Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from huggingface_hub import InferenceClient | |
| import spaces | |
| import os | |
| import warnings | |
| import shutil | |
| import time | |
| from threading import Thread | |
| from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, AutoProcessor | |
| from transformers import TextIteratorStreamer | |
| import torch | |
| from dc.model import * | |
| from dc.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN | |
| from dc.conversation import conv_templates, SeparatorStyle | |
| from PIL import Image | |
| from dc.mm_utils import tokenizer_image_token, process_images, get_model_name_from_path | |
| PLACEHOLDER = """ | |
| <div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;"> | |
| <p style="font-size: 20px; margin-bottom: 2px; opacity: 0.65;">Upload an image to start the conversation.</p> | |
| <p style="font-size: 20px; margin-bottom: 2px; opacity: 0.65;">Ask me anything...</p> | |
| </div> | |
| """ | |
| tokenizer = AutoTokenizer.from_pretrained('HuanjinYao/DenseConnector-v1.5-8B', use_fast=False) | |
| model = LlavaLlamaForCausalLM.from_pretrained('HuanjinYao/DenseConnector-v1.5-8B', low_cpu_mem_usage=True,torch_dtype=torch.float16) | |
| vision_tower = model.get_vision_tower() | |
| if not vision_tower.is_loaded: | |
| vision_tower.load_model() | |
| vision_tower.to(device='cuda', dtype=torch.float16) | |
| image_processor = vision_tower.image_processor | |
| model.to('cuda') | |
| # model.generation_config.eos_token_id = 128009 | |
| tokenizer.unk_token = "<|reserved_special_token_0|>" | |
| tokenizer.pad_token = tokenizer.unk_token | |
| terminators = [ | |
| tokenizer.eos_token_id, | |
| tokenizer.convert_tokens_to_ids("<|eot_id|>") | |
| ] | |
| def bot_streaming(message, history): | |
| print(message) | |
| if message["files"]: | |
| # message["files"][-1] is a Dict or just a string | |
| if type(message["files"][-1]) == dict: | |
| image = message["files"][-1]["path"] | |
| else: | |
| image = message["files"][-1] | |
| else: | |
| # if there's no image uploaded for this turn, look for images in the past turns | |
| # kept inside tuples, take the last one | |
| for hist in history: | |
| if type(hist[0]) == tuple: | |
| image = hist[0][0] | |
| try: | |
| if image is None: | |
| # Handle the case where image is None | |
| gr.Error("You need to upload an image for LLaVA to work.") | |
| except NameError: | |
| # Handle the case where 'image' is not defined at all | |
| gr.Error("You need to upload an image for LLaVA to work.") | |
| print('history', history) | |
| conv = conv_templates['llama_3'].copy() | |
| if len(history) == 0: | |
| message['text'] = DEFAULT_IMAGE_TOKEN + '\n' + message['text'] | |
| else: | |
| for idx, (user, assistant) in enumerate(history[1:]): | |
| # conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) | |
| if idx == 0: | |
| user = DEFAULT_IMAGE_TOKEN + '\n' + user | |
| conv.append_message(conv.roles[0], user) | |
| conv.append_message(conv.roles[1], assistant) | |
| conv.append_message(conv.roles[0], message['text']) | |
| conv.append_message(conv.roles[1], None) | |
| prompt = conv.get_prompt() | |
| print(prompt) | |
| image = Image.open(image).convert('RGB') | |
| image_tensor = process_images([image], image_processor, model.config)[0] | |
| inputs = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0) | |
| image_tensor = image_tensor.unsqueeze(0) | |
| image_tensor = image_tensor.to(dtype=torch.float16, device='cuda', non_blocking=True) | |
| inputs = inputs.to(device='cuda', non_blocking=True) | |
| streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) | |
| generation_kwargs = dict(inputs=inputs, images=image_tensor, streamer=streamer, max_new_tokens=1024, do_sample=False, eos_token_id = terminators) | |
| thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| buffer = "" | |
| # time.sleep(0.5) | |
| for new_text in streamer: | |
| print('new_text', new_text) | |
| if "<|eot_id|>" in new_text: | |
| new_text = new_text.split("<|eot_id|>")[0] | |
| buffer += new_text | |
| generated_text_without_prompt = buffer | |
| # time.sleep(0.06) | |
| yield generated_text_without_prompt | |
| chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label=f"Chat with Dense Connector") | |
| chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False) | |
| with gr.Blocks(fill_height=True, ) as demo: | |
| gr.ChatInterface( | |
| fn=bot_streaming, | |
| title="DenseConnector-v1.5-8B", | |
| description="Try [DenseConnector-v1.5-8B](https://huggingface.co/HuanjinYao/DenseConnector-v1.5-8B). Upload an image and start chatting about it. If you don't upload an image, you will receive an error.", | |
| stop_btn="Stop Generation", | |
| multimodal=True, | |
| textbox=chat_input, | |
| chatbot=chatbot, | |
| examples=[{"text": "Which movie is this? Please provide a brief introduction.", "files": ["./Interstellar.jpg"]}, | |
| {"text": "What animals are in the picture?", "files": ["./cat_dog.jpeg"]}], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |