Spaces:
Runtime error
Runtime error
File size: 12,893 Bytes
dc155d4 84712e3 e75a609 dc155d4 ab273c0 76bc6e5 ab273c0 bd1db85 dc155d4 1f4a684 dc155d4 e75a609 dc155d4 76bc6e5 dc155d4 f10a213 dc155d4 e75a609 84712e3 e75a609 bd1db85 e75a609 dc155d4 76bc6e5 8554f37 dc155d4 76bc6e5 bd1db85 76bc6e5 bd1db85 76bc6e5 bd1db85 76bc6e5 8554f37 bd1db85 8554f37 bd1db85 dc155d4 e75a609 dc155d4 4887278 dc155d4 6fc9eeb dc155d4 e75a609 dc155d4 76bc6e5 dc155d4 76bc6e5 dc155d4 8554f37 dc155d4 e75a609 dc155d4 76bc6e5 dc155d4 76bc6e5 dc155d4 39627f8 dc155d4 8554f37 1486f67 ac53c22 1486f67 8554f37 dc155d4 8554f37 dc155d4 8554f37 dc155d4 1b6e0ed dc155d4 76bc6e5 dc155d4 8554f37 4887278 dc155d4 fb351d8 8554f37 4887278 fb351d8 8554f37 4887278 fb351d8 dc155d4 8554f37 dc155d4 ab273c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
import spaces
import torch
from diffusers.pipelines.wan.pipeline_wan_i2v import WanImageToVideoPipeline
from diffusers.models.transformers.transformer_wan import WanTransformer3DModel
from diffusers.utils.export_utils import export_to_video
import gradio as gr
import tempfile
import numpy as np
from PIL import Image
import random
import gc
from torchao.quantization import quantize_
from torchao.quantization import Float8DynamicActivationFloat8WeightConfig
from torchao.quantization import Int8WeightOnlyConfig
import aoti
MODEL_ID = "Wan-AI/Wan2.2-I2V-A14B-Diffusers"
MAX_DIM = 832
MIN_DIM = 480
SQUARE_DIM = 640
MULTIPLE_OF = 16
MAX_SEED = np.iinfo(np.int32).max
FIXED_FPS = 16
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 80
MIN_DURATION = round(MIN_FRAMES_MODEL/FIXED_FPS,1)
MAX_DURATION = round(MAX_FRAMES_MODEL/FIXED_FPS,1)
pipe = WanImageToVideoPipeline.from_pretrained(MODEL_ID,
transformer=WanTransformer3DModel.from_pretrained('cbensimon/Wan2.2-I2V-A14B-bf16-Diffusers',
subfolder='transformer',
torch_dtype=torch.bfloat16,
device_map='cuda',
),
transformer_2=WanTransformer3DModel.from_pretrained('cbensimon/Wan2.2-I2V-A14B-bf16-Diffusers',
subfolder='transformer_2',
torch_dtype=torch.bfloat16,
device_map='cuda',
),
torch_dtype=torch.bfloat16,
).to('cuda')
pipe.load_lora_weights(
"Kijai/WanVideo_comfy",
weight_name="Lightx2v/lightx2v_I2V_14B_480p_cfg_step_distill_rank128_bf16.safetensors",
adapter_name="lightx2v"
)
kwargs_lora = {}
kwargs_lora["load_into_transformer_2"] = True
pipe.load_lora_weights(
"Kijai/WanVideo_comfy",
weight_name="Lightx2v/lightx2v_I2V_14B_480p_cfg_step_distill_rank128_bf16.safetensors",
adapter_name="lightx2v_2", **kwargs_lora
)
pipe.set_adapters(["lightx2v", "lightx2v_2"], adapter_weights=[1., 1.])
pipe.fuse_lora(adapter_names=["lightx2v"], lora_scale=3., components=["transformer"])
pipe.fuse_lora(adapter_names=["lightx2v_2"], lora_scale=1., components=["transformer_2"])
pipe.unload_lora_weights()
quantize_(pipe.text_encoder, Int8WeightOnlyConfig())
quantize_(pipe.transformer, Float8DynamicActivationFloat8WeightConfig())
quantize_(pipe.transformer_2, Float8DynamicActivationFloat8WeightConfig())
aoti.aoti_blocks_load(pipe.transformer, 'zerogpu-aoti/Wan2', variant='fp8da')
aoti.aoti_blocks_load(pipe.transformer_2, 'zerogpu-aoti/Wan2', variant='fp8da')
default_prompt_i2v = "์ด ์ด๋ฏธ์ง์ ์๋๊ฐ์ ๋ถ์ฌํ๊ณ , ์ํ ๊ฐ์ ์์ง์๊ณผ ๋ถ๋๋ฌ์ด ์ ๋๋ฉ์ด์
์ ์ ์ฉ"
default_negative_prompt = "์์กฐ ์ ๋ช
, ๊ณผ๋ค ๋
ธ์ถ, ์ ์ , ์ธ๋ถ ํ๋ฆผ, ์๋ง, ์คํ์ผ, ์ํ, ๊ทธ๋ฆผ, ํ๋ฉด, ์ ์ง, ํ์์กฐ, ์ต์
ํ์ง, ์ ํ์ง, JPEG ์์ถ, ์ถํจ, ๋ถ์์ , ์ถ๊ฐ ์๊ฐ๋ฝ, ์๋ชป ๊ทธ๋ ค์ง ์, ์๋ชป ๊ทธ๋ ค์ง ์ผ๊ตด, ๊ธฐํ, ๋ณํ, ํํ ๋ถ๋ ์ฌ์ง, ์๊ฐ๋ฝ ์ตํฉ, ์ ์ง ํ๋ฉด, ์ง์ ๋ถํ ๋ฐฐ๊ฒฝ, ์ธ ๊ฐ์ ๋ค๋ฆฌ, ๋ฐฐ๊ฒฝ ์ฌ๋ ๋ง์, ๋ค๋ก ๊ฑท๊ธฐ"
def resize_image(image: Image.Image) -> Image.Image:
width, height = image.size
if width == height:
return image.resize((SQUARE_DIM, SQUARE_DIM), Image.LANCZOS)
aspect_ratio = width / height
MAX_ASPECT_RATIO = MAX_DIM / MIN_DIM
MIN_ASPECT_RATIO = MIN_DIM / MAX_DIM
image_to_resize = image
if aspect_ratio > MAX_ASPECT_RATIO:
target_w, target_h = MAX_DIM, MIN_DIM
crop_width = int(round(height * MAX_ASPECT_RATIO))
left = (width - crop_width) // 2
image_to_resize = image.crop((left, 0, left + crop_width, height))
elif aspect_ratio < MIN_ASPECT_RATIO:
target_w, target_h = MIN_DIM, MAX_DIM
crop_height = int(round(width / MIN_ASPECT_RATIO))
top = (height - crop_height) // 2
image_to_resize = image.crop((0, top, width, top + crop_height))
else:
if width > height:
target_w = MAX_DIM
target_h = int(round(target_w / aspect_ratio))
else:
target_h = MAX_DIM
target_w = int(round(target_h * aspect_ratio))
final_w = round(target_w / MULTIPLE_OF) * MULTIPLE_OF
final_h = round(target_h / MULTIPLE_OF) * MULTIPLE_OF
final_w = max(MIN_DIM, min(MAX_DIM, final_w))
final_h = max(MIN_DIM, min(MAX_DIM, final_h))
return image_to_resize.resize((final_w, final_h), Image.LANCZOS)
def get_num_frames(duration_seconds: float):
return 1 + int(np.clip(
int(round(duration_seconds * FIXED_FPS)),
MIN_FRAMES_MODEL,
MAX_FRAMES_MODEL,
))
def get_duration(
input_image,
prompt,
steps,
negative_prompt,
duration_seconds,
guidance_scale,
guidance_scale_2,
seed,
randomize_seed,
progress,
):
BASE_FRAMES_HEIGHT_WIDTH = 81 * 832 * 624
BASE_STEP_DURATION = 15
width, height = resize_image(input_image).size
frames = get_num_frames(duration_seconds)
factor = frames * width * height / BASE_FRAMES_HEIGHT_WIDTH
step_duration = BASE_STEP_DURATION * factor ** 1.5
return 10 + int(steps) * step_duration
@spaces.GPU(duration=get_duration)
def generate_video(
input_image,
prompt,
steps = 4,
negative_prompt=default_negative_prompt,
duration_seconds = MAX_DURATION,
guidance_scale = 1,
guidance_scale_2 = 1,
seed = 42,
randomize_seed = False,
progress=gr.Progress(track_tqdm=True),
):
if input_image is None:
raise gr.Error("์ด๋ฏธ์ง๋ฅผ ์
๋ก๋ํด์ฃผ์ธ์.")
num_frames = get_num_frames(duration_seconds)
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
resized_image = resize_image(input_image)
output_frames_list = pipe(
image=resized_image,
prompt=prompt,
negative_prompt=negative_prompt,
height=resized_image.height,
width=resized_image.width,
num_frames=num_frames,
guidance_scale=float(guidance_scale),
guidance_scale_2=float(guidance_scale_2),
num_inference_steps=int(steps),
generator=torch.Generator(device="cuda").manual_seed(current_seed),
).frames[0]
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
video_path = tmpfile.name
export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
return video_path, current_seed
# ์ธ๋ จ๋ ํ๊ธ UI
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# ๐ฌ WAN ๊ธฐ๋ฐ ์ด๊ณ ์ ์ด๋ฏธ์ง to ๋น๋์ค ๋ฌด๋ฃ ์์ฑ ์คํ์์ค")
gr.Markdown("** WAN 2.2 14B + FAST + ํ๊ธํ + ํ๋ ** - 4~8๋จ๊ณ๋ก ๋น ๋ฅธ ์์ ์์ฑ")
gr.Markdown("** ํธ๋ํฝ ์ ํ์ ๋ค์ 4๊ฐ์ ๋ฏธ๋ฌ๋ง ์๋ฒ๋ค์ ์ด์ฉํ์ฌ ๋ถ์ฐ ์ฌ์ฉ ๊ถ๊ณ ")
gr.HTML("""
<div style="display: flex; gap: 10px; flex-wrap: wrap; justify-content: center; margin: 20px 0;">
<a href="https://huggingface.co/spaces/Heartsync/wan2_2-I2V-14B-FAST" target="_blank">
<img src="https://img.shields.io/static/v1?label=WAN%202.2%2014B%20FAST%2B&message=Image%20to%20Video&color=%230000ff&labelColor=%23800080&logo=huggingface&logoColor=white&style=for-the-badge" alt="badge">
</a>
<a href="https://huggingface.co/spaces/ginipick/wan2_2-I2V-14B-FAST" target="_blank">
<img src="https://img.shields.io/static/v1?label=WAN%202.2%2014B%20FAST%2B&message=Image%20to%20Video&color=%230000ff&labelColor=%23800080&logo=huggingface&logoColor=white&style=for-the-badge" alt="badge">
</a>
<a href="https://huggingface.co/spaces/ginigen/wan2_2-I2V-14B-FAST" target="_blank">
<img src="https://img.shields.io/static/v1?label=WAN%202.2%2014B%20FAST%2B&message=Image%20to%20Video&color=%230000ff&labelColor=%23800080&logo=huggingface&logoColor=white&style=for-the-badge" alt="badge">
</a>
<a href="https://huggingface.co/spaces/VIDraft/wan2_2-I2V-14B-FAST" target="_blank">
<img src="https://img.shields.io/static/v1?label=WAN%202.2%2014B%20FAST%2B&message=Image%20to%20Video&color=%230000ff&labelColor=%23800080&logo=huggingface&logoColor=white&style=for-the-badge" alt="badge">
</a>
<a href="https://discord.gg/openfreeai" target="_blank">
<img src="https://img.shields.io/static/v1?label=Discord&message=Openfree%20AI&color=%230000ff&labelColor=%23800080&logo=discord&logoColor=white&style=for-the-badge" alt="badge"></a>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
input_image_component = gr.Image(type="pil", label="์
๋ ฅ ์ด๋ฏธ์ง")
prompt_input = gr.Textbox(label="ํ๋กฌํํธ", value=default_prompt_i2v, lines=2)
duration_seconds_input = gr.Slider(
minimum=MIN_DURATION,
maximum=MAX_DURATION,
step=0.1,
value=3.5,
label="์์ ๊ธธ์ด (์ด)"
)
with gr.Accordion("๊ณ ๊ธ ์ค์ ", open=False):
negative_prompt_input = gr.Textbox(label="๋ค๊ฑฐํฐ๋ธ ํ๋กฌํํธ", value=default_negative_prompt, lines=2)
steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=6, label="์์ฑ ๋จ๊ณ")
guidance_scale_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1, label="๊ฐ์ด๋์ค ์ค์ผ์ผ 1")
guidance_scale_2_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1, label="๊ฐ์ด๋์ค ์ค์ผ์ผ 2")
seed_input = gr.Slider(label="์๋", minimum=0, maximum=MAX_SEED, step=1, value=42)
randomize_seed_checkbox = gr.Checkbox(label="๋๋ค ์๋ ์ฌ์ฉ", value=True)
generate_button = gr.Button("๐ฅ ์์ ์์ฑ", variant="primary", size="lg")
with gr.Column(scale=1):
video_output = gr.Video(label="์์ฑ๋ ์์", autoplay=True, interactive=False)
ui_inputs = [
input_image_component, prompt_input, steps_slider,
negative_prompt_input, duration_seconds_input,
guidance_scale_input, guidance_scale_2_input, seed_input, randomize_seed_checkbox
]
generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input])
gr.Examples(
examples=[
[
"wan_i2v_input.JPG",
"POV ์
์นด ์์, ์ ๊ธ๋ผ์ค ๋ ํฐ ๊ณ ์์ด๊ฐ ์ํ๋ณด๋์ ์์ ํธ์ํ ๋ฏธ์. ๋ฐฐ๊ฒฝ์ ์ด๋ ํด๋ณ(๋ง์ ๋ฌผ, ๋
น์ ์ธ๋, ๊ตฌ๋ฆ ๋ ํธ๋ฅธ ํ๋). ์ํ๋ณด๋๊ฐ ๊ธฐ์ธ์ด์ง๊ณ ๊ณ ์์ด๊ฐ ๋ฐ๋ค๋ก ๋จ์ด์ง๋ฉฐ ์นด๋ฉ๋ผ๊ฐ ๊ฑฐํ๊ณผ ํ๋น๊ณผ ํจ๊ป ๋ฌผ์์ผ๋ก ๋น ์ง. ์ ๊น ๋ฌผ์์์ ๊ณ ์์ด ์ผ๊ตด ๋ณด์ด๋ค๊ฐ ๋ค์ ์๋ฉด ์๋ก ์ฌ๋ผ์ ์
์นด ์ดฌ์ ๊ณ์, ์ฆ๊ฑฐ์ด ์ฌ๋ฆ ํด๊ฐ ๋ถ์๊ธฐ.",
4,
],
[
"wan22_input_2.jpg",
"์ธ๋ จ๋ ๋ฌ ํ์ฌ ์ฐจ๋์ด ์ผ์ชฝ์์ ์ค๋ฅธ์ชฝ์ผ๋ก ๋ฏธ๋๋ฌ์ง๋ฏ ์ด๋ํ๋ฉฐ ๋ฌ ๋จผ์ง๋ฅผ ์ผ์ผํด. ํฐ ์ฐ์ฃผ๋ณต์ ์
์ ์ฐ์ฃผ์ธ๋ค์ด ๋ฌ ํน์ ์ ๋ฐ๋ ๋์์ผ๋ก ํ์น. ๋จผ ๋ฐฐ๊ฒฝ์์ VTOL ๋นํ์ฒด๊ฐ ์์ง์ผ๋ก ํ๊ฐํ์ฌ ํ๋ฉด์ ์กฐ์ฉํ ์ฐฉ๋ฅ. ์ฅ๋ฉด ์ ์ฒด์ ๊ฑธ์ณ ์ดํ์ค์ ์ธ ์ค๋ก๋ผ๊ฐ ๋ณ์ด ๊ฐ๋ํ ํ๋์ ๊ฐ๋ก์ง๋ฅด๋ฉฐ ์ถค์ถ๊ณ , ๋
น์, ํ๋์, ๋ณด๋ผ์ ๋น์ ์ปคํผ์ด ๋ฌ ํ๊ฒฝ์ ์ ๋น๋กญ๊ณ ๋ง๋ฒ ๊ฐ์ ๋น์ผ๋ก ๊ฐ์.",
4,
],
[
"kill_bill.jpeg",
"์ฐ๋ง ์๋จผ์ ์บ๋ฆญํฐ ๋ฒ ์ํธ๋ฆญ์ค ํค๋๊ฐ ์ํ ๊ฐ์ ์กฐ๋ช
์์์ ๋ ์นด๋ก์ด ์นดํ๋ ๊ฒ์ ์์ ์ ์ผ๋ก ๋ค๊ณ ์์. ๊ฐ์๊ธฐ ๊ดํ ๋๋ ๊ฐ์ฒ ์ด ๋ถ๋๋ฌ์์ง๊ณ ์๊ณก๋๊ธฐ ์์ํ๋ฉฐ ๊ฐ์ด๋ ๊ธ์์ฒ๋ผ ๊ตฌ์กฐ์ ์์ ์ฑ์ ์๊ธฐ ์์. ๊ฒ๋ ์ ์๋ฒฝํ ๋์ด ์ฒ์ฒํ ํ์ด์ง๊ณ ๋์ด์ง๋ฉฐ, ๋
น์ ๊ฐ์ฒ ์ด ์๋น ๋ฌผ์ค๊ธฐ๋ก ์๋๋ก ํ๋ฌ๋ด๋ฆผ. ๋ณํ์ ์ฒ์์๋ ๋ฏธ๋ฌํ๊ฒ ์์๋๋ค๊ฐ ๊ธ์์ด ์ ์ ๋ ์ ๋์ ์ด ๋๋ฉด์ ๊ฐ์ํ. ์นด๋ฉ๋ผ๋ ๊ทธ๋
์ ์ผ๊ตด์ ๊ณ ์ ํ๊ณ ๋ ์นด๋ก์ด ๋๋น์ด ์ ์ฐจ ์ข์์ง๋๋ฐ, ์น๋ช
์ ์ธ ์ง์ค์ด ์๋๋ผ ๋ฌด๊ธฐ๊ฐ ๋์์์ ๋
น๋ ๊ฒ์ ๋ณด๋ฉฐ ํผ๋๊ณผ ๊ฒฝ์
. ํธํก์ด ์ฝ๊ฐ ๋นจ๋ผ์ง๋ฉฐ ์ด ๋ถ๊ฐ๋ฅํ ๋ณํ์ ๋ชฉ๊ฒฉ. ๋
น๋ ํ์์ด ๊ฐํ๋๊ณ ์นดํ๋์ ์๋ฒฝํ ํํ๊ฐ ์ ์ ์ถ์์ ์ด ๋๋ฉฐ ์์์ ์์์ฒ๋ผ ๋จ์ด์ง. ๋
น์ ๋ฐฉ์ธ์ด ๋ถ๋๋ฌ์ด ๊ธ์ ์ถฉ๊ฒฉ์๊ณผ ํจ๊ป ๋ฐ๋ฅ์ ๋จ์ด์ง. ํ์ ์ด ์ฐจ๋ถํ ์ค๋น์์ ๋นํน๊ฐ๊ณผ ์ฐ๋ ค๋ก ๋ฐ๋๋ฉฐ ์ ์ค์ ์ธ ๋ณต์์ ๋๊ตฌ๊ฐ ์์์ ๋ฌธ์ ๊ทธ๋๋ก ์กํ๋์ด ๋ฌด๋ฐฉ๋น ์ํ๊ฐ ๋จ.",
6,
],
],
inputs=[input_image_component, prompt_input, steps_slider],
outputs=[video_output, seed_input],
fn=generate_video,
cache_examples="lazy"
)
if __name__ == "__main__":
demo.queue().launch(mcp_server=True) |