |
+
**Real O(n) Complexity with GQA Support**
|
| 812 |
|
| 813 |
+
✅ Supports Grouped Query Attention (GQA)
|
| 814 |
+
✅ Adaptive K/V projection dimensions
|
| 815 |
+
✅ Full Attention → Retention replacement
|
|
|
|
|
|
|
|
|
|
| 816 |
|
| 817 |
---
|
| 818 |
""")
|
| 819 |
|
| 820 |
with gr.Tabs():
|
| 821 |
+
with gr.Tab("🔄 Model Conversion"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 822 |
with gr.Row():
|
| 823 |
with gr.Column(scale=1):
|
| 824 |
+
convert_url = gr.Textbox(
|
| 825 |
+
label="🔗 Model URL",
|
| 826 |
+
value=DEFAULT_MODEL,
|
| 827 |
+
placeholder="ibm-granite/granite-4.0-h-350m"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 828 |
)
|
| 829 |
+
convert_hierarchical = gr.Checkbox(value=True, label="Hierarchical Retention")
|
| 830 |
+
convert_gpu = gr.Radio(choices=["L40S", "H100"], value="L40S", label="GPU")
|
| 831 |
|
| 832 |
+
estimate_btn = gr.Button("⏱️ Estimate Time", variant="secondary")
|
| 833 |
+
convert_btn = gr.Button("🔄 Convert", variant="primary")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 834 |
|
| 835 |
with gr.Column(scale=2):
|
| 836 |
+
convert_output = gr.Markdown()
|
| 837 |
|
| 838 |
+
estimate_btn.click(estimate_conversion_ui, [convert_url, convert_gpu], [convert_output])
|
| 839 |
+
convert_btn.click(convert_model_to_phoenix,
|
| 840 |
+
[convert_url, convert_hierarchical, convert_gpu],
|
| 841 |
+
[gr.State(), convert_output])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 842 |
|
| 843 |
+
with gr.Tab("🧪 Experiment"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 844 |
with gr.Row():
|
| 845 |
with gr.Column(scale=1):
|
| 846 |
+
exp_url = gr.Textbox(label="🔗 Model URL", value=DEFAULT_MODEL)
|
| 847 |
+
exp_hierarchical = gr.Checkbox(value=True, label="Hierarchical")
|
| 848 |
+
exp_convert = gr.Checkbox(value=True, label="Enable Conversion")
|
| 849 |
+
exp_seq = gr.Slider(64, 4096, 1024, step=64, label="Sequence Length")
|
| 850 |
+
exp_gpu = gr.Radio(choices=["L40S", "H100"], value="L40S", label="GPU")
|
| 851 |
|
| 852 |
+
run_btn = gr.Button("🚀 Run Experiment", variant="primary")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 853 |
|
| 854 |
with gr.Column(scale=2):
|
| 855 |
+
exp_output = gr.Markdown()
|
|
|
|
| 856 |
with gr.Row():
|
| 857 |
+
exp_fig1 = gr.Plot()
|
| 858 |
+
exp_fig2 = gr.Plot()
|
| 859 |
|
| 860 |
+
run_btn.click(run_phoenix_experiment,
|
| 861 |
+
[exp_url, exp_hierarchical, exp_convert, exp_seq, exp_gpu],
|
| 862 |
+
[exp_output, exp_fig1, exp_fig2])
|
|
|
|
|
|
|
|
|
|
| 863 |
|
| 864 |
+
with gr.Tab("📊 History"):
|
|
|
|
| 865 |
with gr.Row():
|
| 866 |
with gr.Column(scale=1):
|
| 867 |
+
hist_limit = gr.Slider(10, 100, 20, step=10, label="Limit")
|
| 868 |
+
hist_btn = gr.Button("📊 View History", variant="primary")
|
| 869 |
+
stats_btn = gr.Button("📈 Statistics", variant="secondary")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 870 |
|
| 871 |
with gr.Column(scale=2):
|
| 872 |
+
hist_output = gr.Markdown()
|
| 873 |
+
hist_plot = gr.Plot()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 874 |
|
| 875 |
+
hist_btn.click(view_experiment_history, [hist_limit], [hist_output, hist_plot])
|
| 876 |
+
stats_btn.click(get_database_statistics, outputs=[hist_output])
|
|
|
|
|
|
|
| 877 |
|
| 878 |
gr.Markdown("""
|
| 879 |
---
|
| 880 |
|
| 881 |
+
## 🔥 PHOENIX + GQA
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 882 |
|
| 883 |
+
**Grouped Query Attention** support means PHOENIX now works with modern efficient architectures!
|
|
|
|
|
|
|
|
|
|
| 884 |
|
| 885 |
+
- ✅ Llama 2/3 (GQA)
|
| 886 |
+
- ✅ Mistral (GQA)
|
| 887 |
+
- ✅ Granite 4.0 H (GQA)
|
| 888 |
+
- ✅ Traditional MHA models
|
| 889 |
|
| 890 |
+
**VIDraft AI Research Lab** | PHOENIX GQA Implementation
|
| 891 |
""")
|
| 892 |
|
| 893 |
if __name__ == "__main__":
|
| 894 |
demo.queue(max_size=20)
|
| 895 |
+
demo.launch(server_name="0.0.0.0", server_port=7860, share=False)
|
|
|
|
|
|
|
|
|
|
|
|