Spaces:
Running
on
T4
Running
on
T4
| from math import prod | |
| import torch | |
| import torch.nn as nn | |
| from architecture.grl_common.ops import ( | |
| bchw_to_blc, | |
| blc_to_bchw, | |
| calculate_mask, | |
| window_partition, | |
| window_reverse, | |
| ) | |
| from timm.models.layers import DropPath, to_2tuple, trunc_normal_ | |
| class Mlp(nn.Module): | |
| """MLP as used in Vision Transformer, MLP-Mixer and related networks""" | |
| def __init__( | |
| self, | |
| in_features, | |
| hidden_features=None, | |
| out_features=None, | |
| act_layer=nn.GELU, | |
| drop=0.0, | |
| ): | |
| super().__init__() | |
| out_features = out_features or in_features | |
| hidden_features = hidden_features or in_features | |
| drop_probs = to_2tuple(drop) | |
| self.fc1 = nn.Linear(in_features, hidden_features) | |
| self.act = act_layer() | |
| self.drop1 = nn.Dropout(drop_probs[0]) | |
| self.fc2 = nn.Linear(hidden_features, out_features) | |
| self.drop2 = nn.Dropout(drop_probs[1]) | |
| def forward(self, x): | |
| x = self.fc1(x) | |
| x = self.act(x) | |
| x = self.drop1(x) | |
| x = self.fc2(x) | |
| x = self.drop2(x) | |
| return x | |
| class WindowAttentionV1(nn.Module): | |
| r"""Window based multi-head self attention (W-MSA) module with relative position bias. | |
| It supports both of shifted and non-shifted window. | |
| Args: | |
| dim (int): Number of input channels. | |
| window_size (tuple[int]): The height and width of the window. | |
| num_heads (int): Number of attention heads. | |
| qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
| qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set | |
| attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 | |
| proj_drop (float, optional): Dropout ratio of output. Default: 0.0 | |
| """ | |
| def __init__( | |
| self, | |
| dim, | |
| window_size, | |
| num_heads, | |
| qkv_bias=True, | |
| qk_scale=None, | |
| attn_drop=0.0, | |
| proj_drop=0.0, | |
| use_pe=True, | |
| ): | |
| super().__init__() | |
| self.dim = dim | |
| self.window_size = window_size # Wh, Ww | |
| self.num_heads = num_heads | |
| head_dim = dim // num_heads | |
| self.scale = qk_scale or head_dim**-0.5 | |
| self.use_pe = use_pe | |
| if self.use_pe: | |
| # define a parameter table of relative position bias | |
| ws = self.window_size | |
| table = torch.zeros((2 * ws[0] - 1) * (2 * ws[1] - 1), num_heads) | |
| self.relative_position_bias_table = nn.Parameter(table) | |
| # 2*Wh-1 * 2*Ww-1, nH | |
| trunc_normal_(self.relative_position_bias_table, std=0.02) | |
| self.get_relative_position_index(self.window_size) | |
| self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
| self.attn_drop = nn.Dropout(attn_drop) | |
| self.proj = nn.Linear(dim, dim) | |
| self.proj_drop = nn.Dropout(proj_drop) | |
| self.softmax = nn.Softmax(dim=-1) | |
| def get_relative_position_index(self, window_size): | |
| # get pair-wise relative position index for each token inside the window | |
| coord_h = torch.arange(window_size[0]) | |
| coord_w = torch.arange(window_size[1]) | |
| coords = torch.stack(torch.meshgrid([coord_h, coord_w])) # 2, Wh, Ww | |
| coords = torch.flatten(coords, 1) # 2, Wh*Ww | |
| coords = coords[:, :, None] - coords[:, None, :] # 2, Wh*Ww, Wh*Ww | |
| coords = coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 | |
| coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 | |
| coords[:, :, 1] += window_size[1] - 1 | |
| coords[:, :, 0] *= 2 * window_size[1] - 1 | |
| relative_position_index = coords.sum(-1) # Wh*Ww, Wh*Ww | |
| self.register_buffer("relative_position_index", relative_position_index) | |
| def forward(self, x, mask=None): | |
| """ | |
| Args: | |
| x: input features with shape of (num_windows*B, N, C) | |
| mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None | |
| """ | |
| B_, N, C = x.shape | |
| # qkv projection | |
| qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) | |
| q, k, v = qkv[0], qkv[1], qkv[2] | |
| # attention map | |
| q = q * self.scale | |
| attn = q @ k.transpose(-2, -1) | |
| # positional encoding | |
| if self.use_pe: | |
| win_dim = prod(self.window_size) | |
| bias = self.relative_position_bias_table[ | |
| self.relative_position_index.view(-1) | |
| ] | |
| bias = bias.view(win_dim, win_dim, -1).permute(2, 0, 1).contiguous() | |
| # nH, Wh*Ww, Wh*Ww | |
| attn = attn + bias.unsqueeze(0) | |
| # shift attention mask | |
| if mask is not None: | |
| nW = mask.shape[0] | |
| mask = mask.unsqueeze(1).unsqueeze(0) | |
| attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask | |
| attn = attn.view(-1, self.num_heads, N, N) | |
| # attention | |
| attn = self.softmax(attn) | |
| attn = self.attn_drop(attn) | |
| x = (attn @ v).transpose(1, 2).reshape(B_, N, C) | |
| # output projection | |
| x = self.proj(x) | |
| x = self.proj_drop(x) | |
| return x | |
| def extra_repr(self) -> str: | |
| return f"dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}" | |
| def flops(self, N): | |
| # calculate flops for 1 window with token length of N | |
| flops = 0 | |
| # qkv = self.qkv(x) | |
| flops += N * self.dim * 3 * self.dim | |
| # attn = (q @ k.transpose(-2, -1)) | |
| flops += self.num_heads * N * (self.dim // self.num_heads) * N | |
| # x = (attn @ v) | |
| flops += self.num_heads * N * N * (self.dim // self.num_heads) | |
| # x = self.proj(x) | |
| flops += N * self.dim * self.dim | |
| return flops | |
| class WindowAttentionWrapperV1(WindowAttentionV1): | |
| def __init__(self, shift_size, input_resolution, **kwargs): | |
| super(WindowAttentionWrapperV1, self).__init__(**kwargs) | |
| self.shift_size = shift_size | |
| self.input_resolution = input_resolution | |
| if self.shift_size > 0: | |
| attn_mask = calculate_mask(input_resolution, self.window_size, shift_size) | |
| else: | |
| attn_mask = None | |
| self.register_buffer("attn_mask", attn_mask) | |
| def forward(self, x, x_size): | |
| H, W = x_size | |
| B, L, C = x.shape | |
| x = x.view(B, H, W, C) | |
| # cyclic shift | |
| if self.shift_size > 0: | |
| x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) | |
| # partition windows | |
| x = window_partition(x, self.window_size) # nW*B, wh, ww, C | |
| x = x.view(-1, prod(self.window_size), C) # nW*B, wh*ww, C | |
| # W-MSA/SW-MSA (to be compatible for testing on images whose shapes are the multiple of window size | |
| if self.input_resolution == x_size: | |
| attn_mask = self.attn_mask | |
| else: | |
| attn_mask = calculate_mask(x_size, self.window_size, self.shift_size) | |
| attn_mask = attn_mask.to(x.device) | |
| # attention | |
| x = super(WindowAttentionWrapperV1, self).forward(x, mask=attn_mask) | |
| # nW*B, wh*ww, C | |
| # merge windows | |
| x = x.view(-1, *self.window_size, C) | |
| x = window_reverse(x, self.window_size, x_size) # B, H, W, C | |
| # reverse cyclic shift | |
| if self.shift_size > 0: | |
| x = torch.roll(x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) | |
| x = x.view(B, H * W, C) | |
| return x | |
| class SwinTransformerBlockV1(nn.Module): | |
| r"""Swin Transformer Block. | |
| Args: | |
| dim (int): Number of input channels. | |
| input_resolution (tuple[int]): Input resulotion. | |
| num_heads (int): Number of attention heads. | |
| window_size (int): Window size. | |
| shift_size (int): Shift size for SW-MSA. | |
| mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
| qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
| qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. | |
| drop (float, optional): Dropout rate. Default: 0.0 | |
| attn_drop (float, optional): Attention dropout rate. Default: 0.0 | |
| drop_path (float, optional): Stochastic depth rate. Default: 0.0 | |
| act_layer (nn.Module, optional): Activation layer. Default: nn.GELU | |
| norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
| """ | |
| def __init__( | |
| self, | |
| dim, | |
| input_resolution, | |
| num_heads, | |
| window_size=7, | |
| shift_size=0, | |
| mlp_ratio=4.0, | |
| qkv_bias=True, | |
| qk_scale=None, | |
| drop=0.0, | |
| attn_drop=0.0, | |
| drop_path=0.0, | |
| act_layer=nn.GELU, | |
| norm_layer=nn.LayerNorm, | |
| use_pe=True, | |
| res_scale=1.0, | |
| ): | |
| super().__init__() | |
| self.dim = dim | |
| self.input_resolution = input_resolution | |
| self.num_heads = num_heads | |
| self.window_size = window_size | |
| self.shift_size = shift_size | |
| self.mlp_ratio = mlp_ratio | |
| if min(self.input_resolution) <= self.window_size: | |
| # if window size is larger than input resolution, we don't partition windows | |
| self.shift_size = 0 | |
| self.window_size = min(self.input_resolution) | |
| assert ( | |
| 0 <= self.shift_size < self.window_size | |
| ), "shift_size must in 0-window_size" | |
| self.res_scale = res_scale | |
| self.norm1 = norm_layer(dim) | |
| self.attn = WindowAttentionWrapperV1( | |
| shift_size=self.shift_size, | |
| input_resolution=self.input_resolution, | |
| dim=dim, | |
| window_size=to_2tuple(self.window_size), | |
| num_heads=num_heads, | |
| qkv_bias=qkv_bias, | |
| qk_scale=qk_scale, | |
| attn_drop=attn_drop, | |
| proj_drop=drop, | |
| use_pe=use_pe, | |
| ) | |
| self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() | |
| self.norm2 = norm_layer(dim) | |
| self.mlp = Mlp( | |
| in_features=dim, | |
| hidden_features=int(dim * mlp_ratio), | |
| act_layer=act_layer, | |
| drop=drop, | |
| ) | |
| def forward(self, x, x_size): | |
| # Window attention | |
| x = x + self.res_scale * self.drop_path(self.attn(self.norm1(x), x_size)) | |
| # FFN | |
| x = x + self.res_scale * self.drop_path(self.mlp(self.norm2(x))) | |
| return x | |
| def extra_repr(self) -> str: | |
| return ( | |
| f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " | |
| f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}, res_scale={self.res_scale}" | |
| ) | |
| def flops(self): | |
| flops = 0 | |
| H, W = self.input_resolution | |
| # norm1 | |
| flops += self.dim * H * W | |
| # W-MSA/SW-MSA | |
| nW = H * W / self.window_size / self.window_size | |
| flops += nW * self.attn.flops(self.window_size * self.window_size) | |
| # mlp | |
| flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio | |
| # norm2 | |
| flops += self.dim * H * W | |
| return flops | |
| class PatchMerging(nn.Module): | |
| r"""Patch Merging Layer. | |
| Args: | |
| input_resolution (tuple[int]): Resolution of input feature. | |
| dim (int): Number of input channels. | |
| norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
| """ | |
| def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm): | |
| super().__init__() | |
| self.input_resolution = input_resolution | |
| self.dim = dim | |
| self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) | |
| self.norm = norm_layer(4 * dim) | |
| def forward(self, x): | |
| """ | |
| x: B, H*W, C | |
| """ | |
| H, W = self.input_resolution | |
| B, L, C = x.shape | |
| assert L == H * W, "input feature has wrong size" | |
| assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even." | |
| x = x.view(B, H, W, C) | |
| x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C | |
| x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C | |
| x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C | |
| x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C | |
| x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C | |
| x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C | |
| x = self.norm(x) | |
| x = self.reduction(x) | |
| return x | |
| def extra_repr(self) -> str: | |
| return f"input_resolution={self.input_resolution}, dim={self.dim}" | |
| def flops(self): | |
| H, W = self.input_resolution | |
| flops = H * W * self.dim | |
| flops += (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim | |
| return flops | |
| class PatchEmbed(nn.Module): | |
| r"""Image to Patch Embedding | |
| Args: | |
| img_size (int): Image size. Default: 224. | |
| patch_size (int): Patch token size. Default: 4. | |
| in_chans (int): Number of input image channels. Default: 3. | |
| embed_dim (int): Number of linear projection output channels. Default: 96. | |
| norm_layer (nn.Module, optional): Normalization layer. Default: None | |
| """ | |
| def __init__( | |
| self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None | |
| ): | |
| super().__init__() | |
| img_size = to_2tuple(img_size) | |
| patch_size = to_2tuple(patch_size) | |
| patches_resolution = [ | |
| img_size[0] // patch_size[0], | |
| img_size[1] // patch_size[1], | |
| ] | |
| self.img_size = img_size | |
| self.patch_size = patch_size | |
| self.patches_resolution = patches_resolution | |
| self.num_patches = patches_resolution[0] * patches_resolution[1] | |
| self.in_chans = in_chans | |
| self.embed_dim = embed_dim | |
| if norm_layer is not None: | |
| self.norm = norm_layer(embed_dim) | |
| else: | |
| self.norm = None | |
| def forward(self, x): | |
| x = x.flatten(2).transpose(1, 2) # B Ph*Pw C | |
| if self.norm is not None: | |
| x = self.norm(x) | |
| return x | |
| def flops(self): | |
| flops = 0 | |
| H, W = self.img_size | |
| if self.norm is not None: | |
| flops += H * W * self.embed_dim | |
| return flops | |
| class PatchUnEmbed(nn.Module): | |
| r"""Image to Patch Unembedding | |
| Args: | |
| img_size (int): Image size. Default: 224. | |
| patch_size (int): Patch token size. Default: 4. | |
| in_chans (int): Number of input image channels. Default: 3. | |
| embed_dim (int): Number of linear projection output channels. Default: 96. | |
| norm_layer (nn.Module, optional): Normalization layer. Default: None | |
| """ | |
| def __init__( | |
| self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None | |
| ): | |
| super().__init__() | |
| img_size = to_2tuple(img_size) | |
| patch_size = to_2tuple(patch_size) | |
| patches_resolution = [ | |
| img_size[0] // patch_size[0], | |
| img_size[1] // patch_size[1], | |
| ] | |
| self.img_size = img_size | |
| self.patch_size = patch_size | |
| self.patches_resolution = patches_resolution | |
| self.num_patches = patches_resolution[0] * patches_resolution[1] | |
| self.in_chans = in_chans | |
| self.embed_dim = embed_dim | |
| def forward(self, x, x_size): | |
| B, HW, C = x.shape | |
| x = x.transpose(1, 2).view(B, self.embed_dim, x_size[0], x_size[1]) # B Ph*Pw C | |
| return x | |
| def flops(self): | |
| flops = 0 | |
| return flops | |
| class Linear(nn.Linear): | |
| def __init__(self, in_features, out_features, bias=True): | |
| super(Linear, self).__init__(in_features, out_features, bias) | |
| def forward(self, x): | |
| B, C, H, W = x.shape | |
| x = bchw_to_blc(x) | |
| x = super(Linear, self).forward(x) | |
| x = blc_to_bchw(x, (H, W)) | |
| return x | |
| def build_last_conv(conv_type, dim): | |
| if conv_type == "1conv": | |
| block = nn.Conv2d(dim, dim, 3, 1, 1) | |
| elif conv_type == "3conv": | |
| # to save parameters and memory | |
| block = nn.Sequential( | |
| nn.Conv2d(dim, dim // 4, 3, 1, 1), | |
| nn.LeakyReLU(negative_slope=0.2, inplace=True), | |
| nn.Conv2d(dim // 4, dim // 4, 1, 1, 0), | |
| nn.LeakyReLU(negative_slope=0.2, inplace=True), | |
| nn.Conv2d(dim // 4, dim, 3, 1, 1), | |
| ) | |
| elif conv_type == "1conv1x1": | |
| block = nn.Conv2d(dim, dim, 1, 1, 0) | |
| elif conv_type == "linear": | |
| block = Linear(dim, dim) | |
| return block | |
| # class BasicLayer(nn.Module): | |
| # """A basic Swin Transformer layer for one stage. | |
| # Args: | |
| # dim (int): Number of input channels. | |
| # input_resolution (tuple[int]): Input resolution. | |
| # depth (int): Number of blocks. | |
| # num_heads (int): Number of attention heads. | |
| # window_size (int): Local window size. | |
| # mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
| # qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
| # qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. | |
| # drop (float, optional): Dropout rate. Default: 0.0 | |
| # attn_drop (float, optional): Attention dropout rate. Default: 0.0 | |
| # drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 | |
| # norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
| # downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None | |
| # args: Additional arguments | |
| # """ | |
| # def __init__( | |
| # self, | |
| # dim, | |
| # input_resolution, | |
| # depth, | |
| # num_heads, | |
| # window_size, | |
| # mlp_ratio=4.0, | |
| # qkv_bias=True, | |
| # qk_scale=None, | |
| # drop=0.0, | |
| # attn_drop=0.0, | |
| # drop_path=0.0, | |
| # norm_layer=nn.LayerNorm, | |
| # downsample=None, | |
| # args=None, | |
| # ): | |
| # super().__init__() | |
| # self.dim = dim | |
| # self.input_resolution = input_resolution | |
| # self.depth = depth | |
| # # build blocks | |
| # self.blocks = nn.ModuleList( | |
| # [ | |
| # _parse_block( | |
| # dim=dim, | |
| # input_resolution=input_resolution, | |
| # num_heads=num_heads, | |
| # window_size=window_size, | |
| # shift_size=0 | |
| # if args.no_shift | |
| # else (0 if (i % 2 == 0) else window_size // 2), | |
| # mlp_ratio=mlp_ratio, | |
| # qkv_bias=qkv_bias, | |
| # qk_scale=qk_scale, | |
| # drop=drop, | |
| # attn_drop=attn_drop, | |
| # drop_path=drop_path[i] | |
| # if isinstance(drop_path, list) | |
| # else drop_path, | |
| # norm_layer=norm_layer, | |
| # stripe_type="H" if (i % 2 == 0) else "W", | |
| # args=args, | |
| # ) | |
| # for i in range(depth) | |
| # ] | |
| # ) | |
| # # self.blocks = nn.ModuleList( | |
| # # [ | |
| # # STV1Block( | |
| # # dim=dim, | |
| # # input_resolution=input_resolution, | |
| # # num_heads=num_heads, | |
| # # window_size=window_size, | |
| # # shift_size=0 if (i % 2 == 0) else window_size // 2, | |
| # # mlp_ratio=mlp_ratio, | |
| # # qkv_bias=qkv_bias, | |
| # # qk_scale=qk_scale, | |
| # # drop=drop, | |
| # # attn_drop=attn_drop, | |
| # # drop_path=drop_path[i] | |
| # # if isinstance(drop_path, list) | |
| # # else drop_path, | |
| # # norm_layer=norm_layer, | |
| # # ) | |
| # # for i in range(depth) | |
| # # ] | |
| # # ) | |
| # # patch merging layer | |
| # if downsample is not None: | |
| # self.downsample = downsample( | |
| # input_resolution, dim=dim, norm_layer=norm_layer | |
| # ) | |
| # else: | |
| # self.downsample = None | |
| # def forward(self, x, x_size): | |
| # for blk in self.blocks: | |
| # x = blk(x, x_size) | |
| # if self.downsample is not None: | |
| # x = self.downsample(x) | |
| # return x | |
| # def extra_repr(self) -> str: | |
| # return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}" | |
| # def flops(self): | |
| # flops = 0 | |
| # for blk in self.blocks: | |
| # flops += blk.flops() | |
| # if self.downsample is not None: | |
| # flops += self.downsample.flops() | |
| # return flops | |