Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,74 +6,72 @@ import numpy as np
|
|
| 6 |
from aura_sr import AuraSR
|
| 7 |
import torch
|
| 8 |
|
| 9 |
-
# Force CPU usage
|
| 10 |
torch.set_default_tensor_type(torch.FloatTensor)
|
| 11 |
-
|
| 12 |
-
# Override torch.load to always use CPU
|
| 13 |
original_load = torch.load
|
| 14 |
torch.load = lambda *args, **kwargs: original_load(*args, **kwargs, map_location=torch.device('cpu'))
|
| 15 |
|
| 16 |
-
# Initialize the AuraSR model
|
| 17 |
aura_sr = AuraSR.from_pretrained("fal/AuraSR-v2")
|
| 18 |
|
| 19 |
-
# Restore original torch.load
|
| 20 |
torch.load = original_load
|
| 21 |
|
| 22 |
@spaces.GPU
|
| 23 |
-
def process_image(input_image):
|
| 24 |
if input_image is None:
|
| 25 |
-
raise gr.Error("
|
| 26 |
|
| 27 |
-
# Convert to PIL Image for resizing
|
| 28 |
pil_image = Image.fromarray(input_image)
|
|
|
|
| 29 |
|
| 30 |
upscaled_image = aura_sr.upscale_4x(pil_image)
|
| 31 |
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
result_array = np.array(upscaled_image)
|
| 34 |
|
| 35 |
-
|
| 36 |
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
title = """<h1 align="center">AuraSR</h1>
|
| 40 |
-
<p><center>Upscales your images to x4</center></p>
|
| 41 |
-
<p><center>
|
| 42 |
-
<a href="https://huggingface.co/fal/AuraSR-v2" target="_blank">[AuraSR-v2]</a>
|
| 43 |
-
<a href="https://blog.fal.ai/introducing-aurasr-an-open-reproduction-of-the-gigagan-upscaler-2/" target="_blank">[Blog Post]</a>
|
| 44 |
-
<a href="https://huggingface.co/fal-ai/AuraSR" target="_blank">[v1 Model Page]</a>
|
| 45 |
-
</center></p>
|
| 46 |
-
<br/>
|
| 47 |
-
<p>This is an open reproduction of the GigaGAN Upscaler from fal.ai</p>
|
| 48 |
-
"""
|
| 49 |
|
| 50 |
with gr.Blocks() as demo:
|
| 51 |
-
|
| 52 |
gr.HTML(title)
|
| 53 |
|
| 54 |
with gr.Row():
|
| 55 |
with gr.Column(scale=1):
|
| 56 |
-
input_image = gr.Image(label="
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
with gr.Column(scale=1):
|
| 59 |
-
|
|
|
|
| 60 |
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
|
|
|
|
|
|
| 66 |
|
| 67 |
-
|
| 68 |
-
gr.Examples(
|
| 69 |
-
examples=[
|
| 70 |
-
"image1.png",
|
| 71 |
-
"image3.png"
|
| 72 |
-
],
|
| 73 |
-
inputs=input_image,
|
| 74 |
-
outputs=output_slider,
|
| 75 |
fn=process_image,
|
| 76 |
-
|
|
|
|
| 77 |
)
|
| 78 |
|
| 79 |
demo.launch(debug=True)
|
|
|
|
| 6 |
from aura_sr import AuraSR
|
| 7 |
import torch
|
| 8 |
|
|
|
|
| 9 |
torch.set_default_tensor_type(torch.FloatTensor)
|
|
|
|
|
|
|
| 10 |
original_load = torch.load
|
| 11 |
torch.load = lambda *args, **kwargs: original_load(*args, **kwargs, map_location=torch.device('cpu'))
|
| 12 |
|
|
|
|
| 13 |
aura_sr = AuraSR.from_pretrained("fal/AuraSR-v2")
|
| 14 |
|
|
|
|
| 15 |
torch.load = original_load
|
| 16 |
|
| 17 |
@spaces.GPU
|
| 18 |
+
def process_image(input_image, scale_factor):
|
| 19 |
if input_image is None:
|
| 20 |
+
raise gr.Error("请提供一张图片。")
|
| 21 |
|
|
|
|
| 22 |
pil_image = Image.fromarray(input_image)
|
| 23 |
+
original_width, original_height = pil_image.size
|
| 24 |
|
| 25 |
upscaled_image = aura_sr.upscale_4x(pil_image)
|
| 26 |
|
| 27 |
+
target_scale = float(scale_factor)
|
| 28 |
+
|
| 29 |
+
if target_scale != 4.0:
|
| 30 |
+
# 计算目标尺寸
|
| 31 |
+
new_width = int(original_width * target_scale)
|
| 32 |
+
new_height = int(original_height * target_scale)
|
| 33 |
+
# 使用高质量重采样算法调整尺寸
|
| 34 |
+
upscaled_image = upscaled_image.resize((new_width, new_height), Image.LANCZOS)
|
| 35 |
+
|
| 36 |
result_array = np.array(upscaled_image)
|
| 37 |
|
| 38 |
+
return (input_image, result_array), upscaled_image
|
| 39 |
|
| 40 |
+
title = """<h1 align="center">AuraSR-v2 动态放大版</h1>"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
with gr.Blocks() as demo:
|
|
|
|
| 43 |
gr.HTML(title)
|
| 44 |
|
| 45 |
with gr.Row():
|
| 46 |
with gr.Column(scale=1):
|
| 47 |
+
input_image = gr.Image(label="输入图片", type="numpy")
|
| 48 |
+
|
| 49 |
+
scale_slider = gr.Slider(
|
| 50 |
+
minimum=1.0,
|
| 51 |
+
maximum=4.0,
|
| 52 |
+
value=4.0,
|
| 53 |
+
step=0.5,
|
| 54 |
+
label="放大倍数 (Scale Factor)"
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
process_btn = gr.Button(value="开始放大", variant="primary")
|
| 58 |
+
|
| 59 |
with gr.Column(scale=1):
|
| 60 |
+
# 图片对比滑块
|
| 61 |
+
output_slider = ImageSlider(label="对比效果", type="numpy")
|
| 62 |
|
| 63 |
+
download_output = gr.Image(
|
| 64 |
+
label="下载结果 (PNG)",
|
| 65 |
+
type="pil",
|
| 66 |
+
format="png",
|
| 67 |
+
interactive=False,
|
| 68 |
+
visible=True
|
| 69 |
+
)
|
| 70 |
|
| 71 |
+
process_btn.click(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
fn=process_image,
|
| 73 |
+
inputs=[input_image, scale_slider],
|
| 74 |
+
outputs=[output_slider, download_output]
|
| 75 |
)
|
| 76 |
|
| 77 |
demo.launch(debug=True)
|