Spaces:
Configuration error
Configuration error
| # Copy from diffusers.models.attention.py | |
| # Copyright 2024 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from typing import Any, Dict, Optional | |
| import torch | |
| import torch.nn.functional as F | |
| from torch import nn | |
| from diffusers.utils import deprecate, logging | |
| from diffusers.utils.torch_utils import maybe_allow_in_graph | |
| from diffusers.models.activations import GEGLU, GELU, ApproximateGELU | |
| from diffusers.models.attention_processor import Attention | |
| from diffusers.models.embeddings import SinusoidalPositionalEmbedding | |
| from diffusers.models.normalization import AdaLayerNorm, AdaLayerNormContinuous, AdaLayerNormZero, RMSNorm | |
| from module.min_sdxl import LoRACompatibleLinear, LoRALinearLayer | |
| logger = logging.get_logger(__name__) | |
| def create_custom_forward(module): | |
| def custom_forward(*inputs): | |
| return module(*inputs) | |
| return custom_forward | |
| def get_encoder_trainable_params(encoder): | |
| trainable_params = [] | |
| for module in encoder.modules(): | |
| if isinstance(module, ExtractKVTransformerBlock): | |
| # If LORA exists in attn1, train them. Otherwise, attn1 is frozen | |
| # NOTE: not sure if we want it under a different subset | |
| if module.attn1.to_k.lora_layer is not None: | |
| trainable_params.extend(module.attn1.to_k.lora_layer.parameters()) | |
| trainable_params.extend(module.attn1.to_v.lora_layer.parameters()) | |
| trainable_params.extend(module.attn1.to_q.lora_layer.parameters()) | |
| trainable_params.extend(module.attn1.to_out[0].lora_layer.parameters()) | |
| if module.attn2.to_k.lora_layer is not None: | |
| trainable_params.extend(module.attn2.to_k.lora_layer.parameters()) | |
| trainable_params.extend(module.attn2.to_v.lora_layer.parameters()) | |
| trainable_params.extend(module.attn2.to_q.lora_layer.parameters()) | |
| trainable_params.extend(module.attn2.to_out[0].lora_layer.parameters()) | |
| # If LORAs exist in kvcopy layers, train only them | |
| if module.extract_kv1.to_k.lora_layer is not None: | |
| trainable_params.extend(module.extract_kv1.to_k.lora_layer.parameters()) | |
| trainable_params.extend(module.extract_kv1.to_v.lora_layer.parameters()) | |
| else: | |
| trainable_params.extend(module.extract_kv1.to_k.parameters()) | |
| trainable_params.extend(module.extract_kv1.to_v.parameters()) | |
| return trainable_params | |
| def get_adapter_layers(encoder): | |
| adapter_layers = [] | |
| for module in encoder.modules(): | |
| if isinstance(module, ExtractKVTransformerBlock): | |
| adapter_layers.append(module.extract_kv2) | |
| return adapter_layers | |
| def get_adapter_trainable_params(encoder): | |
| adapter_layers = get_adapter_layers(encoder) | |
| trainable_params = [] | |
| for layer in adapter_layers: | |
| trainable_params.extend(layer.to_v.parameters()) | |
| trainable_params.extend(layer.to_k.parameters()) | |
| return trainable_params | |
| def maybe_grad_checkpoint(resnet, attn, hidden_states, temb, encoder_hidden_states, adapter_hidden_states, do_ckpt=True): | |
| if do_ckpt: | |
| hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) | |
| hidden_states, extracted_kv = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(attn), hidden_states, encoder_hidden_states, adapter_hidden_states, use_reentrant=False | |
| ) | |
| else: | |
| hidden_states = resnet(hidden_states, temb) | |
| hidden_states, extracted_kv = attn( | |
| hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| adapter_hidden_states=adapter_hidden_states, | |
| ) | |
| return hidden_states, extracted_kv | |
| def init_lora_in_attn(attn_module, rank: int = 4, is_kvcopy=False): | |
| # Set the `lora_layer` attribute of the attention-related matrices. | |
| attn_module.to_k.set_lora_layer( | |
| LoRALinearLayer( | |
| in_features=attn_module.to_k.in_features, out_features=attn_module.to_k.out_features, rank=rank | |
| ) | |
| ) | |
| attn_module.to_v.set_lora_layer( | |
| LoRALinearLayer( | |
| in_features=attn_module.to_v.in_features, out_features=attn_module.to_v.out_features, rank=rank | |
| ) | |
| ) | |
| if not is_kvcopy: | |
| attn_module.to_q.set_lora_layer( | |
| LoRALinearLayer( | |
| in_features=attn_module.to_q.in_features, out_features=attn_module.to_q.out_features, rank=rank | |
| ) | |
| ) | |
| attn_module.to_out[0].set_lora_layer( | |
| LoRALinearLayer( | |
| in_features=attn_module.to_out[0].in_features, | |
| out_features=attn_module.to_out[0].out_features, | |
| rank=rank, | |
| ) | |
| ) | |
| def drop_kvs(encoder_kvs, drop_chance): | |
| for layer in encoder_kvs: | |
| len_tokens = encoder_kvs[layer].self_attention.k.shape[1] | |
| idx_to_keep = (torch.rand(len_tokens) > drop_chance) | |
| encoder_kvs[layer].self_attention.k = encoder_kvs[layer].self_attention.k[:, idx_to_keep] | |
| encoder_kvs[layer].self_attention.v = encoder_kvs[layer].self_attention.v[:, idx_to_keep] | |
| return encoder_kvs | |
| def clone_kvs(encoder_kvs): | |
| cloned_kvs = {} | |
| for layer in encoder_kvs: | |
| sa_cpy = KVCache(k=encoder_kvs[layer].self_attention.k.clone(), | |
| v=encoder_kvs[layer].self_attention.v.clone()) | |
| ca_cpy = KVCache(k=encoder_kvs[layer].cross_attention.k.clone(), | |
| v=encoder_kvs[layer].cross_attention.v.clone()) | |
| cloned_layer_cache = AttentionCache(self_attention=sa_cpy, cross_attention=ca_cpy) | |
| cloned_kvs[layer] = cloned_layer_cache | |
| return cloned_kvs | |
| class KVCache(object): | |
| def __init__(self, k, v): | |
| self.k = k | |
| self.v = v | |
| class AttentionCache(object): | |
| def __init__(self, self_attention: KVCache, cross_attention: KVCache): | |
| self.self_attention = self_attention | |
| self.cross_attention = cross_attention | |
| class KVCopy(nn.Module): | |
| def __init__( | |
| self, inner_dim, cross_attention_dim=None, | |
| ): | |
| super(KVCopy, self).__init__() | |
| in_dim = cross_attention_dim or inner_dim | |
| self.to_k = LoRACompatibleLinear(in_dim, inner_dim, bias=False) | |
| self.to_v = LoRACompatibleLinear(in_dim, inner_dim, bias=False) | |
| def forward(self, hidden_states): | |
| k = self.to_k(hidden_states) | |
| v = self.to_v(hidden_states) | |
| return KVCache(k=k, v=v) | |
| def init_kv_copy(self, source_attn): | |
| with torch.no_grad(): | |
| self.to_k.weight.copy_(source_attn.to_k.weight) | |
| self.to_v.weight.copy_(source_attn.to_v.weight) | |
| class FeedForward(nn.Module): | |
| r""" | |
| A feed-forward layer. | |
| Parameters: | |
| dim (`int`): The number of channels in the input. | |
| dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`. | |
| mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension. | |
| dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
| activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. | |
| final_dropout (`bool` *optional*, defaults to False): Apply a final dropout. | |
| bias (`bool`, defaults to True): Whether to use a bias in the linear layer. | |
| """ | |
| def __init__( | |
| self, | |
| dim: int, | |
| dim_out: Optional[int] = None, | |
| mult: int = 4, | |
| dropout: float = 0.0, | |
| activation_fn: str = "geglu", | |
| final_dropout: bool = False, | |
| inner_dim=None, | |
| bias: bool = True, | |
| ): | |
| super().__init__() | |
| if inner_dim is None: | |
| inner_dim = int(dim * mult) | |
| dim_out = dim_out if dim_out is not None else dim | |
| if activation_fn == "gelu": | |
| act_fn = GELU(dim, inner_dim, bias=bias) | |
| if activation_fn == "gelu-approximate": | |
| act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias) | |
| elif activation_fn == "geglu": | |
| act_fn = GEGLU(dim, inner_dim, bias=bias) | |
| elif activation_fn == "geglu-approximate": | |
| act_fn = ApproximateGELU(dim, inner_dim, bias=bias) | |
| self.net = nn.ModuleList([]) | |
| # project in | |
| self.net.append(act_fn) | |
| # project dropout | |
| self.net.append(nn.Dropout(dropout)) | |
| # project out | |
| self.net.append(nn.Linear(inner_dim, dim_out, bias=bias)) | |
| # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout | |
| if final_dropout: | |
| self.net.append(nn.Dropout(dropout)) | |
| def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor: | |
| if len(args) > 0 or kwargs.get("scale", None) is not None: | |
| deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." | |
| deprecate("scale", "1.0.0", deprecation_message) | |
| for module in self.net: | |
| hidden_states = module(hidden_states) | |
| return hidden_states | |
| def _chunked_feed_forward(ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int): | |
| # "feed_forward_chunk_size" can be used to save memory | |
| if hidden_states.shape[chunk_dim] % chunk_size != 0: | |
| raise ValueError( | |
| f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`." | |
| ) | |
| num_chunks = hidden_states.shape[chunk_dim] // chunk_size | |
| ff_output = torch.cat( | |
| [ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)], | |
| dim=chunk_dim, | |
| ) | |
| return ff_output | |
| class GatedSelfAttentionDense(nn.Module): | |
| r""" | |
| A gated self-attention dense layer that combines visual features and object features. | |
| Parameters: | |
| query_dim (`int`): The number of channels in the query. | |
| context_dim (`int`): The number of channels in the context. | |
| n_heads (`int`): The number of heads to use for attention. | |
| d_head (`int`): The number of channels in each head. | |
| """ | |
| def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int): | |
| super().__init__() | |
| # we need a linear projection since we need cat visual feature and obj feature | |
| self.linear = nn.Linear(context_dim, query_dim) | |
| self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head) | |
| self.ff = FeedForward(query_dim, activation_fn="geglu") | |
| self.norm1 = nn.LayerNorm(query_dim) | |
| self.norm2 = nn.LayerNorm(query_dim) | |
| self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0))) | |
| self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0))) | |
| self.enabled = True | |
| def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor: | |
| if not self.enabled: | |
| return x | |
| n_visual = x.shape[1] | |
| objs = self.linear(objs) | |
| x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :] | |
| x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x)) | |
| return x | |
| class ExtractKVTransformerBlock(nn.Module): | |
| r""" | |
| A Transformer block that also outputs KV metrics. | |
| Parameters: | |
| dim (`int`): The number of channels in the input and output. | |
| num_attention_heads (`int`): The number of heads to use for multi-head attention. | |
| attention_head_dim (`int`): The number of channels in each head. | |
| dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
| cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. | |
| activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. | |
| num_embeds_ada_norm (: | |
| obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`. | |
| attention_bias (: | |
| obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter. | |
| only_cross_attention (`bool`, *optional*): | |
| Whether to use only cross-attention layers. In this case two cross attention layers are used. | |
| double_self_attention (`bool`, *optional*): | |
| Whether to use two self-attention layers. In this case no cross attention layers are used. | |
| upcast_attention (`bool`, *optional*): | |
| Whether to upcast the attention computation to float32. This is useful for mixed precision training. | |
| norm_elementwise_affine (`bool`, *optional*, defaults to `True`): | |
| Whether to use learnable elementwise affine parameters for normalization. | |
| norm_type (`str`, *optional*, defaults to `"layer_norm"`): | |
| The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`. | |
| final_dropout (`bool` *optional*, defaults to False): | |
| Whether to apply a final dropout after the last feed-forward layer. | |
| attention_type (`str`, *optional*, defaults to `"default"`): | |
| The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`. | |
| positional_embeddings (`str`, *optional*, defaults to `None`): | |
| The type of positional embeddings to apply to. | |
| num_positional_embeddings (`int`, *optional*, defaults to `None`): | |
| The maximum number of positional embeddings to apply. | |
| """ | |
| def __init__( | |
| self, | |
| dim: int, # Originally hidden_size | |
| num_attention_heads: int, | |
| attention_head_dim: int, | |
| dropout=0.0, | |
| cross_attention_dim: Optional[int] = None, | |
| activation_fn: str = "geglu", | |
| num_embeds_ada_norm: Optional[int] = None, | |
| attention_bias: bool = False, | |
| only_cross_attention: bool = False, | |
| double_self_attention: bool = False, | |
| upcast_attention: bool = False, | |
| norm_elementwise_affine: bool = True, | |
| norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single', 'ada_norm_continuous', 'layer_norm_i2vgen' | |
| norm_eps: float = 1e-5, | |
| final_dropout: bool = False, | |
| attention_type: str = "default", | |
| positional_embeddings: Optional[str] = None, | |
| num_positional_embeddings: Optional[int] = None, | |
| ada_norm_continous_conditioning_embedding_dim: Optional[int] = None, | |
| ada_norm_bias: Optional[int] = None, | |
| ff_inner_dim: Optional[int] = None, | |
| ff_bias: bool = True, | |
| attention_out_bias: bool = True, | |
| extract_self_attention_kv: bool = False, | |
| extract_cross_attention_kv: bool = False, | |
| ): | |
| super().__init__() | |
| self.only_cross_attention = only_cross_attention | |
| # We keep these boolean flags for backward-compatibility. | |
| self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" | |
| self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" | |
| self.use_ada_layer_norm_single = norm_type == "ada_norm_single" | |
| self.use_layer_norm = norm_type == "layer_norm" | |
| self.use_ada_layer_norm_continuous = norm_type == "ada_norm_continuous" | |
| if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: | |
| raise ValueError( | |
| f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" | |
| f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}." | |
| ) | |
| self.norm_type = norm_type | |
| self.num_embeds_ada_norm = num_embeds_ada_norm | |
| if positional_embeddings and (num_positional_embeddings is None): | |
| raise ValueError( | |
| "If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined." | |
| ) | |
| if positional_embeddings == "sinusoidal": | |
| self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings) | |
| else: | |
| self.pos_embed = None | |
| # Define 3 blocks. Each block has its own normalization layer. | |
| # 1. Self-Attn | |
| if norm_type == "ada_norm": | |
| self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) | |
| elif norm_type == "ada_norm_zero": | |
| self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm) | |
| elif norm_type == "ada_norm_continuous": | |
| self.norm1 = AdaLayerNormContinuous( | |
| dim, | |
| ada_norm_continous_conditioning_embedding_dim, | |
| norm_elementwise_affine, | |
| norm_eps, | |
| ada_norm_bias, | |
| "rms_norm", | |
| ) | |
| else: | |
| self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
| self.attn1 = Attention( | |
| query_dim=dim, | |
| heads=num_attention_heads, | |
| dim_head=attention_head_dim, | |
| dropout=dropout, | |
| bias=attention_bias, | |
| cross_attention_dim=cross_attention_dim if only_cross_attention else None, | |
| upcast_attention=upcast_attention, | |
| out_bias=attention_out_bias, | |
| ) | |
| if extract_self_attention_kv: | |
| self.extract_kv1 = KVCopy(cross_attention_dim=cross_attention_dim if only_cross_attention else None, inner_dim=dim) | |
| # 2. Cross-Attn | |
| if cross_attention_dim is not None or double_self_attention: | |
| # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. | |
| # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during | |
| # the second cross attention block. | |
| if norm_type == "ada_norm": | |
| self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) | |
| elif norm_type == "ada_norm_continuous": | |
| self.norm2 = AdaLayerNormContinuous( | |
| dim, | |
| ada_norm_continous_conditioning_embedding_dim, | |
| norm_elementwise_affine, | |
| norm_eps, | |
| ada_norm_bias, | |
| "rms_norm", | |
| ) | |
| else: | |
| self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine) | |
| self.attn2 = Attention( | |
| query_dim=dim, | |
| cross_attention_dim=cross_attention_dim if not double_self_attention else None, | |
| heads=num_attention_heads, | |
| dim_head=attention_head_dim, | |
| dropout=dropout, | |
| bias=attention_bias, | |
| upcast_attention=upcast_attention, | |
| out_bias=attention_out_bias, | |
| ) # is self-attn if encoder_hidden_states is none | |
| if extract_cross_attention_kv: | |
| self.extract_kv2 = KVCopy(cross_attention_dim=None, inner_dim=dim) | |
| else: | |
| self.norm2 = None | |
| self.attn2 = None | |
| # 3. Feed-forward | |
| if norm_type == "ada_norm_continuous": | |
| self.norm3 = AdaLayerNormContinuous( | |
| dim, | |
| ada_norm_continous_conditioning_embedding_dim, | |
| norm_elementwise_affine, | |
| norm_eps, | |
| ada_norm_bias, | |
| "layer_norm", | |
| ) | |
| elif norm_type in ["ada_norm_zero", "ada_norm", "layer_norm", "ada_norm_continuous"]: | |
| self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine) | |
| elif norm_type == "layer_norm_i2vgen": | |
| self.norm3 = None | |
| self.ff = FeedForward( | |
| dim, | |
| dropout=dropout, | |
| activation_fn=activation_fn, | |
| final_dropout=final_dropout, | |
| inner_dim=ff_inner_dim, | |
| bias=ff_bias, | |
| ) | |
| # 4. Fuser | |
| if attention_type == "gated" or attention_type == "gated-text-image": | |
| self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim) | |
| # 5. Scale-shift for PixArt-Alpha. | |
| if norm_type == "ada_norm_single": | |
| self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5) | |
| # let chunk size default to None | |
| self._chunk_size = None | |
| self._chunk_dim = 0 | |
| def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0): | |
| # Sets chunk feed-forward | |
| self._chunk_size = chunk_size | |
| self._chunk_dim = dim | |
| def forward( | |
| self, | |
| hidden_states: torch.FloatTensor, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
| encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
| timestep: Optional[torch.LongTensor] = None, | |
| cross_attention_kwargs: Dict[str, Any] = None, | |
| class_labels: Optional[torch.LongTensor] = None, | |
| added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, | |
| ) -> torch.FloatTensor: | |
| if cross_attention_kwargs is not None: | |
| if cross_attention_kwargs.get("scale", None) is not None: | |
| logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") | |
| # Notice that normalization is always applied before the real computation in the following blocks. | |
| # 0. Self-Attention | |
| batch_size = hidden_states.shape[0] | |
| if self.norm_type == "ada_norm": | |
| norm_hidden_states = self.norm1(hidden_states, timestep) | |
| elif self.norm_type == "ada_norm_zero": | |
| norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( | |
| hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype | |
| ) | |
| elif self.norm_type in ["layer_norm", "layer_norm_i2vgen"]: | |
| norm_hidden_states = self.norm1(hidden_states) | |
| elif self.norm_type == "ada_norm_continuous": | |
| norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs["pooled_text_emb"]) | |
| elif self.norm_type == "ada_norm_single": | |
| shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( | |
| self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1) | |
| ).chunk(6, dim=1) | |
| norm_hidden_states = self.norm1(hidden_states) | |
| norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa | |
| norm_hidden_states = norm_hidden_states.squeeze(1) | |
| else: | |
| raise ValueError("Incorrect norm used") | |
| if self.pos_embed is not None: | |
| norm_hidden_states = self.pos_embed(norm_hidden_states) | |
| # 1. Prepare GLIGEN inputs | |
| cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {} | |
| gligen_kwargs = cross_attention_kwargs.pop("gligen", None) | |
| kv_drop_idx = cross_attention_kwargs.pop("kv_drop_idx", None) | |
| if hasattr(self, "extract_kv1"): | |
| kv_out_self = self.extract_kv1(norm_hidden_states) | |
| if kv_drop_idx is not None: | |
| zero_kv_out_self_k = torch.zeros_like(kv_out_self.k) | |
| kv_out_self.k[kv_drop_idx] = zero_kv_out_self_k[kv_drop_idx] | |
| zero_kv_out_self_v = torch.zeros_like(kv_out_self.v) | |
| kv_out_self.v[kv_drop_idx] = zero_kv_out_self_v[kv_drop_idx] | |
| else: | |
| kv_out_self = None | |
| attn_output = self.attn1( | |
| norm_hidden_states, | |
| encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, | |
| attention_mask=attention_mask, | |
| **cross_attention_kwargs, | |
| ) | |
| if self.norm_type == "ada_norm_zero": | |
| attn_output = gate_msa.unsqueeze(1) * attn_output | |
| elif self.norm_type == "ada_norm_single": | |
| attn_output = gate_msa * attn_output | |
| hidden_states = attn_output + hidden_states | |
| if hidden_states.ndim == 4: | |
| hidden_states = hidden_states.squeeze(1) | |
| # 1.2 GLIGEN Control | |
| if gligen_kwargs is not None: | |
| hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"]) | |
| # 3. Cross-Attention | |
| if self.attn2 is not None: | |
| if self.norm_type == "ada_norm": | |
| norm_hidden_states = self.norm2(hidden_states, timestep) | |
| elif self.norm_type in ["ada_norm_zero", "layer_norm", "layer_norm_i2vgen"]: | |
| norm_hidden_states = self.norm2(hidden_states) | |
| elif self.norm_type == "ada_norm_single": | |
| # For PixArt norm2 isn't applied here: | |
| # https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103 | |
| norm_hidden_states = hidden_states | |
| elif self.norm_type == "ada_norm_continuous": | |
| norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs["pooled_text_emb"]) | |
| else: | |
| raise ValueError("Incorrect norm") | |
| if self.pos_embed is not None and self.norm_type != "ada_norm_single": | |
| norm_hidden_states = self.pos_embed(norm_hidden_states) | |
| attn_output = self.attn2( | |
| norm_hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| attention_mask=encoder_attention_mask, | |
| temb=timestep, | |
| **cross_attention_kwargs, | |
| ) | |
| hidden_states = attn_output + hidden_states | |
| if hasattr(self, "extract_kv2"): | |
| kv_out_cross = self.extract_kv2(hidden_states) | |
| if kv_drop_idx is not None: | |
| zero_kv_out_cross_k = torch.zeros_like(kv_out_cross.k) | |
| kv_out_cross.k[kv_drop_idx] = zero_kv_out_cross_k[kv_drop_idx] | |
| zero_kv_out_cross_v = torch.zeros_like(kv_out_cross.v) | |
| kv_out_cross.v[kv_drop_idx] = zero_kv_out_cross_v[kv_drop_idx] | |
| else: | |
| kv_out_cross = None | |
| # 4. Feed-forward | |
| # i2vgen doesn't have this norm 🤷♂️ | |
| if self.norm_type == "ada_norm_continuous": | |
| norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs["pooled_text_emb"]) | |
| elif not self.norm_type == "ada_norm_single": | |
| norm_hidden_states = self.norm3(hidden_states) | |
| if self.norm_type == "ada_norm_zero": | |
| norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] | |
| if self.norm_type == "ada_norm_single": | |
| norm_hidden_states = self.norm2(hidden_states) | |
| norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp | |
| if self._chunk_size is not None: | |
| # "feed_forward_chunk_size" can be used to save memory | |
| ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size) | |
| else: | |
| ff_output = self.ff(norm_hidden_states) | |
| if self.norm_type == "ada_norm_zero": | |
| ff_output = gate_mlp.unsqueeze(1) * ff_output | |
| elif self.norm_type == "ada_norm_single": | |
| ff_output = gate_mlp * ff_output | |
| hidden_states = ff_output + hidden_states | |
| if hidden_states.ndim == 4: | |
| hidden_states = hidden_states.squeeze(1) | |
| return hidden_states, AttentionCache(self_attention=kv_out_self, cross_attention=kv_out_cross) | |
| def init_kv_extraction(self): | |
| if hasattr(self, "extract_kv1"): | |
| self.extract_kv1.init_kv_copy(self.attn1) | |
| if hasattr(self, "extract_kv2"): | |
| self.extract_kv2.init_kv_copy(self.attn1) | |