Spaces:
Configuration error
Configuration error
| # Copy from diffusers.models.transformers.transformer_2d.py | |
| # Copyright 2024 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from dataclasses import dataclass | |
| from typing import Any, Dict, Optional | |
| import torch | |
| import torch.nn.functional as F | |
| from torch import nn | |
| from diffusers.configuration_utils import ConfigMixin, register_to_config | |
| from diffusers.utils import BaseOutput, deprecate, is_torch_version, logging | |
| from diffusers.models.attention import BasicTransformerBlock | |
| from diffusers.models.embeddings import ImagePositionalEmbeddings, PatchEmbed, PixArtAlphaTextProjection | |
| from diffusers.models.modeling_utils import ModelMixin | |
| from diffusers.models.normalization import AdaLayerNormSingle | |
| from module.attention import ExtractKVTransformerBlock | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| class ExtractKVTransformer2DModelOutput(BaseOutput): | |
| """ | |
| The output of [`ExtractKVTransformer2DModel`]. | |
| Args: | |
| sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete): | |
| The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability | |
| distributions for the unnoised latent pixels. | |
| """ | |
| sample: torch.FloatTensor | |
| cached_kvs: Dict[str, Any] = None | |
| class ExtractKVTransformer2DModel(ModelMixin, ConfigMixin): | |
| """ | |
| A 2D Transformer model for image-like data which also outputs CrossAttention KV metrics. | |
| Parameters: | |
| num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention. | |
| attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head. | |
| in_channels (`int`, *optional*): | |
| The number of channels in the input and output (specify if the input is **continuous**). | |
| num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use. | |
| dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
| cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use. | |
| sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**). | |
| This is fixed during training since it is used to learn a number of position embeddings. | |
| num_vector_embeds (`int`, *optional*): | |
| The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**). | |
| Includes the class for the masked latent pixel. | |
| activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward. | |
| num_embeds_ada_norm ( `int`, *optional*): | |
| The number of diffusion steps used during training. Pass if at least one of the norm_layers is | |
| `AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are | |
| added to the hidden states. | |
| During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`. | |
| attention_bias (`bool`, *optional*): | |
| Configure if the `TransformerBlocks` attention should contain a bias parameter. | |
| """ | |
| _supports_gradient_checkpointing = True | |
| _no_split_modules = ["BasicTransformerBlock"] | |
| def __init__( | |
| self, | |
| num_attention_heads: int = 16, | |
| attention_head_dim: int = 88, | |
| in_channels: Optional[int] = None, | |
| out_channels: Optional[int] = None, | |
| num_layers: int = 1, | |
| dropout: float = 0.0, | |
| norm_num_groups: int = 32, | |
| cross_attention_dim: Optional[int] = None, | |
| attention_bias: bool = False, | |
| sample_size: Optional[int] = None, | |
| num_vector_embeds: Optional[int] = None, | |
| patch_size: Optional[int] = None, | |
| activation_fn: str = "geglu", | |
| num_embeds_ada_norm: Optional[int] = None, | |
| use_linear_projection: bool = False, | |
| only_cross_attention: bool = False, | |
| double_self_attention: bool = False, | |
| upcast_attention: bool = False, | |
| norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single', 'ada_norm_continuous', 'layer_norm_i2vgen' | |
| norm_elementwise_affine: bool = True, | |
| norm_eps: float = 1e-5, | |
| attention_type: str = "default", | |
| caption_channels: int = None, | |
| interpolation_scale: float = None, | |
| use_additional_conditions: Optional[bool] = None, | |
| extract_self_attention_kv: bool = False, | |
| extract_cross_attention_kv: bool = False, | |
| ): | |
| super().__init__() | |
| # Validate inputs. | |
| if patch_size is not None: | |
| if norm_type not in ["ada_norm", "ada_norm_zero", "ada_norm_single"]: | |
| raise NotImplementedError( | |
| f"Forward pass is not implemented when `patch_size` is not None and `norm_type` is '{norm_type}'." | |
| ) | |
| elif norm_type in ["ada_norm", "ada_norm_zero"] and num_embeds_ada_norm is None: | |
| raise ValueError( | |
| f"When using a `patch_size` and this `norm_type` ({norm_type}), `num_embeds_ada_norm` cannot be None." | |
| ) | |
| # Set some common variables used across the board. | |
| self.use_linear_projection = use_linear_projection | |
| self.interpolation_scale = interpolation_scale | |
| self.caption_channels = caption_channels | |
| self.num_attention_heads = num_attention_heads | |
| self.attention_head_dim = attention_head_dim | |
| self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim | |
| self.in_channels = in_channels | |
| self.out_channels = in_channels if out_channels is None else out_channels | |
| self.gradient_checkpointing = False | |
| if use_additional_conditions is None: | |
| if norm_type == "ada_norm_single" and sample_size == 128: | |
| use_additional_conditions = True | |
| else: | |
| use_additional_conditions = False | |
| self.use_additional_conditions = use_additional_conditions | |
| self.extract_self_attention_kv = extract_self_attention_kv | |
| self.extract_cross_attention_kv = extract_cross_attention_kv | |
| # 1. Transformer2DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)` | |
| # Define whether input is continuous or discrete depending on configuration | |
| self.is_input_continuous = (in_channels is not None) and (patch_size is None) | |
| self.is_input_vectorized = num_vector_embeds is not None | |
| self.is_input_patches = in_channels is not None and patch_size is not None | |
| if norm_type == "layer_norm" and num_embeds_ada_norm is not None: | |
| deprecation_message = ( | |
| f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or" | |
| " incorrectly set to `'layer_norm'`. Make sure to set `norm_type` to `'ada_norm'` in the config." | |
| " Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect" | |
| " results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it" | |
| " would be very nice if you could open a Pull request for the `transformer/config.json` file" | |
| ) | |
| deprecate("norm_type!=num_embeds_ada_norm", "1.0.0", deprecation_message, standard_warn=False) | |
| norm_type = "ada_norm" | |
| if self.is_input_continuous and self.is_input_vectorized: | |
| raise ValueError( | |
| f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make" | |
| " sure that either `in_channels` or `num_vector_embeds` is None." | |
| ) | |
| elif self.is_input_vectorized and self.is_input_patches: | |
| raise ValueError( | |
| f"Cannot define both `num_vector_embeds`: {num_vector_embeds} and `patch_size`: {patch_size}. Make" | |
| " sure that either `num_vector_embeds` or `num_patches` is None." | |
| ) | |
| elif not self.is_input_continuous and not self.is_input_vectorized and not self.is_input_patches: | |
| raise ValueError( | |
| f"Has to define `in_channels`: {in_channels}, `num_vector_embeds`: {num_vector_embeds}, or patch_size:" | |
| f" {patch_size}. Make sure that `in_channels`, `num_vector_embeds` or `num_patches` is not None." | |
| ) | |
| # 2. Initialize the right blocks. | |
| # These functions follow a common structure: | |
| # a. Initialize the input blocks. b. Initialize the transformer blocks. | |
| # c. Initialize the output blocks and other projection blocks when necessary. | |
| if self.is_input_continuous: | |
| self._init_continuous_input(norm_type=norm_type) | |
| elif self.is_input_vectorized: | |
| self._init_vectorized_inputs(norm_type=norm_type) | |
| elif self.is_input_patches: | |
| self._init_patched_inputs(norm_type=norm_type) | |
| def _init_continuous_input(self, norm_type): | |
| self.norm = torch.nn.GroupNorm( | |
| num_groups=self.config.norm_num_groups, num_channels=self.in_channels, eps=1e-6, affine=True | |
| ) | |
| if self.use_linear_projection: | |
| self.proj_in = torch.nn.Linear(self.in_channels, self.inner_dim) | |
| else: | |
| self.proj_in = torch.nn.Conv2d(self.in_channels, self.inner_dim, kernel_size=1, stride=1, padding=0) | |
| self.transformer_blocks = nn.ModuleList( | |
| [ | |
| ExtractKVTransformerBlock( | |
| self.inner_dim, | |
| self.config.num_attention_heads, | |
| self.config.attention_head_dim, | |
| dropout=self.config.dropout, | |
| cross_attention_dim=self.config.cross_attention_dim, | |
| activation_fn=self.config.activation_fn, | |
| num_embeds_ada_norm=self.config.num_embeds_ada_norm, | |
| attention_bias=self.config.attention_bias, | |
| only_cross_attention=self.config.only_cross_attention, | |
| double_self_attention=self.config.double_self_attention, | |
| upcast_attention=self.config.upcast_attention, | |
| norm_type=norm_type, | |
| norm_elementwise_affine=self.config.norm_elementwise_affine, | |
| norm_eps=self.config.norm_eps, | |
| attention_type=self.config.attention_type, | |
| extract_self_attention_kv=self.config.extract_self_attention_kv, | |
| extract_cross_attention_kv=self.config.extract_cross_attention_kv, | |
| ) | |
| for _ in range(self.config.num_layers) | |
| ] | |
| ) | |
| if self.use_linear_projection: | |
| self.proj_out = torch.nn.Linear(self.inner_dim, self.out_channels) | |
| else: | |
| self.proj_out = torch.nn.Conv2d(self.inner_dim, self.out_channels, kernel_size=1, stride=1, padding=0) | |
| def _init_vectorized_inputs(self, norm_type): | |
| assert self.config.sample_size is not None, "Transformer2DModel over discrete input must provide sample_size" | |
| assert ( | |
| self.config.num_vector_embeds is not None | |
| ), "Transformer2DModel over discrete input must provide num_embed" | |
| self.height = self.config.sample_size | |
| self.width = self.config.sample_size | |
| self.num_latent_pixels = self.height * self.width | |
| self.latent_image_embedding = ImagePositionalEmbeddings( | |
| num_embed=self.config.num_vector_embeds, embed_dim=self.inner_dim, height=self.height, width=self.width | |
| ) | |
| self.transformer_blocks = nn.ModuleList( | |
| [ | |
| ExtractKVTransformerBlock( | |
| self.inner_dim, | |
| self.config.num_attention_heads, | |
| self.config.attention_head_dim, | |
| dropout=self.config.dropout, | |
| cross_attention_dim=self.config.cross_attention_dim, | |
| activation_fn=self.config.activation_fn, | |
| num_embeds_ada_norm=self.config.num_embeds_ada_norm, | |
| attention_bias=self.config.attention_bias, | |
| only_cross_attention=self.config.only_cross_attention, | |
| double_self_attention=self.config.double_self_attention, | |
| upcast_attention=self.config.upcast_attention, | |
| norm_type=norm_type, | |
| norm_elementwise_affine=self.config.norm_elementwise_affine, | |
| norm_eps=self.config.norm_eps, | |
| attention_type=self.config.attention_type, | |
| extract_self_attention_kv=self.config.extract_self_attention_kv, | |
| extract_cross_attention_kv=self.config.extract_cross_attention_kv, | |
| ) | |
| for _ in range(self.config.num_layers) | |
| ] | |
| ) | |
| self.norm_out = nn.LayerNorm(self.inner_dim) | |
| self.out = nn.Linear(self.inner_dim, self.config.num_vector_embeds - 1) | |
| def _init_patched_inputs(self, norm_type): | |
| assert self.config.sample_size is not None, "Transformer2DModel over patched input must provide sample_size" | |
| self.height = self.config.sample_size | |
| self.width = self.config.sample_size | |
| self.patch_size = self.config.patch_size | |
| interpolation_scale = ( | |
| self.config.interpolation_scale | |
| if self.config.interpolation_scale is not None | |
| else max(self.config.sample_size // 64, 1) | |
| ) | |
| self.pos_embed = PatchEmbed( | |
| height=self.config.sample_size, | |
| width=self.config.sample_size, | |
| patch_size=self.config.patch_size, | |
| in_channels=self.in_channels, | |
| embed_dim=self.inner_dim, | |
| interpolation_scale=interpolation_scale, | |
| ) | |
| self.transformer_blocks = nn.ModuleList( | |
| [ | |
| ExtractKVTransformerBlock( | |
| self.inner_dim, | |
| self.config.num_attention_heads, | |
| self.config.attention_head_dim, | |
| dropout=self.config.dropout, | |
| cross_attention_dim=self.config.cross_attention_dim, | |
| activation_fn=self.config.activation_fn, | |
| num_embeds_ada_norm=self.config.num_embeds_ada_norm, | |
| attention_bias=self.config.attention_bias, | |
| only_cross_attention=self.config.only_cross_attention, | |
| double_self_attention=self.config.double_self_attention, | |
| upcast_attention=self.config.upcast_attention, | |
| norm_type=norm_type, | |
| norm_elementwise_affine=self.config.norm_elementwise_affine, | |
| norm_eps=self.config.norm_eps, | |
| attention_type=self.config.attention_type, | |
| extract_self_attention_kv=self.config.extract_self_attention_kv, | |
| extract_cross_attention_kv=self.config.extract_cross_attention_kv, | |
| ) | |
| for _ in range(self.config.num_layers) | |
| ] | |
| ) | |
| if self.config.norm_type != "ada_norm_single": | |
| self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6) | |
| self.proj_out_1 = nn.Linear(self.inner_dim, 2 * self.inner_dim) | |
| self.proj_out_2 = nn.Linear( | |
| self.inner_dim, self.config.patch_size * self.config.patch_size * self.out_channels | |
| ) | |
| elif self.config.norm_type == "ada_norm_single": | |
| self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6) | |
| self.scale_shift_table = nn.Parameter(torch.randn(2, self.inner_dim) / self.inner_dim**0.5) | |
| self.proj_out = nn.Linear( | |
| self.inner_dim, self.config.patch_size * self.config.patch_size * self.out_channels | |
| ) | |
| # PixArt-Alpha blocks. | |
| self.adaln_single = None | |
| if self.config.norm_type == "ada_norm_single": | |
| # TODO(Sayak, PVP) clean this, for now we use sample size to determine whether to use | |
| # additional conditions until we find better name | |
| self.adaln_single = AdaLayerNormSingle( | |
| self.inner_dim, use_additional_conditions=self.use_additional_conditions | |
| ) | |
| self.caption_projection = None | |
| if self.caption_channels is not None: | |
| self.caption_projection = PixArtAlphaTextProjection( | |
| in_features=self.caption_channels, hidden_size=self.inner_dim | |
| ) | |
| def _set_gradient_checkpointing(self, module, value=False): | |
| if hasattr(module, "gradient_checkpointing"): | |
| module.gradient_checkpointing = value | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| encoder_hidden_states: Optional[torch.Tensor] = None, | |
| timestep: Optional[torch.LongTensor] = None, | |
| added_cond_kwargs: Dict[str, torch.Tensor] = None, | |
| class_labels: Optional[torch.LongTensor] = None, | |
| cross_attention_kwargs: Dict[str, Any] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| encoder_attention_mask: Optional[torch.Tensor] = None, | |
| return_dict: bool = True, | |
| ): | |
| """ | |
| The [`Transformer2DModel`] forward method. | |
| Args: | |
| hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous): | |
| Input `hidden_states`. | |
| encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*): | |
| Conditional embeddings for cross attention layer. If not given, cross-attention defaults to | |
| self-attention. | |
| timestep ( `torch.LongTensor`, *optional*): | |
| Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`. | |
| class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*): | |
| Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in | |
| `AdaLayerZeroNorm`. | |
| cross_attention_kwargs ( `Dict[str, Any]`, *optional*): | |
| A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
| `self.processor` in | |
| [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
| attention_mask ( `torch.Tensor`, *optional*): | |
| An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask | |
| is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large | |
| negative values to the attention scores corresponding to "discard" tokens. | |
| encoder_attention_mask ( `torch.Tensor`, *optional*): | |
| Cross-attention mask applied to `encoder_hidden_states`. Two formats supported: | |
| * Mask `(batch, sequence_length)` True = keep, False = discard. | |
| * Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard. | |
| If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format | |
| above. This bias will be added to the cross-attention scores. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain | |
| tuple. | |
| Returns: | |
| If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a | |
| `tuple` where the first element is the sample tensor. | |
| """ | |
| if cross_attention_kwargs is not None: | |
| if cross_attention_kwargs.get("scale", None) is not None: | |
| logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") | |
| # ensure attention_mask is a bias, and give it a singleton query_tokens dimension. | |
| # we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward. | |
| # we can tell by counting dims; if ndim == 2: it's a mask rather than a bias. | |
| # expects mask of shape: | |
| # [batch, key_tokens] | |
| # adds singleton query_tokens dimension: | |
| # [batch, 1, key_tokens] | |
| # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes: | |
| # [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn) | |
| # [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) | |
| if attention_mask is not None and attention_mask.ndim == 2: | |
| # assume that mask is expressed as: | |
| # (1 = keep, 0 = discard) | |
| # convert mask into a bias that can be added to attention scores: | |
| # (keep = +0, discard = -10000.0) | |
| attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0 | |
| attention_mask = attention_mask.unsqueeze(1) | |
| # convert encoder_attention_mask to a bias the same way we do for attention_mask | |
| if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2: | |
| encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0 | |
| encoder_attention_mask = encoder_attention_mask.unsqueeze(1) | |
| # 1. Input | |
| if self.is_input_continuous: | |
| batch_size, _, height, width = hidden_states.shape | |
| residual = hidden_states | |
| hidden_states, inner_dim = self._operate_on_continuous_inputs(hidden_states) | |
| elif self.is_input_vectorized: | |
| hidden_states = self.latent_image_embedding(hidden_states) | |
| elif self.is_input_patches: | |
| height, width = hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size | |
| hidden_states, encoder_hidden_states, timestep, embedded_timestep = self._operate_on_patched_inputs( | |
| hidden_states, encoder_hidden_states, timestep, added_cond_kwargs | |
| ) | |
| # 2. Blocks | |
| extracted_kvs = {} | |
| for block in self.transformer_blocks: | |
| if self.training and self.gradient_checkpointing: | |
| def create_custom_forward(module, return_dict=None): | |
| def custom_forward(*inputs): | |
| if return_dict is not None: | |
| return module(*inputs, return_dict=return_dict) | |
| else: | |
| return module(*inputs) | |
| return custom_forward | |
| ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
| hidden_states, extracted_kv = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(block), | |
| hidden_states, | |
| attention_mask, | |
| encoder_hidden_states, | |
| encoder_attention_mask, | |
| timestep, | |
| cross_attention_kwargs, | |
| class_labels, | |
| **ckpt_kwargs, | |
| ) | |
| else: | |
| hidden_states, extracted_kv = block( | |
| hidden_states, | |
| attention_mask=attention_mask, | |
| encoder_hidden_states=encoder_hidden_states, | |
| encoder_attention_mask=encoder_attention_mask, | |
| timestep=timestep, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| class_labels=class_labels, | |
| ) | |
| if extracted_kv: | |
| extracted_kvs[block.full_name] = extracted_kv | |
| # 3. Output | |
| if self.is_input_continuous: | |
| output = self._get_output_for_continuous_inputs( | |
| hidden_states=hidden_states, | |
| residual=residual, | |
| batch_size=batch_size, | |
| height=height, | |
| width=width, | |
| inner_dim=inner_dim, | |
| ) | |
| elif self.is_input_vectorized: | |
| output = self._get_output_for_vectorized_inputs(hidden_states) | |
| elif self.is_input_patches: | |
| output = self._get_output_for_patched_inputs( | |
| hidden_states=hidden_states, | |
| timestep=timestep, | |
| class_labels=class_labels, | |
| embedded_timestep=embedded_timestep, | |
| height=height, | |
| width=width, | |
| ) | |
| if not return_dict: | |
| return (output, extracted_kvs) | |
| return ExtractKVTransformer2DModelOutput(sample=output, cached_kvs=extracted_kvs) | |
| def init_kv_extraction(self): | |
| for block in self.transformer_blocks: | |
| block.init_kv_extraction() | |
| def _operate_on_continuous_inputs(self, hidden_states): | |
| batch, _, height, width = hidden_states.shape | |
| hidden_states = self.norm(hidden_states) | |
| if not self.use_linear_projection: | |
| hidden_states = self.proj_in(hidden_states) | |
| inner_dim = hidden_states.shape[1] | |
| hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim) | |
| else: | |
| inner_dim = hidden_states.shape[1] | |
| hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim) | |
| hidden_states = self.proj_in(hidden_states) | |
| return hidden_states, inner_dim | |
| def _operate_on_patched_inputs(self, hidden_states, encoder_hidden_states, timestep, added_cond_kwargs): | |
| batch_size = hidden_states.shape[0] | |
| hidden_states = self.pos_embed(hidden_states) | |
| embedded_timestep = None | |
| if self.adaln_single is not None: | |
| if self.use_additional_conditions and added_cond_kwargs is None: | |
| raise ValueError( | |
| "`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`." | |
| ) | |
| timestep, embedded_timestep = self.adaln_single( | |
| timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype | |
| ) | |
| if self.caption_projection is not None: | |
| encoder_hidden_states = self.caption_projection(encoder_hidden_states) | |
| encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1]) | |
| return hidden_states, encoder_hidden_states, timestep, embedded_timestep | |
| def _get_output_for_continuous_inputs(self, hidden_states, residual, batch_size, height, width, inner_dim): | |
| if not self.use_linear_projection: | |
| hidden_states = ( | |
| hidden_states.reshape(batch_size, height, width, inner_dim).permute(0, 3, 1, 2).contiguous() | |
| ) | |
| hidden_states = self.proj_out(hidden_states) | |
| else: | |
| hidden_states = self.proj_out(hidden_states) | |
| hidden_states = ( | |
| hidden_states.reshape(batch_size, height, width, inner_dim).permute(0, 3, 1, 2).contiguous() | |
| ) | |
| output = hidden_states + residual | |
| return output | |
| def _get_output_for_vectorized_inputs(self, hidden_states): | |
| hidden_states = self.norm_out(hidden_states) | |
| logits = self.out(hidden_states) | |
| # (batch, self.num_vector_embeds - 1, self.num_latent_pixels) | |
| logits = logits.permute(0, 2, 1) | |
| # log(p(x_0)) | |
| output = F.log_softmax(logits.double(), dim=1).float() | |
| return output | |
| def _get_output_for_patched_inputs( | |
| self, hidden_states, timestep, class_labels, embedded_timestep, height=None, width=None | |
| ): | |
| if self.config.norm_type != "ada_norm_single": | |
| conditioning = self.transformer_blocks[0].norm1.emb( | |
| timestep, class_labels, hidden_dtype=hidden_states.dtype | |
| ) | |
| shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1) | |
| hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None] | |
| hidden_states = self.proj_out_2(hidden_states) | |
| elif self.config.norm_type == "ada_norm_single": | |
| shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1) | |
| hidden_states = self.norm_out(hidden_states) | |
| # Modulation | |
| hidden_states = hidden_states * (1 + scale) + shift | |
| hidden_states = self.proj_out(hidden_states) | |
| hidden_states = hidden_states.squeeze(1) | |
| # unpatchify | |
| if self.adaln_single is None: | |
| height = width = int(hidden_states.shape[1] ** 0.5) | |
| hidden_states = hidden_states.reshape( | |
| shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels) | |
| ) | |
| hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states) | |
| output = hidden_states.reshape( | |
| shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size) | |
| ) | |
| return output |