import spaces import gradio as gr from gradio_imageslider import ImageSlider from PIL import Image import numpy as np from aura_sr import AuraSR import torch torch.set_default_tensor_type(torch.FloatTensor) original_load = torch.load torch.load = lambda *args, **kwargs: original_load(*args, **kwargs, map_location=torch.device('cpu')) aura_sr = AuraSR.from_pretrained("fal/AuraSR-v2") torch.load = original_load @spaces.GPU def process_image(input_image, scale_factor): if input_image is None: raise gr.Error("请提供一张图片。") pil_image = Image.fromarray(input_image) original_width, original_height = pil_image.size upscaled_image = aura_sr.upscale_4x(pil_image) target_scale = float(scale_factor) if target_scale != 4.0: # 计算目标尺寸 new_width = int(original_width * target_scale) new_height = int(original_height * target_scale) # 使用高质量重采样算法调整尺寸 upscaled_image = upscaled_image.resize((new_width, new_height), Image.LANCZOS) result_array = np.array(upscaled_image) return (input_image, result_array), upscaled_image title = """