Spaces:
Configuration error
Configuration error
| import os | |
| import torch | |
| import numpy as np | |
| import app as gr | |
| from PIL import Image | |
| from diffusers import DDPMScheduler | |
| from schedulers.lcm_single_step_scheduler import LCMSingleStepScheduler | |
| from module.ip_adapter.utils import load_adapter_to_pipe | |
| from pipelines.sdxl_instantir import InstantIRPipeline | |
| from huggingface_hub import hf_hub_download | |
| if not os.path.exists("models/adapter.pt"): | |
| hf_hub_download(repo_id="InstantX/InstantIR", filename="models/adapter.pt", local_dir=".") | |
| if not os.path.exists("models/aggregator.pt"): | |
| hf_hub_download(repo_id="InstantX/InstantIR", filename="models/aggregator.pt", local_dir=".") | |
| if not os.path.exists("models/previewer_lora_weights.bin"): | |
| hf_hub_download(repo_id="InstantX/InstantIR", filename="models/previewer_lora_weights.bin", local_dir=".") | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| sdxl_repo_id = "stabilityai/stable-diffusion-xl-base-1.0" | |
| dinov2_repo_id = "facebook/dinov2-large" | |
| if torch.cuda.is_available(): | |
| torch_dtype = torch.float16 | |
| else: | |
| torch_dtype = torch.float32 | |
| # Load pretrained models. | |
| print("Loading SDXL...") | |
| pipe = InstantIRPipeline.from_pretrained( | |
| sdxl_repo_id, | |
| torch_dtype=torch_dtype, | |
| ) | |
| # Image prompt projector. | |
| print("Loading LQ-Adapter...") | |
| load_adapter_to_pipe( | |
| pipe, | |
| "models/adapter.pt", | |
| dinov2_repo_id, | |
| ) | |
| # Prepare previewer | |
| lora_alpha = pipe.prepare_previewers("models") | |
| print(f"use lora alpha {lora_alpha}") | |
| lora_alpha = pipe.prepare_previewers("latent-consistency/lcm-lora-sdxl", use_lcm=True) | |
| print(f"use lora alpha {lora_alpha}") | |
| pipe.to(device=device, dtype=torch_dtype) | |
| pipe.scheduler = DDPMScheduler.from_pretrained(sdxl_repo_id, subfolder="scheduler") | |
| lcm_scheduler = LCMSingleStepScheduler.from_config(pipe.scheduler.config) | |
| pipe.scheduler = DDPMScheduler.from_pretrained( | |
| sdxl_repo_id, | |
| subfolder="scheduler" | |
| ) | |
| lcm_scheduler = LCMSingleStepScheduler.from_config(pipe.scheduler.config) | |
| # Load weights. | |
| print("Loading checkpoint...") | |
| aggregator_state_dict = torch.load( | |
| "models/aggregator.pt", | |
| map_location="cpu" | |
| ) | |
| pipe.aggregator.load_state_dict(aggregator_state_dict, strict=True) | |
| pipe.aggregator.to(device=device, dtype=torch_dtype) | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 1024 | |
| PROMPT = "Photorealistic, highly detailed, hyper detailed photo - realistic maximum detail, 32k, \ | |
| ultra HD, extreme meticulous detailing, skin pore detailing, \ | |
| hyper sharpness, perfect without deformations, \ | |
| taken using a Canon EOS R camera, Cinematic, High Contrast, Color Grading. " | |
| NEG_PROMPT = "blurry, out of focus, unclear, depth of field, over-smooth, \ | |
| sketch, oil painting, cartoon, CG Style, 3D render, unreal engine, \ | |
| dirty, messy, worst quality, low quality, frames, painting, illustration, drawing, art, \ | |
| watermark, signature, jpeg artifacts, deformed, lowres" | |
| def unpack_pipe_out(preview_row, index): | |
| return preview_row[index][0] | |
| def dynamic_preview_slider(sampling_steps): | |
| print(sampling_steps) | |
| return gr.Slider(label="Restoration Previews", value=sampling_steps-1, minimum=0, maximum=sampling_steps-1, step=1) | |
| def dynamic_guidance_slider(sampling_steps): | |
| return gr.Slider(label="Start Free Rendering", value=sampling_steps, minimum=0, maximum=sampling_steps, step=1) | |
| def show_final_preview(preview_row): | |
| return preview_row[-1][0] | |
| # @spaces.GPU #[uncomment to use ZeroGPU] | |
| def instantir_restore( | |
| lq, prompt="", steps=30, cfg_scale=7.0, guidance_end=1.0, | |
| creative_restoration=False, seed=3407, height=1024, width=1024, preview_start=0.0): | |
| if creative_restoration: | |
| if "lcm" not in pipe.unet.active_adapters(): | |
| pipe.unet.set_adapter('lcm') | |
| else: | |
| if "default" not in pipe.unet.active_adapters(): | |
| pipe.unet.set_adapter('default') | |
| if isinstance(guidance_end, int): | |
| guidance_end = guidance_end / steps | |
| if isinstance(preview_start, int): | |
| preview_start = preview_start / steps | |
| lq = [resize_img(lq.convert("RGB"), size=(width, height))] | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| timesteps = [ | |
| i * (1000//steps) + pipe.scheduler.config.steps_offset for i in range(0, steps) | |
| ] | |
| timesteps = timesteps[::-1] | |
| start_timestep = timesteps[0] | |
| prompt = PROMPT if len(prompt)==0 else prompt | |
| neg_prompt = NEG_PROMPT | |
| out = pipe( | |
| prompt=[prompt]*len(lq), | |
| image=lq, | |
| num_inference_steps=steps, | |
| generator=generator, | |
| timesteps=timesteps, | |
| negative_prompt=[neg_prompt]*len(lq), | |
| guidance_scale=cfg_scale, | |
| control_guidance_end=guidance_end, | |
| preview_start=preview_start, | |
| previewer_scheduler=lcm_scheduler, | |
| return_dict=False, | |
| save_preview_row=True, | |
| ) | |
| for i, preview_img in enumerate(out[1]): | |
| preview_img.append(f"preview_{i}") | |
| return out[0][0], out[1] | |
| examples = [ | |
| "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", | |
| "An astronaut riding a green horse", | |
| "A delicious ceviche cheesecake slice", | |
| ] | |
| css=""" | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 640px; | |
| } | |
| """ | |
| with gr.Blocks() as demo: | |
| gr.Markdown( | |
| """ | |
| # InstantIR: Blind Image Restoration with Instant Generative Reference. | |
| ### **Official 🤗 Gradio demo of [InstantIR](https://arxiv.org/abs/2410.06551).** | |
| ### **InstantIR can not only help you restore your broken image, but also capable of imaginative re-creation following your text prompts. See advance usage for more details!** | |
| ## Basic usage: revitalize your image | |
| 1. Upload an image you want to restore; | |
| 2. Optionally, tune the `Steps` `CFG Scale` parameters. Typically higher steps lead to better results, but less than 50 is recommended for efficiency; | |
| 3. Click `InstantIR magic!`. | |
| """) | |
| with gr.Row(): | |
| lq_img = gr.Image(label="Low-quality image", type="pil") | |
| with gr.Column(): | |
| with gr.Row(): | |
| steps = gr.Number(label="Steps", value=30, step=1) | |
| cfg_scale = gr.Number(label="CFG Scale", value=7.0, step=0.1) | |
| with gr.Row(): | |
| height = gr.Number(label="Height", value=1024, step=1) | |
| weight = gr.Number(label="Weight", value=1024, step=1) | |
| seed = gr.Number(label="Seed", value=42, step=1) | |
| # guidance_start = gr.Slider(label="Guidance Start", value=1.0, minimum=0.0, maximum=1.0, step=0.05) | |
| guidance_end = gr.Slider(label="Start Free Rendering", value=30, minimum=0, maximum=30, step=1) | |
| preview_start = gr.Slider(label="Preview Start", value=0, minimum=0, maximum=30, step=1) | |
| prompt = gr.Textbox(label="Restoration prompts (Optional)", placeholder="") | |
| mode = gr.Checkbox(label="Creative Restoration", value=False) | |
| with gr.Row(): | |
| with gr.Row(): | |
| restore_btn = gr.Button("InstantIR magic!") | |
| clear_btn = gr.ClearButton() | |
| index = gr.Slider(label="Restoration Previews", value=29, minimum=0, maximum=29, step=1) | |
| with gr.Row(): | |
| output = gr.Image(label="InstantIR restored", type="pil") | |
| preview = gr.Image(label="Preview", type="pil") | |
| pipe_out = gr.Gallery(visible=False) | |
| clear_btn.add([lq_img, output, preview]) | |
| restore_btn.click( | |
| instantir_restore, inputs=[ | |
| lq_img, prompt, steps, cfg_scale, guidance_end, | |
| mode, seed, height, weight, preview_start, | |
| ], | |
| outputs=[output, pipe_out], api_name="InstantIR" | |
| ) | |
| steps.change(dynamic_guidance_slider, inputs=steps, outputs=guidance_end) | |
| output.change(dynamic_preview_slider, inputs=steps, outputs=index) | |
| index.release(unpack_pipe_out, inputs=[pipe_out, index], outputs=preview) | |
| output.change(show_final_preview, inputs=pipe_out, outputs=preview) | |
| gr.Markdown( | |
| """ | |
| ## Advance usage: | |
| ### Browse restoration variants: | |
| 1. After InstantIR processing, drag the `Restoration Previews` slider to explore other in-progress versions; | |
| 2. If you like one of them, set the `Start Free Rendering` slider to the same value to get a more refined result. | |
| ### Creative restoration: | |
| 1. Check the `Creative Restoration` checkbox; | |
| 2. Input your text prompts in the `Restoration prompts` textbox; | |
| 3. Set `Start Free Rendering` slider to a medium value (around half of the `steps`) to provide adequate room for InstantIR creation. | |
| ## Examples | |
| Here are some examplar usage of InstantIR: | |
| """) | |
| # examples = gr.Gallery(label="Examples") | |
| gr.Markdown( | |
| """ | |
| ## Citation | |
| If InstantIR is helpful to your work, please cite our paper via: | |
| ``` | |
| @article{huang2024instantir, | |
| title={InstantIR: Blind Image Restoration with Instant Generative Reference}, | |
| author={Huang, Jen-Yuan and Wang, Haofan and Wang, Qixun and Bai, Xu and Ai, Hao and Xing, Peng and Huang, Jen-Tse}, | |
| journal={arXiv preprint arXiv:2410.06551}, | |
| year={2024} | |
| } | |
| ``` | |
| """) | |
| demo.queue().launch() |