Spaces:
Runtime error
Runtime error
Upload 6 files
Browse files- Tools/code_reader.py +17 -0
- Tools/mywebpagevisit.py +42 -0
- Tools/searchtool.py +230 -0
- Tools/transcriber.py +50 -0
- Tools/visual_reasoner.py +148 -0
- Tools/ytdownload.py +69 -0
Tools/code_reader.py
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from smolagents import tool
|
| 2 |
+
|
| 3 |
+
@tool
|
| 4 |
+
def code_reader(python_file_path:str) -> str:
|
| 5 |
+
"""
|
| 6 |
+
This tool reads python file and returns the code as a string.
|
| 7 |
+
|
| 8 |
+
Args:
|
| 9 |
+
python_file_path: Path of a local python file that needs to be accessed.
|
| 10 |
+
"""
|
| 11 |
+
|
| 12 |
+
try:
|
| 13 |
+
with open(python_file_path) as f:
|
| 14 |
+
code = f.read()
|
| 15 |
+
return code
|
| 16 |
+
except Exception as e:
|
| 17 |
+
return f'An unexpected error occurred: {str(e)}'
|
Tools/mywebpagevisit.py
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from smolagents import VisitWebpageTool
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
class CustomVisitWebpageTool(VisitWebpageTool):
|
| 5 |
+
|
| 6 |
+
def forward(self, url: str) -> str:
|
| 7 |
+
try:
|
| 8 |
+
import re
|
| 9 |
+
import requests
|
| 10 |
+
from markdownify import markdownify
|
| 11 |
+
from requests.exceptions import RequestException
|
| 12 |
+
except ImportError as e:
|
| 13 |
+
raise ImportError(
|
| 14 |
+
"You must install packages `markdownify` and `requests` to run this tool: for instance run `pip install markdownify requests`."
|
| 15 |
+
) from e
|
| 16 |
+
try:
|
| 17 |
+
headers = {
|
| 18 |
+
"User-Agent": (
|
| 19 |
+
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) "
|
| 20 |
+
"AppleWebKit/537.36 (KHTML, like Gecko) "
|
| 21 |
+
"Chrome/122.0.0.0 Safari/537.36"
|
| 22 |
+
),
|
| 23 |
+
"Accept-Language": "en-US,en;q=0.9",
|
| 24 |
+
"Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8",
|
| 25 |
+
}
|
| 26 |
+
# Send a GET request to the URL with a 20-second timeout
|
| 27 |
+
response = requests.get(url, timeout=20, headers=headers)
|
| 28 |
+
response.raise_for_status() # Raise an exception for bad status codes
|
| 29 |
+
|
| 30 |
+
# Convert the HTML content to Markdown
|
| 31 |
+
markdown_content = markdownify(response.text).strip()
|
| 32 |
+
|
| 33 |
+
# Remove multiple line breaks
|
| 34 |
+
#markdown_content = re.sub(r"\n{3,}", "\n\n", markdown_content)
|
| 35 |
+
return self._truncate_content(markdown_content, self.max_output_length)
|
| 36 |
+
|
| 37 |
+
except requests.exceptions.Timeout:
|
| 38 |
+
return "The request timed out. Please try again later or check the URL."
|
| 39 |
+
except RequestException as e:
|
| 40 |
+
return f"Error fetching the webpage: {str(e)}"
|
| 41 |
+
except Exception as e:
|
| 42 |
+
return f"An unexpected error occurred: {str(e)}"
|
Tools/searchtool.py
ADDED
|
@@ -0,0 +1,230 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ##not implemented include_images and include_image_descriptions attributes
|
| 2 |
+
|
| 3 |
+
# import os
|
| 4 |
+
|
| 5 |
+
# from tavily import TavilyClient
|
| 6 |
+
# from smolagents import Tool
|
| 7 |
+
# #from pydantic import BaseModel, Field
|
| 8 |
+
# from typing import Optional,List, Dict, Any, Literal
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
# # class TavilySearchInput(BaseModel):
|
| 12 |
+
# # """Input for Tavily Search."""
|
| 13 |
+
# # query : str = Field(description="The search query string.")
|
| 14 |
+
# # max_results : Optional[int] = Field(default = 5,
|
| 15 |
+
# # description="Maximum number of search results to return.")
|
| 16 |
+
# # topic : Optional[str] = Field(default = "general",
|
| 17 |
+
# # description="Category of the search. Can be 'general', 'news', or 'finance'.")
|
| 18 |
+
# # include_answer : Optional[bool] = Field(default = False,
|
| 19 |
+
# # description="Whether to include an answer to original query in results.")
|
| 20 |
+
# # include_raw_content : Optional[bool] = Field(default = False,
|
| 21 |
+
# # description="Whether to include cleaned and parsed HTML of each search result.")
|
| 22 |
+
# # search_depth: Optional[str] = Field(default = "basic",
|
| 23 |
+
# # description="Depth of the search, either 'basic' or 'advanced'.")
|
| 24 |
+
# # time_range: Optional[str] = Field(default = None,
|
| 25 |
+
# # description="The time range back from the current date to filter results - 'day', 'week', 'month', or 'year'.")
|
| 26 |
+
# # include_domains: Optional[List[str]] = Field(default = None,
|
| 27 |
+
# # description="List of domains to specifically include.")
|
| 28 |
+
# # exclude_domains: Optional[List[str]] = Field(default = None,
|
| 29 |
+
# # description="List of domains to specifically exclude.")
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
# # class TavilySearchTool(Tool):
|
| 33 |
+
# # name: str = "tavily_search"
|
| 34 |
+
# # description = """
|
| 35 |
+
# # A tool to perform comprehensive web searches using the Tavily Search API.
|
| 36 |
+
# # It can retrieve real-time, accurate, and factual information from across the web.
|
| 37 |
+
# # Useful for answering questions, gathering information, and reducing hallucinations."""
|
| 38 |
+
|
| 39 |
+
# # inputs = inputs
|
| 40 |
+
|
| 41 |
+
# # output_type = "list"
|
| 42 |
+
|
| 43 |
+
# # def __init__(self, api_key:Optional[str] = None, **kwargs):
|
| 44 |
+
# # super().__init__(**kwargs)
|
| 45 |
+
# # if api_key is None:
|
| 46 |
+
# # api_key = os.getenv("TRAVILY_SECRET_KEY")
|
| 47 |
+
# # if not api_key:
|
| 48 |
+
# # raise ValueError(
|
| 49 |
+
# # "Tavily API key not found. Please set the TAVILY_API_KEY environment variable "
|
| 50 |
+
# # "or pass it directly to TavilySearchTool(api_key='YOUR_API_KEY')."
|
| 51 |
+
# # )
|
| 52 |
+
# # self.tavily_client = TavilyClient(api_key=api_key)
|
| 53 |
+
# # print('TavilyClient is initiated')
|
| 54 |
+
|
| 55 |
+
# # def forward(self, query: str,
|
| 56 |
+
# # max_results: int = 5,
|
| 57 |
+
# # include_answer: bool = False,
|
| 58 |
+
# # include_raw_content: bool = False,
|
| 59 |
+
# # search_depth: str = "basic",
|
| 60 |
+
# # topic: str = "general",
|
| 61 |
+
# # time_range: Optional[str] = None,
|
| 62 |
+
# # include_domains: Optional[List[str]] = None,
|
| 63 |
+
# # exclude_domains: Optional[List[str]] = None) -> List[Dict[str, Any]]:
|
| 64 |
+
# # """
|
| 65 |
+
# # Executes a search query using the Tavily API.
|
| 66 |
+
|
| 67 |
+
# # Args:
|
| 68 |
+
# # query (str): The search query.
|
| 69 |
+
# # max_results (int): Maximum number of search results to return.
|
| 70 |
+
# # include_answer (bool): Whether to include a direct answer synthesized from the search results.
|
| 71 |
+
# # include_raw_content (bool): Whether to include the raw HTML content of the searched pages.
|
| 72 |
+
# # search_depth (str): Depth of the search, either 'basic' or 'advanced'.
|
| 73 |
+
# # topic (str): Category of the search. Can be 'general', 'news', or 'finance'.
|
| 74 |
+
# # time_range (Optional[str]): The time range back from the current date to filter results - 'day', 'week', 'month', or 'year'.
|
| 75 |
+
# # include_domains (Optional[List[str]]): List of domains to specifically include.
|
| 76 |
+
# # exclude_domains (Optional[List[str]]): List of domains to specifically exclude.
|
| 77 |
+
|
| 78 |
+
# # Returns:
|
| 79 |
+
# # List[Dict[str, Any]]: A list of dictionaries, where each dictionary represents a search result.
|
| 80 |
+
# # Each result typically contains 'title', 'url', and 'content'.
|
| 81 |
+
# # If include_answer is True, it will also include the 'answer' field
|
| 82 |
+
# # in the top-level response.
|
| 83 |
+
# # """
|
| 84 |
+
# # try:
|
| 85 |
+
# # response = self.tavily_client.search(
|
| 86 |
+
# # query=query,
|
| 87 |
+
# # max_results=max_results,
|
| 88 |
+
# # include_answer=include_answer,
|
| 89 |
+
# # include_raw_content=include_raw_content,
|
| 90 |
+
# # search_depth=search_depth,
|
| 91 |
+
# # topic=topic,
|
| 92 |
+
# # time_range=time_range,
|
| 93 |
+
# # include_domains=include_domains,
|
| 94 |
+
# # exclude_domains=exclude_domains
|
| 95 |
+
# # )
|
| 96 |
+
|
| 97 |
+
# # return response
|
| 98 |
+
|
| 99 |
+
# # except Exception as e:
|
| 100 |
+
# # return [{"error": f"Tavily Search Error: {e}"}]
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
# # class TavilySearchTool(Tool):
|
| 105 |
+
# # name = "tavily_search"
|
| 106 |
+
# # description = """
|
| 107 |
+
# # A tool to perform comprehensive web searches using the Tavily Search API.
|
| 108 |
+
# # It can retrieve real-time, accurate, and factual information from across the web.
|
| 109 |
+
# # Useful for answering questions, gathering information, and reducing hallucinations."""
|
| 110 |
+
|
| 111 |
+
# # inputs = {
|
| 112 |
+
# # "query": {"type": "string", "description": "The search query string."},
|
| 113 |
+
# # "max_results": {"type": "integer", "description": "Maximum number of results.", "default": 5, "nullable": False},
|
| 114 |
+
# # "topic": {"type": "string", "description": "Search category: 'general', 'news', or 'finance'.", "default": "general", "nullable": False},
|
| 115 |
+
# # "include_answer": {"type": "boolean", "description": "Whether to include answer in results.", "default": False, "nullable": False},
|
| 116 |
+
# # "include_raw_content": {"type": "boolean", "description": "Whether to include HTML content.", "default": False, "nullable": False},
|
| 117 |
+
# # "search_depth": {"type": "string", "description": "Search depth: 'basic' or 'advanced'.", "default": "basic", "nullable": False},
|
| 118 |
+
# # "time_range": {"type": "string", "description": "Filter by time range.", "default": None, "nullable": True},
|
| 119 |
+
# # "include_domains": {"type": "array", "description": "List of domains to include.", "default": None, "nullable": True},
|
| 120 |
+
# # "exclude_domains": {"type": "array", "description": "List of domains to exclude.", "default": None, "nullable": True},
|
| 121 |
+
# # }
|
| 122 |
+
|
| 123 |
+
# # output_type = "any"
|
| 124 |
+
|
| 125 |
+
# # def __init__(self, api_key:Optional[str] = None, **kwargs):
|
| 126 |
+
# # super().__init__(**kwargs)
|
| 127 |
+
# # if api_key is None:
|
| 128 |
+
# # api_key = os.getenv("TRAVILY_SECRET_KEY")
|
| 129 |
+
# # if not api_key:
|
| 130 |
+
# # raise ValueError(
|
| 131 |
+
# # "Tavily API key not found. Please set the TAVILY_API_KEY environment variable "
|
| 132 |
+
# # "or pass it directly to TavilySearchTool(api_key='YOUR_API_KEY')."
|
| 133 |
+
# # )
|
| 134 |
+
# # self.tavily_client = TavilyClient(api_key=api_key)
|
| 135 |
+
# # print('TavilyClient is initiated')
|
| 136 |
+
|
| 137 |
+
# # def forward(self, query: str,
|
| 138 |
+
# # max_results: int = 5,
|
| 139 |
+
# # include_answer: bool = False,
|
| 140 |
+
# # include_raw_content: bool = False,
|
| 141 |
+
# # search_depth: str = "basic",
|
| 142 |
+
# # topic: str = "general",
|
| 143 |
+
# # time_range: Optional[str] = None,
|
| 144 |
+
# # include_domains: Optional[List[str]] = None,
|
| 145 |
+
# # exclude_domains: Optional[List[str]] = None) -> List[Dict[str, Any]]:
|
| 146 |
+
# # """
|
| 147 |
+
# # Executes a search query using the Tavily API.
|
| 148 |
+
|
| 149 |
+
# # Args:
|
| 150 |
+
# # query (str): The search query.
|
| 151 |
+
# # max_results (int): Maximum number of search results to return.
|
| 152 |
+
# # include_answer (bool): Whether to include a direct answer synthesized from the search results.
|
| 153 |
+
# # include_raw_content (bool): Whether to include the raw HTML content of the searched pages.
|
| 154 |
+
# # search_depth (str): Depth of the search, either 'basic' or 'advanced'.
|
| 155 |
+
# # topic (str): Category of the search. Can be 'general', 'news', or 'finance'.
|
| 156 |
+
# # time_range (Optional[str]): The time range back from the current date to filter results - 'day', 'week', 'month', or 'year'.
|
| 157 |
+
# # include_domains (Optional[List[str]]): List of domains to specifically include.
|
| 158 |
+
# # exclude_domains (Optional[List[str]]): List of domains to specifically exclude.
|
| 159 |
+
|
| 160 |
+
# # Returns:
|
| 161 |
+
# # List[Dict[str, Any]]: A list of dictionaries, where each dictionary represents a search result.
|
| 162 |
+
# # Each result typically contains 'title', 'url', and 'content'.
|
| 163 |
+
# # If include_answer is True, it will also include the 'answer' field
|
| 164 |
+
# # in the top-level response.
|
| 165 |
+
# # """
|
| 166 |
+
# # try:
|
| 167 |
+
# # response = self.tavily_client.search(
|
| 168 |
+
# # query=query,
|
| 169 |
+
# # max_results=max_results,
|
| 170 |
+
# # include_answer=include_answer,
|
| 171 |
+
# # include_raw_content=include_raw_content,
|
| 172 |
+
# # search_depth=search_depth,
|
| 173 |
+
# # topic=topic,
|
| 174 |
+
# # time_range=time_range,
|
| 175 |
+
# # include_domains=include_domains,
|
| 176 |
+
# # exclude_domains=exclude_domains
|
| 177 |
+
# # )
|
| 178 |
+
|
| 179 |
+
# # return response
|
| 180 |
+
|
| 181 |
+
# # except Exception as e:
|
| 182 |
+
# # return [{"error": f"Tavily Search Error: {e}"}]
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
# class WebSearchTool(Tool):
|
| 187 |
+
# name = "web_search"
|
| 188 |
+
# description = """
|
| 189 |
+
# A tool to perform comprehensive web searches using the Tavily Search API.
|
| 190 |
+
# It can retrieve real-time, accurate, and factual information from across the web.
|
| 191 |
+
# Useful for answering questions, gathering information, and reducing hallucinations."""
|
| 192 |
+
|
| 193 |
+
# inputs = {
|
| 194 |
+
# "query": {"type": "string",
|
| 195 |
+
# "description": "The search query string."
|
| 196 |
+
# }
|
| 197 |
+
# }
|
| 198 |
+
|
| 199 |
+
# output_type = "any"
|
| 200 |
+
|
| 201 |
+
# def __init__(self, api_key:Optional[str] = None, **kwargs):
|
| 202 |
+
# super().__init__(**kwargs)
|
| 203 |
+
# if api_key is None:
|
| 204 |
+
# api_key = os.getenv("TRAVILY_SECRET_KEY")
|
| 205 |
+
# if not api_key:
|
| 206 |
+
# raise ValueError(
|
| 207 |
+
# "Tavily API key not found. Please set the TAVILY_API_KEY environment variable "
|
| 208 |
+
# "or pass it directly to TavilySearchTool(api_key='YOUR_API_KEY')."
|
| 209 |
+
# )
|
| 210 |
+
# self.tavily_client = TavilyClient(api_key=api_key)
|
| 211 |
+
# print('TavilyClient is initiated')
|
| 212 |
+
|
| 213 |
+
# def forward(self,
|
| 214 |
+
# query: str) -> Any:
|
| 215 |
+
# try:
|
| 216 |
+
# print(f'trying travily search...')
|
| 217 |
+
# response = self.tavily_client.search(
|
| 218 |
+
# query=query,
|
| 219 |
+
# max_results=5,
|
| 220 |
+
# search_depth="advanced",
|
| 221 |
+
# topic='general',
|
| 222 |
+
# )
|
| 223 |
+
# #print(response)
|
| 224 |
+
# if "results" in response:
|
| 225 |
+
# return response.get("results", [])
|
| 226 |
+
# else:
|
| 227 |
+
# return('try shorter query or different approach.')
|
| 228 |
+
|
| 229 |
+
# except Exception as e:
|
| 230 |
+
# return [{"error": f"Tavily Search Error: {e}"}]
|
Tools/transcriber.py
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from smolagents import tool
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
| 4 |
+
|
| 5 |
+
@tool
|
| 6 |
+
def transcriber(audio_file_path:str) -> str:
|
| 7 |
+
"""
|
| 8 |
+
This tool transcribes an audio file and returns the generated transcription.
|
| 9 |
+
|
| 10 |
+
Args:
|
| 11 |
+
audio_file_path: Path of a local audio file that needs to be transcribed.
|
| 12 |
+
"""
|
| 13 |
+
|
| 14 |
+
try:
|
| 15 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 16 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 17 |
+
|
| 18 |
+
model_id = "openai/whisper-small"
|
| 19 |
+
|
| 20 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
| 21 |
+
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
| 22 |
+
)
|
| 23 |
+
model.to(device)
|
| 24 |
+
|
| 25 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
| 26 |
+
|
| 27 |
+
pipe = pipeline(
|
| 28 |
+
"automatic-speech-recognition",
|
| 29 |
+
model=model,
|
| 30 |
+
tokenizer=processor.tokenizer,
|
| 31 |
+
feature_extractor=processor.feature_extractor,
|
| 32 |
+
torch_dtype=torch_dtype,
|
| 33 |
+
device=device,
|
| 34 |
+
return_timestamps=True
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
result = pipe(audio_file_path)
|
| 38 |
+
|
| 39 |
+
import gc
|
| 40 |
+
|
| 41 |
+
# After inference
|
| 42 |
+
del pipe
|
| 43 |
+
del model
|
| 44 |
+
del processor
|
| 45 |
+
gc.collect() # Force Python garbage collection
|
| 46 |
+
torch.cuda.empty_cache() # Clear cached memory
|
| 47 |
+
|
| 48 |
+
return result["text"]
|
| 49 |
+
except Exception as e:
|
| 50 |
+
return f'error occured: {e}'
|
Tools/visual_reasoner.py
ADDED
|
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor
|
| 2 |
+
from qwen_vl_utils import process_vision_info
|
| 3 |
+
from smolagents import tool
|
| 4 |
+
import torch
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
@tool
|
| 8 |
+
def video_reasoner(file_path : str, query : str) -> str:
|
| 9 |
+
"""
|
| 10 |
+
This tool performs requested visual reasoning task on the provided video and returns the generated output.
|
| 11 |
+
|
| 12 |
+
Args:
|
| 13 |
+
file_path: Path of a local video file on which visual reasoning is to be done.
|
| 14 |
+
query: visual reasoning that is to be done.
|
| 15 |
+
"""
|
| 16 |
+
try:
|
| 17 |
+
# default: Load the model on the available device(s)
|
| 18 |
+
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 19 |
+
"Qwen/Qwen2.5-VL-7B-Instruct", torch_dtype="auto", device_map="auto"
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
# default processer
|
| 23 |
+
processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")
|
| 24 |
+
|
| 25 |
+
messages = [
|
| 26 |
+
{
|
| 27 |
+
"role": "user",
|
| 28 |
+
"content": [
|
| 29 |
+
{
|
| 30 |
+
"type": "video",
|
| 31 |
+
"video": file_path,
|
| 32 |
+
"max_pixels": 360 * 360,
|
| 33 |
+
"fps": 0.3,
|
| 34 |
+
},
|
| 35 |
+
{"type": "text", "text": f"{query}\n\nAdditional instruction: Treat the two types of penguins as distinct species e.g. Adelie and Emperor Penguins are considered two different species of birds."},
|
| 36 |
+
],
|
| 37 |
+
}
|
| 38 |
+
]
|
| 39 |
+
|
| 40 |
+
# Preparation for inference
|
| 41 |
+
text = processor.apply_chat_template(
|
| 42 |
+
messages, tokenize=False, add_generation_prompt=True
|
| 43 |
+
)
|
| 44 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
| 45 |
+
inputs = processor(
|
| 46 |
+
text=[text],
|
| 47 |
+
images=image_inputs,
|
| 48 |
+
videos=video_inputs,
|
| 49 |
+
padding=True,
|
| 50 |
+
return_tensors="pt",
|
| 51 |
+
)
|
| 52 |
+
inputs = inputs.to("cuda")
|
| 53 |
+
|
| 54 |
+
# Inference: Generation of the output
|
| 55 |
+
generated_ids = model.generate(**inputs, max_new_tokens=512)
|
| 56 |
+
generated_ids_trimmed = [
|
| 57 |
+
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
| 58 |
+
]
|
| 59 |
+
output_text = processor.batch_decode(
|
| 60 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
import gc
|
| 64 |
+
|
| 65 |
+
# After inference
|
| 66 |
+
del image_inputs
|
| 67 |
+
del video_inputs
|
| 68 |
+
del inputs
|
| 69 |
+
del model
|
| 70 |
+
del processor
|
| 71 |
+
gc.collect() # Force Python garbage collection
|
| 72 |
+
torch.cuda.empty_cache() # Clear cached memory
|
| 73 |
+
|
| 74 |
+
return output_text
|
| 75 |
+
|
| 76 |
+
except Exception as e:
|
| 77 |
+
return f'error occured: {e}'
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
@tool
|
| 81 |
+
def image_reasoner(file_path : str, query : str) -> str:
|
| 82 |
+
"""
|
| 83 |
+
This tool performs requested visual reasoning task on the provided image and returns the generated output.
|
| 84 |
+
|
| 85 |
+
Args:
|
| 86 |
+
file_path: Path of a local image file on which visual reasoning is to be done.
|
| 87 |
+
query: visual reasoning that is to be done.
|
| 88 |
+
"""
|
| 89 |
+
try:
|
| 90 |
+
# default: Load the model on the available device(s)
|
| 91 |
+
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 92 |
+
"Qwen/Qwen2.5-VL-7B-Instruct", torch_dtype="auto", device_map="auto"
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
# default processer
|
| 96 |
+
processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")
|
| 97 |
+
|
| 98 |
+
messages = [
|
| 99 |
+
{
|
| 100 |
+
"role": "user",
|
| 101 |
+
"content": [
|
| 102 |
+
{
|
| 103 |
+
"type": "image",
|
| 104 |
+
"image": file_path,
|
| 105 |
+
},
|
| 106 |
+
{"type": "text", "text": f"{query}\n\nAdditional instruction: Review your answer for correctness."},
|
| 107 |
+
],
|
| 108 |
+
}
|
| 109 |
+
]
|
| 110 |
+
|
| 111 |
+
# Preparation for inference
|
| 112 |
+
text = processor.apply_chat_template(
|
| 113 |
+
messages, tokenize=False, add_generation_prompt=True
|
| 114 |
+
)
|
| 115 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
| 116 |
+
inputs = processor(
|
| 117 |
+
text=[text],
|
| 118 |
+
images=image_inputs,
|
| 119 |
+
videos=video_inputs,
|
| 120 |
+
padding=True,
|
| 121 |
+
return_tensors="pt",
|
| 122 |
+
)
|
| 123 |
+
inputs = inputs.to("cuda")
|
| 124 |
+
|
| 125 |
+
# Inference: Generation of the output
|
| 126 |
+
generated_ids = model.generate(**inputs, max_new_tokens=512)
|
| 127 |
+
generated_ids_trimmed = [
|
| 128 |
+
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
| 129 |
+
]
|
| 130 |
+
output_text = processor.batch_decode(
|
| 131 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
| 132 |
+
)
|
| 133 |
+
|
| 134 |
+
import gc
|
| 135 |
+
|
| 136 |
+
# After inference
|
| 137 |
+
del image_inputs
|
| 138 |
+
del video_inputs
|
| 139 |
+
del inputs
|
| 140 |
+
del model
|
| 141 |
+
del processor
|
| 142 |
+
gc.collect() # Force Python garbage collection
|
| 143 |
+
torch.cuda.empty_cache() # Clear cached memory
|
| 144 |
+
|
| 145 |
+
return output_text
|
| 146 |
+
|
| 147 |
+
except Exception as e:
|
| 148 |
+
return f'error occured: {e}'
|
Tools/ytdownload.py
ADDED
|
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!apt update && apt install -y ffmpeg
|
| 2 |
+
import yt_dlp
|
| 3 |
+
from smolagents import tool
|
| 4 |
+
import os
|
| 5 |
+
|
| 6 |
+
@tool
|
| 7 |
+
def youtube_audio_downloader(video_url:str) ->str :
|
| 8 |
+
"""
|
| 9 |
+
This tool downloads the audio of a Youtube video given a Youtube Url and returns the downlaoded path.
|
| 10 |
+
|
| 11 |
+
Args:
|
| 12 |
+
video_url: URL of the Youtube video.
|
| 13 |
+
"""
|
| 14 |
+
ydl_opts = {
|
| 15 |
+
'format': 'bestaudio/best',
|
| 16 |
+
'outtmpl': './downloads/%(title)s.%(ext)s',
|
| 17 |
+
'postprocessors': [{
|
| 18 |
+
'key': 'FFmpegExtractAudio',
|
| 19 |
+
'preferredcodec': 'mp3',
|
| 20 |
+
'preferredquality': '192',
|
| 21 |
+
}],
|
| 22 |
+
}
|
| 23 |
+
|
| 24 |
+
try:
|
| 25 |
+
os.makedirs("./downloads", exist_ok=True)
|
| 26 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
| 27 |
+
info = ydl.extract_info(video_url, download=True)
|
| 28 |
+
title = info['title']
|
| 29 |
+
filepath = f"./downloads/{title}.mp3"
|
| 30 |
+
return filepath
|
| 31 |
+
except Exception as e:
|
| 32 |
+
return f'error occured: {e}'
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
@tool
|
| 36 |
+
def youtube_video_downloader(video_url:str) ->str :
|
| 37 |
+
"""
|
| 38 |
+
This tool downloads the Youtube video given a Youtube Url and returns the downlaoded path.
|
| 39 |
+
|
| 40 |
+
Args:
|
| 41 |
+
video_url: URL of the Youtube video.
|
| 42 |
+
"""
|
| 43 |
+
ydl_opts = {
|
| 44 |
+
#'format': 'bestvideo+bestaudio/best',
|
| 45 |
+
'format': 'bestvideo[height<=720][vcodec^=avc1]+bestaudio[acodec^=mp4a]/best[ext=mp4]',
|
| 46 |
+
'outtmpl': 'downloads/%(title)s.%(ext)s',
|
| 47 |
+
'merge_output_format': 'mp4',
|
| 48 |
+
|
| 49 |
+
'writesubtitles': True, # Download user-provided subtitles
|
| 50 |
+
'subtitleslangs': ['en'], # Use your preferred language(s)
|
| 51 |
+
'embedsubtitles': True, # Enable embedding into video
|
| 52 |
+
|
| 53 |
+
'postprocessors': [
|
| 54 |
+
{'key': 'FFmpegEmbedSubtitle'} # Actually does the embedding
|
| 55 |
+
]
|
| 56 |
+
}
|
| 57 |
+
|
| 58 |
+
try:
|
| 59 |
+
os.makedirs("./downloads", exist_ok=True)
|
| 60 |
+
|
| 61 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
| 62 |
+
info = ydl.extract_info(video_url, download=True)
|
| 63 |
+
title = info.get('title')
|
| 64 |
+
filepath = f"./downloads/{title}.mp4"
|
| 65 |
+
if not os.path.exists(filepath):
|
| 66 |
+
return f"Error: File not found after download: {filepath}"
|
| 67 |
+
return filepath
|
| 68 |
+
except Exception as e:
|
| 69 |
+
return f'error occured while downloading the video: {e}'
|