Spaces:
Runtime error
Runtime error
IDKiro
commited on
Commit
·
7eafae4
1
Parent(s):
f78b820
init
Browse files- .gitignore +114 -0
- LICENSE +21 -0
- app.py +50 -0
- examples/1.jpg +0 -0
- examples/2.jpg +0 -0
- examples/3.jpg +0 -0
- examples/4.jpg +0 -0
- examples/5.jpg +0 -0
- examples/6.jpg +0 -0
- models/__init__.py +1 -0
- models/dehazeformer.py +474 -0
- requirements.txt +3 -0
- saved_models/dehazeformer.pth +3 -0
.gitignore
ADDED
|
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Add by user
|
| 2 |
+
.vscode/
|
| 3 |
+
|
| 4 |
+
# Byte-compiled / optimized / DLL files
|
| 5 |
+
__pycache__/
|
| 6 |
+
*.py[cod]
|
| 7 |
+
*$py.class
|
| 8 |
+
|
| 9 |
+
# C extensions
|
| 10 |
+
*.so
|
| 11 |
+
|
| 12 |
+
# Distribution / packaging
|
| 13 |
+
.Python
|
| 14 |
+
build/
|
| 15 |
+
develop-eggs/
|
| 16 |
+
dist/
|
| 17 |
+
downloads/
|
| 18 |
+
eggs/
|
| 19 |
+
.eggs/
|
| 20 |
+
lib/
|
| 21 |
+
lib64/
|
| 22 |
+
parts/
|
| 23 |
+
sdist/
|
| 24 |
+
var/
|
| 25 |
+
wheels/
|
| 26 |
+
*.egg-info/
|
| 27 |
+
.installed.cfg
|
| 28 |
+
*.egg
|
| 29 |
+
MANIFEST
|
| 30 |
+
|
| 31 |
+
# PyInstaller
|
| 32 |
+
# Usually these files are written by a python script from a template
|
| 33 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
| 34 |
+
*.manifest
|
| 35 |
+
*.spec
|
| 36 |
+
|
| 37 |
+
# Installer logs
|
| 38 |
+
pip-log.txt
|
| 39 |
+
pip-delete-this-directory.txt
|
| 40 |
+
|
| 41 |
+
# Unit test / coverage reports
|
| 42 |
+
htmlcov/
|
| 43 |
+
.tox/
|
| 44 |
+
.nox/
|
| 45 |
+
.coverage
|
| 46 |
+
.coverage.*
|
| 47 |
+
.cache
|
| 48 |
+
nosetests.xml
|
| 49 |
+
coverage.xml
|
| 50 |
+
*.cover
|
| 51 |
+
.hypothesis/
|
| 52 |
+
.pytest_cache/
|
| 53 |
+
|
| 54 |
+
# Translations
|
| 55 |
+
*.mo
|
| 56 |
+
*.pot
|
| 57 |
+
|
| 58 |
+
# Django stuff:
|
| 59 |
+
*.log
|
| 60 |
+
local_settings.py
|
| 61 |
+
db.sqlite3
|
| 62 |
+
|
| 63 |
+
# Flask stuff:
|
| 64 |
+
instance/
|
| 65 |
+
.webassets-cache
|
| 66 |
+
|
| 67 |
+
# Scrapy stuff:
|
| 68 |
+
.scrapy
|
| 69 |
+
|
| 70 |
+
# Sphinx documentation
|
| 71 |
+
docs/_build/
|
| 72 |
+
|
| 73 |
+
# PyBuilder
|
| 74 |
+
target/
|
| 75 |
+
|
| 76 |
+
# Jupyter Notebook
|
| 77 |
+
.ipynb_checkpoints
|
| 78 |
+
|
| 79 |
+
# IPython
|
| 80 |
+
profile_default/
|
| 81 |
+
ipython_config.py
|
| 82 |
+
|
| 83 |
+
# pyenv
|
| 84 |
+
.python-version
|
| 85 |
+
|
| 86 |
+
# celery beat schedule file
|
| 87 |
+
celerybeat-schedule
|
| 88 |
+
|
| 89 |
+
# SageMath parsed files
|
| 90 |
+
*.sage.py
|
| 91 |
+
|
| 92 |
+
# Environments
|
| 93 |
+
.env
|
| 94 |
+
.venv
|
| 95 |
+
env/
|
| 96 |
+
venv/
|
| 97 |
+
ENV/
|
| 98 |
+
env.bak/
|
| 99 |
+
venv.bak/
|
| 100 |
+
|
| 101 |
+
# Spyder project settings
|
| 102 |
+
.spyderproject
|
| 103 |
+
.spyproject
|
| 104 |
+
|
| 105 |
+
# Rope project settings
|
| 106 |
+
.ropeproject
|
| 107 |
+
|
| 108 |
+
# mkdocs documentation
|
| 109 |
+
/site
|
| 110 |
+
|
| 111 |
+
# mypy
|
| 112 |
+
.mypy_cache/
|
| 113 |
+
.dmypy.json
|
| 114 |
+
dmypy.json
|
LICENSE
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
MIT License
|
| 2 |
+
|
| 3 |
+
Copyright (c) 2023 IDKiro
|
| 4 |
+
|
| 5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 6 |
+
of this software and associated documentation files (the "Software"), to deal
|
| 7 |
+
in the Software without restriction, including without limitation the rights
|
| 8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 9 |
+
copies of the Software, and to permit persons to whom the Software is
|
| 10 |
+
furnished to do so, subject to the following conditions:
|
| 11 |
+
|
| 12 |
+
The above copyright notice and this permission notice shall be included in all
|
| 13 |
+
copies or substantial portions of the Software.
|
| 14 |
+
|
| 15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 21 |
+
SOFTWARE.
|
app.py
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
import gradio as gr
|
| 4 |
+
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from models import dehazeformer
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def infer(raw_image):
|
| 10 |
+
network = dehazeformer()
|
| 11 |
+
network.load_state_dict(torch.load('./saved_models/dehazeformer.pth', map_location=torch.device('cpu'))['state_dict'])
|
| 12 |
+
# torch.save({'state_dict': network.state_dict()}, './saved_models/dehazeformer.pth')
|
| 13 |
+
|
| 14 |
+
network.eval()
|
| 15 |
+
|
| 16 |
+
image = np.array(raw_image, np.float32) / 255. * 2 - 1
|
| 17 |
+
image = torch.from_numpy(image)
|
| 18 |
+
image = image.permute((2, 0, 1)).unsqueeze(0)
|
| 19 |
+
|
| 20 |
+
with torch.no_grad():
|
| 21 |
+
output = network(image).clamp_(-1, 1)[0] * 0.5 + 0.5
|
| 22 |
+
output = output.permute((1, 2, 0))
|
| 23 |
+
output = np.array(output, np.float32)
|
| 24 |
+
output = np.round(output * 255.0)
|
| 25 |
+
|
| 26 |
+
output = Image.fromarray(output.astype(np.uint8))
|
| 27 |
+
|
| 28 |
+
return output
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
title = "DehazeFormer"
|
| 32 |
+
description = f"We use a mixed dataset to train the model, allowing the trained model to work better on real hazy images. To allow the model to process high-resolution images more efficiently and effectively, we extend it to the [MCT](https://github.com/IDKiro/MCT) variant."
|
| 33 |
+
examples = [
|
| 34 |
+
["examples/1.jpg"],
|
| 35 |
+
["examples/2.jpg"],
|
| 36 |
+
["examples/3.jpg"],
|
| 37 |
+
["examples/4.jpg"],
|
| 38 |
+
["examples/5.jpg"],
|
| 39 |
+
["examples/6.jpg"]
|
| 40 |
+
]
|
| 41 |
+
|
| 42 |
+
iface = gr.Interface(
|
| 43 |
+
infer,
|
| 44 |
+
inputs="image", outputs="image",
|
| 45 |
+
title=title,
|
| 46 |
+
description=description,
|
| 47 |
+
allow_flagging='never',
|
| 48 |
+
examples=examples,
|
| 49 |
+
)
|
| 50 |
+
iface.launch()
|
examples/1.jpg
ADDED
|
examples/2.jpg
ADDED
|
examples/3.jpg
ADDED
|
examples/4.jpg
ADDED
|
examples/5.jpg
ADDED
|
examples/6.jpg
ADDED
|
models/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
from .dehazeformer import MCT as dehazeformer
|
models/dehazeformer.py
ADDED
|
@@ -0,0 +1,474 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class RLN(nn.Module):
|
| 7 |
+
r"""Revised LayerNorm"""
|
| 8 |
+
def __init__(self, dim, eps=1e-5, detach_grad=False):
|
| 9 |
+
super(RLN, self).__init__()
|
| 10 |
+
self.eps = eps
|
| 11 |
+
self.detach_grad = detach_grad
|
| 12 |
+
|
| 13 |
+
self.weight = nn.Parameter(torch.ones((1, dim, 1, 1)))
|
| 14 |
+
self.bias = nn.Parameter(torch.zeros((1, dim, 1, 1)))
|
| 15 |
+
|
| 16 |
+
self.meta1 = nn.Conv2d(1, dim, 1)
|
| 17 |
+
self.meta2 = nn.Conv2d(1, dim, 1)
|
| 18 |
+
|
| 19 |
+
def forward(self, input):
|
| 20 |
+
mean = torch.mean(input, dim=(1, 2, 3), keepdim=True)
|
| 21 |
+
std = torch.sqrt((input - mean).pow(2).mean(dim=(1, 2, 3), keepdim=True) + self.eps)
|
| 22 |
+
|
| 23 |
+
normalized_input = (input - mean) / std
|
| 24 |
+
|
| 25 |
+
if self.detach_grad:
|
| 26 |
+
rescale, rebias = self.meta1(std.detach()), self.meta2(mean.detach())
|
| 27 |
+
else:
|
| 28 |
+
rescale, rebias = self.meta1(std), self.meta2(mean)
|
| 29 |
+
|
| 30 |
+
out = normalized_input * self.weight + self.bias
|
| 31 |
+
return out, rescale, rebias
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
class Mlp(nn.Module):
|
| 35 |
+
def __init__(self, network_depth, in_features, hidden_features=None, out_features=None):
|
| 36 |
+
super().__init__()
|
| 37 |
+
out_features = out_features or in_features
|
| 38 |
+
hidden_features = hidden_features or in_features
|
| 39 |
+
|
| 40 |
+
self.network_depth = network_depth
|
| 41 |
+
|
| 42 |
+
self.mlp = nn.Sequential(
|
| 43 |
+
nn.Conv2d(in_features, hidden_features, 1),
|
| 44 |
+
nn.ReLU(True),
|
| 45 |
+
nn.Conv2d(hidden_features, out_features, 1)
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
def forward(self, x):
|
| 49 |
+
return self.mlp(x)
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def window_partition(x, window_size):
|
| 53 |
+
B, H, W, C = x.shape
|
| 54 |
+
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
|
| 55 |
+
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size**2, C)
|
| 56 |
+
return windows
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def window_reverse(windows, window_size, H, W):
|
| 60 |
+
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
| 61 |
+
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
|
| 62 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
| 63 |
+
return x
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def get_relative_positions(window_size):
|
| 67 |
+
coords_h = torch.arange(window_size)
|
| 68 |
+
coords_w = torch.arange(window_size)
|
| 69 |
+
|
| 70 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w], indexing="ij")) # 2, Wh, Ww
|
| 71 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
| 72 |
+
relative_positions = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
| 73 |
+
|
| 74 |
+
relative_positions = relative_positions.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
| 75 |
+
relative_positions_log = torch.sign(relative_positions) * torch.log(1. + relative_positions.abs())
|
| 76 |
+
|
| 77 |
+
return relative_positions_log
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
class WindowAttention(nn.Module):
|
| 81 |
+
def __init__(self, dim, window_size, num_heads):
|
| 82 |
+
|
| 83 |
+
super().__init__()
|
| 84 |
+
self.dim = dim
|
| 85 |
+
self.window_size = window_size # Wh, Ww
|
| 86 |
+
self.num_heads = num_heads
|
| 87 |
+
head_dim = dim // num_heads
|
| 88 |
+
self.scale = head_dim ** -0.5
|
| 89 |
+
|
| 90 |
+
relative_positions = get_relative_positions(self.window_size)
|
| 91 |
+
self.register_buffer("relative_positions", relative_positions)
|
| 92 |
+
self.meta = nn.Sequential(
|
| 93 |
+
nn.Linear(2, 256, bias=True),
|
| 94 |
+
nn.ReLU(True),
|
| 95 |
+
nn.Linear(256, num_heads, bias=True)
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
self.softmax = nn.Softmax(dim=-1)
|
| 99 |
+
|
| 100 |
+
def forward(self, qkv):
|
| 101 |
+
B_, N, _ = qkv.shape
|
| 102 |
+
|
| 103 |
+
qkv = qkv.reshape(B_, N, 3, self.num_heads, self.dim // self.num_heads).permute(2, 0, 3, 1, 4)
|
| 104 |
+
|
| 105 |
+
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
| 106 |
+
|
| 107 |
+
q = q * self.scale
|
| 108 |
+
attn = (q @ k.transpose(-2, -1))
|
| 109 |
+
|
| 110 |
+
relative_position_bias = self.meta(self.relative_positions)
|
| 111 |
+
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
| 112 |
+
attn = attn + relative_position_bias.unsqueeze(0)
|
| 113 |
+
|
| 114 |
+
attn = self.softmax(attn)
|
| 115 |
+
|
| 116 |
+
x = (attn @ v).transpose(1, 2).reshape(B_, N, self.dim)
|
| 117 |
+
return x
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
class Attention(nn.Module):
|
| 121 |
+
def __init__(self, network_depth, dim, num_heads, window_size, shift_size, use_attn=False, conv_type=None):
|
| 122 |
+
super().__init__()
|
| 123 |
+
self.dim = dim
|
| 124 |
+
self.head_dim = int(dim // num_heads)
|
| 125 |
+
self.num_heads = num_heads
|
| 126 |
+
|
| 127 |
+
self.window_size = window_size
|
| 128 |
+
self.shift_size = shift_size
|
| 129 |
+
|
| 130 |
+
self.network_depth = network_depth
|
| 131 |
+
self.use_attn = use_attn
|
| 132 |
+
self.conv_type = conv_type
|
| 133 |
+
|
| 134 |
+
if self.conv_type == 'Conv':
|
| 135 |
+
self.conv = nn.Sequential(
|
| 136 |
+
nn.Conv2d(dim, dim, kernel_size=3, padding=1, padding_mode='reflect'),
|
| 137 |
+
nn.ReLU(True),
|
| 138 |
+
nn.Conv2d(dim, dim, kernel_size=3, padding=1, padding_mode='reflect')
|
| 139 |
+
)
|
| 140 |
+
|
| 141 |
+
if self.conv_type == 'DWConv':
|
| 142 |
+
self.conv = nn.Conv2d(dim, dim, kernel_size=5, padding=2, groups=dim, padding_mode='reflect')
|
| 143 |
+
|
| 144 |
+
if self.conv_type == 'DWConv' or self.use_attn:
|
| 145 |
+
self.V = nn.Conv2d(dim, dim, 1)
|
| 146 |
+
self.proj = nn.Conv2d(dim, dim, 1)
|
| 147 |
+
|
| 148 |
+
if self.use_attn:
|
| 149 |
+
self.QK = nn.Conv2d(dim, dim * 2, 1)
|
| 150 |
+
self.attn = WindowAttention(dim, window_size, num_heads)
|
| 151 |
+
|
| 152 |
+
def check_size(self, x, shift=False):
|
| 153 |
+
_, _, h, w = x.size()
|
| 154 |
+
mod_pad_h = (self.window_size - h % self.window_size) % self.window_size
|
| 155 |
+
mod_pad_w = (self.window_size - w % self.window_size) % self.window_size
|
| 156 |
+
|
| 157 |
+
if shift:
|
| 158 |
+
x = F.pad(x, (self.shift_size, (self.window_size-self.shift_size+mod_pad_w) % self.window_size,
|
| 159 |
+
self.shift_size, (self.window_size-self.shift_size+mod_pad_h) % self.window_size), mode='reflect')
|
| 160 |
+
else:
|
| 161 |
+
x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), 'reflect')
|
| 162 |
+
return x
|
| 163 |
+
|
| 164 |
+
def forward(self, X):
|
| 165 |
+
B, C, H, W = X.shape
|
| 166 |
+
|
| 167 |
+
if self.conv_type == 'DWConv' or self.use_attn:
|
| 168 |
+
V = self.V(X)
|
| 169 |
+
|
| 170 |
+
if self.use_attn:
|
| 171 |
+
QK = self.QK(X)
|
| 172 |
+
QKV = torch.cat([QK, V], dim=1)
|
| 173 |
+
|
| 174 |
+
# shift
|
| 175 |
+
shifted_QKV = self.check_size(QKV, self.shift_size > 0)
|
| 176 |
+
Ht, Wt = shifted_QKV.shape[2:]
|
| 177 |
+
|
| 178 |
+
# partition windows
|
| 179 |
+
shifted_QKV = shifted_QKV.permute(0, 2, 3, 1)
|
| 180 |
+
qkv = window_partition(shifted_QKV, self.window_size) # nW*B, window_size**2, C
|
| 181 |
+
|
| 182 |
+
attn_windows = self.attn(qkv)
|
| 183 |
+
|
| 184 |
+
# merge windows
|
| 185 |
+
shifted_out = window_reverse(attn_windows, self.window_size, Ht, Wt) # B H' W' C
|
| 186 |
+
|
| 187 |
+
# reverse cyclic shift
|
| 188 |
+
out = shifted_out[:, self.shift_size:(self.shift_size+H), self.shift_size:(self.shift_size+W), :]
|
| 189 |
+
attn_out = out.permute(0, 3, 1, 2)
|
| 190 |
+
|
| 191 |
+
if self.conv_type in ['Conv', 'DWConv']:
|
| 192 |
+
conv_out = self.conv(V)
|
| 193 |
+
out = self.proj(conv_out + attn_out)
|
| 194 |
+
else:
|
| 195 |
+
out = self.proj(attn_out)
|
| 196 |
+
|
| 197 |
+
else:
|
| 198 |
+
if self.conv_type == 'Conv':
|
| 199 |
+
out = self.conv(X) # no attention and use conv, no projection
|
| 200 |
+
elif self.conv_type == 'DWConv':
|
| 201 |
+
out = self.proj(self.conv(V))
|
| 202 |
+
|
| 203 |
+
return out
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
class TransformerBlock(nn.Module):
|
| 207 |
+
def __init__(self, network_depth, dim, num_heads, mlp_ratio=4.,
|
| 208 |
+
norm_layer=nn.LayerNorm, mlp_norm=False,
|
| 209 |
+
window_size=8, shift_size=0, use_attn=True, conv_type=None):
|
| 210 |
+
super().__init__()
|
| 211 |
+
self.use_attn = use_attn
|
| 212 |
+
self.mlp_norm = mlp_norm
|
| 213 |
+
|
| 214 |
+
self.norm1 = norm_layer(dim) if use_attn else nn.Identity()
|
| 215 |
+
self.attn = Attention(network_depth, dim, num_heads=num_heads, window_size=window_size,
|
| 216 |
+
shift_size=shift_size, use_attn=use_attn, conv_type=conv_type)
|
| 217 |
+
|
| 218 |
+
self.norm2 = norm_layer(dim) if use_attn and mlp_norm else nn.Identity()
|
| 219 |
+
self.mlp = Mlp(network_depth, dim, hidden_features=int(dim * mlp_ratio))
|
| 220 |
+
|
| 221 |
+
def forward(self, x):
|
| 222 |
+
identity = x
|
| 223 |
+
if self.use_attn: x, rescale, rebias = self.norm1(x)
|
| 224 |
+
x = self.attn(x)
|
| 225 |
+
if self.use_attn: x = x * rescale + rebias
|
| 226 |
+
x = identity + x
|
| 227 |
+
|
| 228 |
+
identity = x
|
| 229 |
+
if self.use_attn and self.mlp_norm: x, rescale, rebias = self.norm2(x)
|
| 230 |
+
x = self.mlp(x)
|
| 231 |
+
if self.use_attn and self.mlp_norm: x = x * rescale + rebias
|
| 232 |
+
x = identity + x
|
| 233 |
+
return x
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
class BasicLayer(nn.Module):
|
| 237 |
+
def __init__(self, network_depth, dim, depth, num_heads, mlp_ratio=4.,
|
| 238 |
+
norm_layer=nn.LayerNorm, window_size=8,
|
| 239 |
+
attn_ratio=0., attn_loc='last', conv_type=None):
|
| 240 |
+
|
| 241 |
+
super().__init__()
|
| 242 |
+
self.dim = dim
|
| 243 |
+
self.depth = depth
|
| 244 |
+
|
| 245 |
+
attn_depth = attn_ratio * depth
|
| 246 |
+
|
| 247 |
+
if attn_loc == 'last':
|
| 248 |
+
use_attns = [i >= depth-attn_depth for i in range(depth)]
|
| 249 |
+
elif attn_loc == 'first':
|
| 250 |
+
use_attns = [i < attn_depth for i in range(depth)]
|
| 251 |
+
elif attn_loc == 'middle':
|
| 252 |
+
use_attns = [i >= (depth-attn_depth)//2 and i < (depth+attn_depth)//2 for i in range(depth)]
|
| 253 |
+
|
| 254 |
+
# build blocks
|
| 255 |
+
self.blocks = nn.ModuleList([
|
| 256 |
+
TransformerBlock(network_depth=network_depth,
|
| 257 |
+
dim=dim,
|
| 258 |
+
num_heads=num_heads,
|
| 259 |
+
mlp_ratio=mlp_ratio,
|
| 260 |
+
norm_layer=norm_layer,
|
| 261 |
+
window_size=window_size,
|
| 262 |
+
shift_size=0 if (i % 2 == 0) else window_size // 2,
|
| 263 |
+
use_attn=use_attns[i], conv_type=conv_type)
|
| 264 |
+
for i in range(depth)])
|
| 265 |
+
|
| 266 |
+
def forward(self, x):
|
| 267 |
+
for blk in self.blocks:
|
| 268 |
+
x = blk(x)
|
| 269 |
+
return x
|
| 270 |
+
|
| 271 |
+
|
| 272 |
+
class PatchEmbed(nn.Module):
|
| 273 |
+
def __init__(self, patch_size=4, in_chans=3, embed_dim=96, kernel_size=None):
|
| 274 |
+
super().__init__()
|
| 275 |
+
self.in_chans = in_chans
|
| 276 |
+
self.embed_dim = embed_dim
|
| 277 |
+
|
| 278 |
+
if kernel_size is None:
|
| 279 |
+
kernel_size = patch_size
|
| 280 |
+
|
| 281 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=patch_size,
|
| 282 |
+
padding=(kernel_size-patch_size+1)//2, padding_mode='reflect')
|
| 283 |
+
|
| 284 |
+
def forward(self, x):
|
| 285 |
+
x = self.proj(x)
|
| 286 |
+
return x
|
| 287 |
+
|
| 288 |
+
|
| 289 |
+
class PatchUnEmbed(nn.Module):
|
| 290 |
+
def __init__(self, patch_size=4, out_chans=3, embed_dim=96, kernel_size=None):
|
| 291 |
+
super().__init__()
|
| 292 |
+
self.out_chans = out_chans
|
| 293 |
+
self.embed_dim = embed_dim
|
| 294 |
+
|
| 295 |
+
if kernel_size is None:
|
| 296 |
+
kernel_size = 1
|
| 297 |
+
|
| 298 |
+
self.proj = nn.Sequential(
|
| 299 |
+
nn.Conv2d(embed_dim, out_chans*patch_size**2, kernel_size=kernel_size,
|
| 300 |
+
padding=kernel_size//2, padding_mode='reflect'),
|
| 301 |
+
nn.PixelShuffle(patch_size)
|
| 302 |
+
)
|
| 303 |
+
|
| 304 |
+
def forward(self, x):
|
| 305 |
+
x = self.proj(x)
|
| 306 |
+
return x
|
| 307 |
+
|
| 308 |
+
|
| 309 |
+
class SKFusion(nn.Module):
|
| 310 |
+
def __init__(self, dim, height=2, reduction=8):
|
| 311 |
+
super(SKFusion, self).__init__()
|
| 312 |
+
|
| 313 |
+
self.height = height
|
| 314 |
+
d = max(int(dim/reduction), 4)
|
| 315 |
+
|
| 316 |
+
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
| 317 |
+
self.mlp = nn.Sequential(
|
| 318 |
+
nn.Conv2d(dim, d, 1, bias=False),
|
| 319 |
+
nn.ReLU(),
|
| 320 |
+
nn.Conv2d(d, dim*height, 1, bias=False)
|
| 321 |
+
)
|
| 322 |
+
|
| 323 |
+
self.softmax = nn.Softmax(dim=1)
|
| 324 |
+
|
| 325 |
+
def forward(self, in_feats):
|
| 326 |
+
B, C, H, W = in_feats[0].shape
|
| 327 |
+
|
| 328 |
+
in_feats = torch.cat(in_feats, dim=1)
|
| 329 |
+
in_feats = in_feats.view(B, self.height, C, H, W)
|
| 330 |
+
|
| 331 |
+
feats_sum = torch.sum(in_feats, dim=1)
|
| 332 |
+
attn = self.mlp(self.avg_pool(feats_sum))
|
| 333 |
+
attn = self.softmax(attn.view(B, self.height, C, 1, 1))
|
| 334 |
+
|
| 335 |
+
out = torch.sum(in_feats*attn, dim=1)
|
| 336 |
+
return out
|
| 337 |
+
|
| 338 |
+
|
| 339 |
+
class DehazeFormer(nn.Module):
|
| 340 |
+
def __init__(self, in_chans=3, out_chans=3, window_size=8,
|
| 341 |
+
embed_dims=[24, 48, 96, 48, 24],
|
| 342 |
+
mlp_ratios=[2., 2., 4., 2., 2.],
|
| 343 |
+
depths=[4, 4, 8, 4, 4],
|
| 344 |
+
num_heads=[2, 4, 6, 4, 2],
|
| 345 |
+
attn_ratio=[1., 1., 1., 1., 1.],
|
| 346 |
+
conv_type=['DWConv', 'DWConv', 'DWConv', 'DWConv', 'DWConv'],
|
| 347 |
+
norm_layer=[RLN, RLN, RLN, RLN, RLN]):
|
| 348 |
+
super(DehazeFormer, self).__init__()
|
| 349 |
+
|
| 350 |
+
# setting
|
| 351 |
+
self.patch_size = 4
|
| 352 |
+
self.window_size = window_size
|
| 353 |
+
self.mlp_ratios = mlp_ratios
|
| 354 |
+
|
| 355 |
+
# split image into non-overlapping patches
|
| 356 |
+
self.patch_embed = PatchEmbed(
|
| 357 |
+
patch_size=1, in_chans=in_chans, embed_dim=embed_dims[0], kernel_size=3)
|
| 358 |
+
|
| 359 |
+
# backbone
|
| 360 |
+
self.layer1 = BasicLayer(network_depth=sum(depths), dim=embed_dims[0], depth=depths[0],
|
| 361 |
+
num_heads=num_heads[0], mlp_ratio=mlp_ratios[0],
|
| 362 |
+
norm_layer=norm_layer[0], window_size=window_size,
|
| 363 |
+
attn_ratio=attn_ratio[0], attn_loc='last', conv_type=conv_type[0])
|
| 364 |
+
|
| 365 |
+
self.patch_merge1 = PatchEmbed(
|
| 366 |
+
patch_size=2, in_chans=embed_dims[0], embed_dim=embed_dims[1])
|
| 367 |
+
|
| 368 |
+
self.skip1 = nn.Conv2d(embed_dims[0], embed_dims[0], 1)
|
| 369 |
+
|
| 370 |
+
self.layer2 = BasicLayer(network_depth=sum(depths), dim=embed_dims[1], depth=depths[1],
|
| 371 |
+
num_heads=num_heads[1], mlp_ratio=mlp_ratios[1],
|
| 372 |
+
norm_layer=norm_layer[1], window_size=window_size,
|
| 373 |
+
attn_ratio=attn_ratio[1], attn_loc='last', conv_type=conv_type[1])
|
| 374 |
+
|
| 375 |
+
self.patch_merge2 = PatchEmbed(
|
| 376 |
+
patch_size=2, in_chans=embed_dims[1], embed_dim=embed_dims[2])
|
| 377 |
+
|
| 378 |
+
self.skip2 = nn.Conv2d(embed_dims[1], embed_dims[1], 1)
|
| 379 |
+
|
| 380 |
+
self.layer3 = BasicLayer(network_depth=sum(depths), dim=embed_dims[2], depth=depths[2],
|
| 381 |
+
num_heads=num_heads[2], mlp_ratio=mlp_ratios[2],
|
| 382 |
+
norm_layer=norm_layer[2], window_size=window_size,
|
| 383 |
+
attn_ratio=attn_ratio[2], attn_loc='last', conv_type=conv_type[2])
|
| 384 |
+
|
| 385 |
+
self.patch_split1 = PatchUnEmbed(
|
| 386 |
+
patch_size=2, out_chans=embed_dims[3], embed_dim=embed_dims[2])
|
| 387 |
+
|
| 388 |
+
assert embed_dims[1] == embed_dims[3]
|
| 389 |
+
self.fusion1 = SKFusion(embed_dims[3])
|
| 390 |
+
|
| 391 |
+
self.layer4 = BasicLayer(network_depth=sum(depths), dim=embed_dims[3], depth=depths[3],
|
| 392 |
+
num_heads=num_heads[3], mlp_ratio=mlp_ratios[3],
|
| 393 |
+
norm_layer=norm_layer[3], window_size=window_size,
|
| 394 |
+
attn_ratio=attn_ratio[3], attn_loc='last', conv_type=conv_type[3])
|
| 395 |
+
|
| 396 |
+
self.patch_split2 = PatchUnEmbed(
|
| 397 |
+
patch_size=2, out_chans=embed_dims[4], embed_dim=embed_dims[3])
|
| 398 |
+
|
| 399 |
+
assert embed_dims[0] == embed_dims[4]
|
| 400 |
+
self.fusion2 = SKFusion(embed_dims[4])
|
| 401 |
+
|
| 402 |
+
self.layer5 = BasicLayer(network_depth=sum(depths), dim=embed_dims[4], depth=depths[4],
|
| 403 |
+
num_heads=num_heads[4], mlp_ratio=mlp_ratios[4],
|
| 404 |
+
norm_layer=norm_layer[4], window_size=window_size,
|
| 405 |
+
attn_ratio=attn_ratio[4], attn_loc='last', conv_type=conv_type[4])
|
| 406 |
+
|
| 407 |
+
# merge non-overlapping patches into image
|
| 408 |
+
self.patch_unembed = PatchUnEmbed(
|
| 409 |
+
patch_size=1, out_chans=out_chans, embed_dim=embed_dims[4], kernel_size=3)
|
| 410 |
+
|
| 411 |
+
def forward(self, x):
|
| 412 |
+
x = self.patch_embed(x)
|
| 413 |
+
x = self.layer1(x)
|
| 414 |
+
skip1 = x
|
| 415 |
+
|
| 416 |
+
x = self.patch_merge1(x)
|
| 417 |
+
x = self.layer2(x)
|
| 418 |
+
skip2 = x
|
| 419 |
+
|
| 420 |
+
x = self.patch_merge2(x)
|
| 421 |
+
x = self.layer3(x)
|
| 422 |
+
x = self.patch_split1(x)
|
| 423 |
+
|
| 424 |
+
x = self.fusion1([x, self.skip2(skip2)]) + x
|
| 425 |
+
x = self.layer4(x)
|
| 426 |
+
x = self.patch_split2(x)
|
| 427 |
+
|
| 428 |
+
x = self.fusion2([x, self.skip1(skip1)]) + x
|
| 429 |
+
x = self.layer5(x)
|
| 430 |
+
x = self.patch_unembed(x)
|
| 431 |
+
return x
|
| 432 |
+
|
| 433 |
+
|
| 434 |
+
class MCT(nn.Module):
|
| 435 |
+
def __init__(self):
|
| 436 |
+
super(MCT, self).__init__()
|
| 437 |
+
self.ts = 256
|
| 438 |
+
self.l = 8
|
| 439 |
+
|
| 440 |
+
self.dims = 3 * 3 * self.l
|
| 441 |
+
|
| 442 |
+
self.basenet = DehazeFormer(3, self.dims)
|
| 443 |
+
|
| 444 |
+
def get_coord(self, x):
|
| 445 |
+
B, _, H, W = x.size()
|
| 446 |
+
|
| 447 |
+
coordh, coordw = torch.meshgrid([torch.linspace(-1,1,H), torch.linspace(-1,1,W)], indexing="ij")
|
| 448 |
+
coordh = coordh.unsqueeze(0).unsqueeze(1).repeat(B,1,1,1)
|
| 449 |
+
coordw = coordw.unsqueeze(0).unsqueeze(1).repeat(B,1,1,1)
|
| 450 |
+
|
| 451 |
+
return coordw.detach(), coordh.detach()
|
| 452 |
+
|
| 453 |
+
def mapping(self, x, param):
|
| 454 |
+
# curves
|
| 455 |
+
curve = torch.stack(torch.chunk(param, 3, dim=1), dim=1)
|
| 456 |
+
curve_list = list(torch.chunk(curve, 3, dim=2))
|
| 457 |
+
|
| 458 |
+
# grid: x, y, z -> w, h, d ~[-1 ,1]
|
| 459 |
+
x_list = list(torch.chunk(x.detach(), 3, dim=1))
|
| 460 |
+
coordw, coordh = self.get_coord(x)
|
| 461 |
+
grid_list = [torch.stack([coordw, coordh, x_i], dim=4) for x_i in x_list]
|
| 462 |
+
|
| 463 |
+
# mapping
|
| 464 |
+
out = sum([F.grid_sample(curve_i, grid_i, 'bilinear', 'border', True) \
|
| 465 |
+
for curve_i, grid_i in zip(curve_list, grid_list)]).squeeze(2)
|
| 466 |
+
|
| 467 |
+
return out # no Tanh is much better than using Tanh
|
| 468 |
+
|
| 469 |
+
def forward(self, x):
|
| 470 |
+
# param input
|
| 471 |
+
x_d = F.interpolate(x, (self.ts, self.ts), mode='area')
|
| 472 |
+
param = self.basenet(x_d)
|
| 473 |
+
out = self.mapping(x, param)
|
| 474 |
+
return out
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
numpy
|
| 3 |
+
Pillow
|
saved_models/dehazeformer.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:479e2017166ed8f97edcde059db759b38cc89388da5e456881ed8892ba35f0d7
|
| 3 |
+
size 5927945
|