Spaces:
				
			
			
	
			
			
		Configuration error
		
	
	
	
			
			
	
	
	
	
		
		
		Configuration error
		
	update repo
Browse files- module/aggregator.py +4 -27
 - module/ip_adapter/attention_processor.py +1 -1
 - module/ip_adapter/resampler.py +4 -4
 - module/ip_adapter/utils.py +65 -134
 - pipelines/sdxl_instantir.py +204 -106
 - pipelines/stage1_sdxl_pipeline.py +1283 -0
 
    	
        module/aggregator.py
    CHANGED
    
    | 
         @@ -1,16 +1,3 @@ 
     | 
|
| 1 | 
         
            -
            # Copyright 2024 The HuggingFace Team. All rights reserved.
         
     | 
| 2 | 
         
            -
            #
         
     | 
| 3 | 
         
            -
            # Licensed under the Apache License, Version 2.0 (the "License");
         
     | 
| 4 | 
         
            -
            # you may not use this file except in compliance with the License.
         
     | 
| 5 | 
         
            -
            # You may obtain a copy of the License at
         
     | 
| 6 | 
         
            -
            #
         
     | 
| 7 | 
         
            -
            #     http://www.apache.org/licenses/LICENSE-2.0
         
     | 
| 8 | 
         
            -
            #
         
     | 
| 9 | 
         
            -
            # Unless required by applicable law or agreed to in writing, software
         
     | 
| 10 | 
         
            -
            # distributed under the License is distributed on an "AS IS" BASIS,
         
     | 
| 11 | 
         
            -
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         
     | 
| 12 | 
         
            -
            # See the License for the specific language governing permissions and
         
     | 
| 13 | 
         
            -
            # limitations under the License.
         
     | 
| 14 | 
         
             
            from dataclasses import dataclass
         
     | 
| 15 | 
         
             
            from typing import Any, Dict, List, Optional, Tuple, Union
         
     | 
| 16 | 
         | 
| 
         @@ -19,7 +6,7 @@ from torch import nn 
     | 
|
| 19 | 
         
             
            from torch.nn import functional as F
         
     | 
| 20 | 
         | 
| 21 | 
         
             
            from diffusers.configuration_utils import ConfigMixin, register_to_config
         
     | 
| 22 | 
         
            -
            from diffusers.loaders import  
     | 
| 23 | 
         
             
            from diffusers.utils import BaseOutput, logging
         
     | 
| 24 | 
         
             
            from diffusers.models.attention_processor import (
         
     | 
| 25 | 
         
             
                ADDED_KV_ATTENTION_PROCESSORS,
         
     | 
| 
         @@ -168,7 +155,7 @@ class ConditioningEmbedding(nn.Module): 
     | 
|
| 168 | 
         
             
                    return embedding
         
     | 
| 169 | 
         | 
| 170 | 
         | 
| 171 | 
         
            -
            class Aggregator(ModelMixin, ConfigMixin,  
     | 
| 172 | 
         
             
                """
         
     | 
| 173 | 
         
             
                Aggregator model.
         
     | 
| 174 | 
         | 
| 
         @@ -781,7 +768,6 @@ class Aggregator(ModelMixin, ConfigMixin, FromOriginalControlNetMixin): 
     | 
|
| 781 | 
         
             
                    attention_mask: Optional[torch.Tensor] = None,
         
     | 
| 782 | 
         
             
                    added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
         
     | 
| 783 | 
         
             
                    cross_attention_kwargs: Optional[Dict[str, Any]] = None,
         
     | 
| 784 | 
         
            -
                    guess_mode: bool = False,
         
     | 
| 785 | 
         
             
                    return_dict: bool = True,
         
     | 
| 786 | 
         
             
                ) -> Union[AggregatorOutput, Tuple[Tuple[torch.FloatTensor, ...], torch.FloatTensor]]:
         
     | 
| 787 | 
         
             
                    """
         
     | 
| 
         @@ -812,9 +798,6 @@ class Aggregator(ModelMixin, ConfigMixin, FromOriginalControlNetMixin): 
     | 
|
| 812 | 
         
             
                            Additional conditions for the Stable Diffusion XL UNet.
         
     | 
| 813 | 
         
             
                        cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`):
         
     | 
| 814 | 
         
             
                            A kwargs dictionary that if specified is passed along to the `AttnProcessor`.
         
     | 
| 815 | 
         
            -
                        guess_mode (`bool`, defaults to `False`):
         
     | 
| 816 | 
         
            -
                            In this mode, the ControlNet encoder tries its best to recognize the input content of the input even if
         
     | 
| 817 | 
         
            -
                            you remove all prompts. A `guidance_scale` between 3.0 and 5.0 is recommended.
         
     | 
| 818 | 
         
             
                        return_dict (`bool`, defaults to `True`):
         
     | 
| 819 | 
         
             
                            Whether or not to return a [`~models.controlnet.ControlNetOutput`] instead of a plain tuple.
         
     | 
| 820 | 
         | 
| 
         @@ -977,14 +960,8 @@ class Aggregator(ModelMixin, ConfigMixin, FromOriginalControlNetMixin): 
     | 
|
| 977 | 
         
             
                    mid_block_res_sample = self.controlnet_mid_block((cond_latent, ref_latent), )
         
     | 
| 978 | 
         | 
| 979 | 
         
             
                    # 6. scaling
         
     | 
| 980 | 
         
            -
                     
     | 
| 981 | 
         
            -
             
     | 
| 982 | 
         
            -
                        scales = scales * conditioning_scale
         
     | 
| 983 | 
         
            -
                        down_block_res_samples = [sample*scale for sample, scale in zip(down_block_res_samples, scales)]
         
     | 
| 984 | 
         
            -
                        mid_block_res_sample = mid_block_res_sample*scales[-1]  # last scale
         
     | 
| 985 | 
         
            -
                    else:
         
     | 
| 986 | 
         
            -
                        down_block_res_samples = [sample*conditioning_scale for sample in down_block_res_samples]
         
     | 
| 987 | 
         
            -
                        mid_block_res_sample = mid_block_res_sample*conditioning_scale
         
     | 
| 988 | 
         | 
| 989 | 
         
             
                    if self.config.global_pool_conditions:
         
     | 
| 990 | 
         
             
                        down_block_res_samples = [
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 1 | 
         
             
            from dataclasses import dataclass
         
     | 
| 2 | 
         
             
            from typing import Any, Dict, List, Optional, Tuple, Union
         
     | 
| 3 | 
         | 
| 
         | 
|
| 6 | 
         
             
            from torch.nn import functional as F
         
     | 
| 7 | 
         | 
| 8 | 
         
             
            from diffusers.configuration_utils import ConfigMixin, register_to_config
         
     | 
| 9 | 
         
            +
            from diffusers.loaders.single_file_model import FromOriginalModelMixin
         
     | 
| 10 | 
         
             
            from diffusers.utils import BaseOutput, logging
         
     | 
| 11 | 
         
             
            from diffusers.models.attention_processor import (
         
     | 
| 12 | 
         
             
                ADDED_KV_ATTENTION_PROCESSORS,
         
     | 
| 
         | 
|
| 155 | 
         
             
                    return embedding
         
     | 
| 156 | 
         | 
| 157 | 
         | 
| 158 | 
         
            +
            class Aggregator(ModelMixin, ConfigMixin, FromOriginalModelMixin):
         
     | 
| 159 | 
         
             
                """
         
     | 
| 160 | 
         
             
                Aggregator model.
         
     | 
| 161 | 
         | 
| 
         | 
|
| 768 | 
         
             
                    attention_mask: Optional[torch.Tensor] = None,
         
     | 
| 769 | 
         
             
                    added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
         
     | 
| 770 | 
         
             
                    cross_attention_kwargs: Optional[Dict[str, Any]] = None,
         
     | 
| 
         | 
|
| 771 | 
         
             
                    return_dict: bool = True,
         
     | 
| 772 | 
         
             
                ) -> Union[AggregatorOutput, Tuple[Tuple[torch.FloatTensor, ...], torch.FloatTensor]]:
         
     | 
| 773 | 
         
             
                    """
         
     | 
| 
         | 
|
| 798 | 
         
             
                            Additional conditions for the Stable Diffusion XL UNet.
         
     | 
| 799 | 
         
             
                        cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`):
         
     | 
| 800 | 
         
             
                            A kwargs dictionary that if specified is passed along to the `AttnProcessor`.
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 801 | 
         
             
                        return_dict (`bool`, defaults to `True`):
         
     | 
| 802 | 
         
             
                            Whether or not to return a [`~models.controlnet.ControlNetOutput`] instead of a plain tuple.
         
     | 
| 803 | 
         | 
| 
         | 
|
| 960 | 
         
             
                    mid_block_res_sample = self.controlnet_mid_block((cond_latent, ref_latent), )
         
     | 
| 961 | 
         | 
| 962 | 
         
             
                    # 6. scaling
         
     | 
| 963 | 
         
            +
                    down_block_res_samples = [sample*conditioning_scale for sample in down_block_res_samples]
         
     | 
| 964 | 
         
            +
                    mid_block_res_sample = mid_block_res_sample*conditioning_scale
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 965 | 
         | 
| 966 | 
         
             
                    if self.config.global_pool_conditions:
         
     | 
| 967 | 
         
             
                        down_block_res_samples = [
         
     | 
    	
        module/ip_adapter/attention_processor.py
    CHANGED
    
    | 
         @@ -1361,7 +1361,7 @@ class CNAttnProcessor2_0: 
     | 
|
| 1361 | 
         
             
                    return hidden_states
         
     | 
| 1362 | 
         | 
| 1363 | 
         | 
| 1364 | 
         
            -
            def init_attn_proc(unet, ip_adapter_tokens=16, use_lcm= 
     | 
| 1365 | 
         
             
                attn_procs = {}
         
     | 
| 1366 | 
         
             
                unet_sd = unet.state_dict()
         
     | 
| 1367 | 
         
             
                for name in unet.attn_processors.keys():
         
     | 
| 
         | 
|
| 1361 | 
         
             
                    return hidden_states
         
     | 
| 1362 | 
         | 
| 1363 | 
         | 
| 1364 | 
         
            +
            def init_attn_proc(unet, ip_adapter_tokens=16, use_lcm=False, use_adaln=True, use_external_kv=False):
         
     | 
| 1365 | 
         
             
                attn_procs = {}
         
     | 
| 1366 | 
         
             
                unet_sd = unet.state_dict()
         
     | 
| 1367 | 
         
             
                for name in unet.attn_processors.keys():
         
     | 
    	
        module/ip_adapter/resampler.py
    CHANGED
    
    | 
         @@ -81,11 +81,11 @@ class PerceiverAttention(nn.Module): 
     | 
|
| 81 | 
         
             
            class Resampler(nn.Module):
         
     | 
| 82 | 
         
             
                def __init__(
         
     | 
| 83 | 
         
             
                    self,
         
     | 
| 84 | 
         
            -
                    dim= 
     | 
| 85 | 
         
            -
                    depth= 
     | 
| 86 | 
         
             
                    dim_head=64,
         
     | 
| 87 | 
         
            -
                    heads= 
     | 
| 88 | 
         
            -
                    num_queries= 
     | 
| 89 | 
         
             
                    embedding_dim=768,
         
     | 
| 90 | 
         
             
                    output_dim=1024,
         
     | 
| 91 | 
         
             
                    ff_mult=4,
         
     | 
| 
         | 
|
| 81 | 
         
             
            class Resampler(nn.Module):
         
     | 
| 82 | 
         
             
                def __init__(
         
     | 
| 83 | 
         
             
                    self,
         
     | 
| 84 | 
         
            +
                    dim=1280,
         
     | 
| 85 | 
         
            +
                    depth=4,
         
     | 
| 86 | 
         
             
                    dim_head=64,
         
     | 
| 87 | 
         
            +
                    heads=20,
         
     | 
| 88 | 
         
            +
                    num_queries=64,
         
     | 
| 89 | 
         
             
                    embedding_dim=768,
         
     | 
| 90 | 
         
             
                    output_dim=1024,
         
     | 
| 91 | 
         
             
                    ff_mult=4,
         
     | 
    	
        module/ip_adapter/utils.py
    CHANGED
    
    | 
         @@ -1,23 +1,32 @@ 
     | 
|
| 1 | 
         
            -
            import random
         
     | 
| 2 | 
         
             
            import torch
         
     | 
| 3 | 
         
             
            from collections import namedtuple, OrderedDict
         
     | 
| 4 | 
         
             
            from safetensors import safe_open
         
     | 
| 5 | 
         
             
            from .attention_processor import init_attn_proc
         
     | 
| 6 | 
         
             
            from .ip_adapter import MultiIPAdapterImageProjection
         
     | 
| 
         | 
|
| 7 | 
         
             
            from transformers import (
         
     | 
| 8 | 
         
             
                AutoModel, AutoImageProcessor,
         
     | 
| 9 | 
         
             
                CLIPVisionModelWithProjection, CLIPImageProcessor)
         
     | 
| 10 | 
         | 
| 11 | 
         | 
| 12 | 
         
            -
            def  
     | 
| 13 | 
         
             
                    unet,
         
     | 
| 14 | 
         
            -
                    image_proj_model,
         
     | 
| 15 | 
         
             
                    pretrained_model_path_or_dict=None,
         
     | 
| 16 | 
         
            -
                    adapter_tokens= 
     | 
| 
         | 
|
| 17 | 
         
             
                    use_lcm=False,
         
     | 
| 18 | 
         
             
                    use_adaln=True,
         
     | 
| 19 | 
         
            -
                    use_external_kv=False,
         
     | 
| 20 | 
         
             
                ):
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 21 | 
         
             
                    if pretrained_model_path_or_dict is not None:
         
     | 
| 22 | 
         
             
                        if not isinstance(pretrained_model_path_or_dict, dict):
         
     | 
| 23 | 
         
             
                            if pretrained_model_path_or_dict.endswith(".safetensors"):
         
     | 
| 
         @@ -37,7 +46,7 @@ def init_ip_adapter_in_unet( 
     | 
|
| 37 | 
         
             
                            state_dict = revise_state_dict(state_dict)
         
     | 
| 38 | 
         | 
| 39 | 
         
             
                    # Creat IP cross-attention in unet.
         
     | 
| 40 | 
         
            -
                    attn_procs = init_attn_proc(unet, adapter_tokens, use_lcm, use_adaln 
     | 
| 41 | 
         
             
                    unet.set_attn_processor(attn_procs)
         
     | 
| 42 | 
         | 
| 43 | 
         
             
                    # Load pretrinaed model if needed.
         
     | 
| 
         @@ -58,24 +67,24 @@ def init_ip_adapter_in_unet( 
     | 
|
| 58 | 
         | 
| 59 | 
         
             
                    # Adjust unet config to handle addtional ip hidden states.
         
     | 
| 60 | 
         
             
                    unet.config.encoder_hid_dim_type = "ip_image_proj"
         
     | 
| 
         | 
|
| 61 | 
         | 
| 62 | 
         | 
| 63 | 
         
            -
            def  
     | 
| 64 | 
         
             
                    pipe,
         
     | 
| 65 | 
         
             
                    pretrained_model_path_or_dict,
         
     | 
| 66 | 
         
            -
                     
     | 
| 67 | 
         
            -
                     
     | 
| 68 | 
         
            -
                     
     | 
| 69 | 
         
            -
                     
     | 
| 70 | 
         
            -
                    use_lcm= 
     | 
| 71 | 
         
             
                    use_adaln=True,
         
     | 
| 72 | 
         
            -
                    low_cpu_mem_usage=True,
         
     | 
| 73 | 
         
             
                ):
         
     | 
| 74 | 
         | 
| 75 | 
         
             
                    if not isinstance(pretrained_model_path_or_dict, dict):
         
     | 
| 76 | 
         
             
                        if pretrained_model_path_or_dict.endswith(".safetensors"):
         
     | 
| 77 | 
         
             
                            state_dict = {"image_proj": {}, "ip_adapter": {}}
         
     | 
| 78 | 
         
            -
                            with safe_open(pretrained_model_path_or_dict, framework="pt", device= 
     | 
| 79 | 
         
             
                                for key in f.keys():
         
     | 
| 80 | 
         
             
                                    if key.startswith("image_proj."):
         
     | 
| 81 | 
         
             
                                        state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key)
         
     | 
| 
         @@ -85,150 +94,72 @@ def load_ip_adapter_to_pipe( 
     | 
|
| 85 | 
         
             
                            state_dict = torch.load(pretrained_model_path_or_dict, map_location=pipe.device)
         
     | 
| 86 | 
         
             
                    else:
         
     | 
| 87 | 
         
             
                        state_dict = pretrained_model_path_or_dict
         
     | 
| 88 | 
         
            -
             
     | 
| 89 | 
         
             
                    keys = list(state_dict.keys())
         
     | 
| 90 | 
         
            -
                    if  
     | 
| 91 | 
         
             
                        state_dict = revise_state_dict(state_dict)
         
     | 
| 92 | 
         | 
| 93 | 
         
             
                    # load CLIP image encoder here if it has not been registered to the pipeline yet
         
     | 
| 94 | 
         
            -
                    if  
     | 
| 95 | 
         
            -
                        if isinstance( 
     | 
| 96 | 
         
            -
                             
     | 
| 97 | 
         
            -
             
     | 
| 98 | 
         
            -
                             
     | 
| 99 | 
         
            -
                                 
     | 
| 100 | 
         
            -
                                     
     | 
| 101 | 
         
            -
             
     | 
| 102 | 
         
            -
             
     | 
| 
         | 
|
| 103 | 
         | 
| 104 | 
         
            -
                    if  
     | 
| 105 | 
         
            -
                        if isinstance( 
     | 
| 106 | 
         
            -
                             
     | 
| 107 | 
         
            -
                                if  
     | 
| 108 | 
         
            -
             
     | 
| 
         | 
|
| 109 | 
         | 
| 110 | 
         
             
                    # create image encoder if it has not been registered to the pipeline yet
         
     | 
| 111 | 
         
             
                    if hasattr(pipe, "image_encoder") and getattr(pipe, "image_encoder", None) is None:
         
     | 
| 
         | 
|
| 112 | 
         
             
                        pipe.register_modules(image_encoder=image_encoder)
         
     | 
| 113 | 
         
            -
             
     | 
| 114 | 
         
            -
                    # create feature extractor if it has not been registered to the pipeline yet
         
     | 
| 115 | 
         
            -
                    if hasattr(pipe, "feature_extractor") and getattr(pipe, "feature_extractor", None) is None:
         
     | 
| 116 | 
         
            -
                        pipe.register_modules(feature_extractor=feature_extractor)
         
     | 
| 117 | 
         
            -
             
     | 
| 118 | 
         
            -
                    # load ip-adapter into unet
         
     | 
| 119 | 
         
            -
                    unet = getattr(pipe, pipe.unet_name) if not hasattr(pipe, "unet") else pipe.unet
         
     | 
| 120 | 
         
            -
                    attn_procs = init_attn_proc(unet, ip_adapter_tokens, use_lcm, use_adaln)
         
     | 
| 121 | 
         
            -
                    unet.set_attn_processor(attn_procs)
         
     | 
| 122 | 
         
            -
                    adapter_modules = torch.nn.ModuleList(unet.attn_processors.values())
         
     | 
| 123 | 
         
            -
                    missing, _ = adapter_modules.load_state_dict(state_dict["ip_adapter"], strict=False)
         
     | 
| 124 | 
         
            -
                    if len(missing) > 0:
         
     | 
| 125 | 
         
            -
                        raise ValueError(f"Missing keys in adapter_modules: {missing}")
         
     | 
| 126 | 
         
            -
             
     | 
| 127 | 
         
            -
                    # convert IP-Adapter Image Projection layers to diffusers
         
     | 
| 128 | 
         
            -
                    image_projection_layers = []
         
     | 
| 129 | 
         
            -
                    image_projection_layer = unet._convert_ip_adapter_image_proj_to_diffusers(
         
     | 
| 130 | 
         
            -
                        state_dict["image_proj"], low_cpu_mem_usage=low_cpu_mem_usage
         
     | 
| 131 | 
         
            -
                    )
         
     | 
| 132 | 
         
            -
                    image_projection_layers.append(image_projection_layer)
         
     | 
| 133 | 
         
            -
             
     | 
| 134 | 
         
            -
                    unet.encoder_hid_proj = MultiIPAdapterImageProjection(image_projection_layers)
         
     | 
| 135 | 
         
            -
                    unet.config.encoder_hid_dim_type = "ip_image_proj"
         
     | 
| 136 | 
         
            -
             
     | 
| 137 | 
         
            -
                    unet.to(dtype=pipe.dtype, device=pipe.device)
         
     | 
| 138 | 
         
            -
             
     | 
| 139 | 
         
            -
             
     | 
| 140 | 
         
            -
            def load_ip_adapter_to_controlnet_pipe(
         
     | 
| 141 | 
         
            -
                    pipe,
         
     | 
| 142 | 
         
            -
                    pretrained_model_path_or_dict,
         
     | 
| 143 | 
         
            -
                    image_encoder_path=None,
         
     | 
| 144 | 
         
            -
                    feature_extractor_path=None,
         
     | 
| 145 | 
         
            -
                    use_dino=False,
         
     | 
| 146 | 
         
            -
                    ip_adapter_tokens=16,
         
     | 
| 147 | 
         
            -
                    use_lcm=True,
         
     | 
| 148 | 
         
            -
                    use_adaln=True,
         
     | 
| 149 | 
         
            -
                    low_cpu_mem_usage=True,
         
     | 
| 150 | 
         
            -
                ):
         
     | 
| 151 | 
         
            -
             
     | 
| 152 | 
         
            -
                    if not isinstance(pretrained_model_path_or_dict, dict):
         
     | 
| 153 | 
         
            -
                        if pretrained_model_path_or_dict.endswith(".safetensors"):
         
     | 
| 154 | 
         
            -
                            state_dict = {"image_proj": {}, "ip_adapter": {}}
         
     | 
| 155 | 
         
            -
                            with safe_open(pretrained_model_path_or_dict, framework="pt", device="cpu") as f:
         
     | 
| 156 | 
         
            -
                                for key in f.keys():
         
     | 
| 157 | 
         
            -
                                    if key.startswith("image_proj."):
         
     | 
| 158 | 
         
            -
                                        state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key)
         
     | 
| 159 | 
         
            -
                                    elif key.startswith("ip_adapter."):
         
     | 
| 160 | 
         
            -
                                        state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key)
         
     | 
| 161 | 
         
            -
                        else:
         
     | 
| 162 | 
         
            -
                            state_dict = torch.load(pretrained_model_path_or_dict, map_location=pipe.device)
         
     | 
| 163 | 
         
             
                    else:
         
     | 
| 164 | 
         
            -
                         
     | 
| 165 | 
         
            -
             
     | 
| 166 | 
         
            -
                    keys = list(state_dict.keys())
         
     | 
| 167 | 
         
            -
                    if keys != ["image_proj", "ip_adapter"]:
         
     | 
| 168 | 
         
            -
                        state_dict = revise_state_dict(state_dict)
         
     | 
| 169 | 
         
            -
             
     | 
| 170 | 
         
            -
                    # load CLIP image encoder here if it has not been registered to the pipeline yet
         
     | 
| 171 | 
         
            -
                    if image_encoder_path is not None:
         
     | 
| 172 | 
         
            -
                        if isinstance(image_encoder_path, str):
         
     | 
| 173 | 
         
            -
                            feature_extractor_path = image_encoder_path if feature_extractor_path is None else feature_extractor_path
         
     | 
| 174 | 
         
            -
             
     | 
| 175 | 
         
            -
                            image_encoder_path = AutoModel.from_pretrained(
         
     | 
| 176 | 
         
            -
                                image_encoder_path) if use_dino else \
         
     | 
| 177 | 
         
            -
                                    CLIPVisionModelWithProjection.from_pretrained(
         
     | 
| 178 | 
         
            -
                                        image_encoder_path)
         
     | 
| 179 | 
         
            -
                        image_encoder = image_encoder_path.to(pipe.device, dtype=pipe.dtype)
         
     | 
| 180 | 
         
            -
             
     | 
| 181 | 
         
            -
                    if feature_extractor_path is not None:
         
     | 
| 182 | 
         
            -
                        if isinstance(feature_extractor_path, str):
         
     | 
| 183 | 
         
            -
                            feature_extractor_path = AutoImageProcessor.from_pretrained(feature_extractor_path) \
         
     | 
| 184 | 
         
            -
                                if use_dino else CLIPImageProcessor()
         
     | 
| 185 | 
         
            -
                        feature_extractor = feature_extractor_path
         
     | 
| 186 | 
         
            -
             
     | 
| 187 | 
         
            -
                    # create image encoder if it has not been registered to the pipeline yet
         
     | 
| 188 | 
         
            -
                    if hasattr(pipe, "image_encoder") and getattr(pipe, "image_encoder", None) is None:
         
     | 
| 189 | 
         
            -
                        pipe.register_modules(image_encoder=image_encoder)
         
     | 
| 190 | 
         | 
| 191 | 
         
             
                    # create feature extractor if it has not been registered to the pipeline yet
         
     | 
| 192 | 
         
             
                    if hasattr(pipe, "feature_extractor") and getattr(pipe, "feature_extractor", None) is None:
         
     | 
| 
         | 
|
| 193 | 
         
             
                        pipe.register_modules(feature_extractor=feature_extractor)
         
     | 
| 
         | 
|
| 
         | 
|
| 194 | 
         | 
| 195 | 
         
            -
                    # load  
     | 
| 196 | 
         
             
                    unet = getattr(pipe, pipe.unet_name) if not hasattr(pipe, "unet") else pipe.unet
         
     | 
| 197 | 
         
            -
                    attn_procs = init_attn_proc(unet,  
     | 
| 198 | 
         
             
                    unet.set_attn_processor(attn_procs)
         
     | 
| 199 | 
         
            -
                     
     | 
| 200 | 
         
            -
             
     | 
| 201 | 
         
            -
             
     | 
| 202 | 
         
            -
                         
     | 
| 
         | 
|
| 203 | 
         | 
| 204 | 
         
            -
                     
     | 
| 205 | 
         
            -
                     
     | 
| 206 | 
         
            -
             
     | 
| 207 | 
         
            -
             
     | 
| 208 | 
         
            -
             
     | 
| 209 | 
         
            -
             
     | 
| 210 | 
         
            -
             
     | 
| 211 | 
         
            -
                    if  
     | 
| 212 | 
         
            -
                         
     | 
| 213 | 
         
            -
                            layer_id = int(mk.split(".")[0])
         
     | 
| 214 | 
         
            -
                            if layer_id < len(controlnet.attn_processors.keys()):
         
     | 
| 215 | 
         
            -
                                raise ValueError(f"Failed to load {unexpected} in controlnet adapter_modules")
         
     | 
| 216 | 
         | 
| 217 | 
         
             
                    # convert IP-Adapter Image Projection layers to diffusers
         
     | 
| 218 | 
         
             
                    image_projection_layers = []
         
     | 
| 219 | 
         
            -
                     
     | 
| 220 | 
         
            -
                        state_dict["image_proj"], low_cpu_mem_usage=low_cpu_mem_usage
         
     | 
| 221 | 
         
            -
                    )
         
     | 
| 222 | 
         
            -
                    image_projection_layers.append(image_projection_layer)
         
     | 
| 223 | 
         
            -
             
     | 
| 224 | 
         
             
                    unet.encoder_hid_proj = MultiIPAdapterImageProjection(image_projection_layers)
         
     | 
| 225 | 
         
            -
                    unet.config.encoder_hid_dim_type = "ip_image_proj"
         
     | 
| 226 | 
         
            -
             
     | 
| 227 | 
         
            -
                    controlnet.encoder_hid_proj = MultiIPAdapterImageProjection(image_projection_layers)
         
     | 
| 228 | 
         
            -
                    controlnet.config.encoder_hid_dim_type = "ip_image_proj"
         
     | 
| 229 | 
         | 
| 
         | 
|
| 
         | 
|
| 230 | 
         
             
                    unet.to(dtype=pipe.dtype, device=pipe.device)
         
     | 
| 231 | 
         
            -
             
     | 
| 232 | 
         | 
| 233 | 
         
             
            def revise_state_dict(old_state_dict_or_path, map_location="cpu"):
         
     | 
| 234 | 
         
             
                new_state_dict = OrderedDict()
         
     | 
| 
         | 
|
| 
         | 
|
| 1 | 
         
             
            import torch
         
     | 
| 2 | 
         
             
            from collections import namedtuple, OrderedDict
         
     | 
| 3 | 
         
             
            from safetensors import safe_open
         
     | 
| 4 | 
         
             
            from .attention_processor import init_attn_proc
         
     | 
| 5 | 
         
             
            from .ip_adapter import MultiIPAdapterImageProjection
         
     | 
| 6 | 
         
            +
            from .resampler import Resampler
         
     | 
| 7 | 
         
             
            from transformers import (
         
     | 
| 8 | 
         
             
                AutoModel, AutoImageProcessor,
         
     | 
| 9 | 
         
             
                CLIPVisionModelWithProjection, CLIPImageProcessor)
         
     | 
| 10 | 
         | 
| 11 | 
         | 
| 12 | 
         
            +
            def init_adapter_in_unet(
         
     | 
| 13 | 
         
             
                    unet,
         
     | 
| 14 | 
         
            +
                    image_proj_model=None,
         
     | 
| 15 | 
         
             
                    pretrained_model_path_or_dict=None,
         
     | 
| 16 | 
         
            +
                    adapter_tokens=64,
         
     | 
| 17 | 
         
            +
                    embedding_dim=None,
         
     | 
| 18 | 
         
             
                    use_lcm=False,
         
     | 
| 19 | 
         
             
                    use_adaln=True,
         
     | 
| 
         | 
|
| 20 | 
         
             
                ):
         
     | 
| 21 | 
         
            +
                    device = unet.device
         
     | 
| 22 | 
         
            +
                    dtype = unet.dtype
         
     | 
| 23 | 
         
            +
                    if image_proj_model is None:
         
     | 
| 24 | 
         
            +
                        assert embedding_dim is not None, "embedding_dim must be provided if image_proj_model is None."
         
     | 
| 25 | 
         
            +
                        image_proj_model = Resampler(
         
     | 
| 26 | 
         
            +
                            embedding_dim=embedding_dim,
         
     | 
| 27 | 
         
            +
                            output_dim=unet.config.cross_attention_dim,
         
     | 
| 28 | 
         
            +
                            num_queries=adapter_tokens,
         
     | 
| 29 | 
         
            +
                        )
         
     | 
| 30 | 
         
             
                    if pretrained_model_path_or_dict is not None:
         
     | 
| 31 | 
         
             
                        if not isinstance(pretrained_model_path_or_dict, dict):
         
     | 
| 32 | 
         
             
                            if pretrained_model_path_or_dict.endswith(".safetensors"):
         
     | 
| 
         | 
|
| 46 | 
         
             
                            state_dict = revise_state_dict(state_dict)
         
     | 
| 47 | 
         | 
| 48 | 
         
             
                    # Creat IP cross-attention in unet.
         
     | 
| 49 | 
         
            +
                    attn_procs = init_attn_proc(unet, adapter_tokens, use_lcm, use_adaln)
         
     | 
| 50 | 
         
             
                    unet.set_attn_processor(attn_procs)
         
     | 
| 51 | 
         | 
| 52 | 
         
             
                    # Load pretrinaed model if needed.
         
     | 
| 
         | 
|
| 67 | 
         | 
| 68 | 
         
             
                    # Adjust unet config to handle addtional ip hidden states.
         
     | 
| 69 | 
         
             
                    unet.config.encoder_hid_dim_type = "ip_image_proj"
         
     | 
| 70 | 
         
            +
                    unet.to(dtype=dtype, device=device)
         
     | 
| 71 | 
         | 
| 72 | 
         | 
| 73 | 
         
            +
            def load_adapter_to_pipe(
         
     | 
| 74 | 
         
             
                    pipe,
         
     | 
| 75 | 
         
             
                    pretrained_model_path_or_dict,
         
     | 
| 76 | 
         
            +
                    image_encoder_or_path=None,
         
     | 
| 77 | 
         
            +
                    feature_extractor_or_path=None,
         
     | 
| 78 | 
         
            +
                    use_clip_encoder=False,
         
     | 
| 79 | 
         
            +
                    adapter_tokens=64,
         
     | 
| 80 | 
         
            +
                    use_lcm=False,
         
     | 
| 81 | 
         
             
                    use_adaln=True,
         
     | 
| 
         | 
|
| 82 | 
         
             
                ):
         
     | 
| 83 | 
         | 
| 84 | 
         
             
                    if not isinstance(pretrained_model_path_or_dict, dict):
         
     | 
| 85 | 
         
             
                        if pretrained_model_path_or_dict.endswith(".safetensors"):
         
     | 
| 86 | 
         
             
                            state_dict = {"image_proj": {}, "ip_adapter": {}}
         
     | 
| 87 | 
         
            +
                            with safe_open(pretrained_model_path_or_dict, framework="pt", device=pipe.device) as f:
         
     | 
| 88 | 
         
             
                                for key in f.keys():
         
     | 
| 89 | 
         
             
                                    if key.startswith("image_proj."):
         
     | 
| 90 | 
         
             
                                        state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key)
         
     | 
| 
         | 
|
| 94 | 
         
             
                            state_dict = torch.load(pretrained_model_path_or_dict, map_location=pipe.device)
         
     | 
| 95 | 
         
             
                    else:
         
     | 
| 96 | 
         
             
                        state_dict = pretrained_model_path_or_dict
         
     | 
| 
         | 
|
| 97 | 
         
             
                    keys = list(state_dict.keys())
         
     | 
| 98 | 
         
            +
                    if "image_proj" not in keys and "ip_adapter" not in keys:
         
     | 
| 99 | 
         
             
                        state_dict = revise_state_dict(state_dict)
         
     | 
| 100 | 
         | 
| 101 | 
         
             
                    # load CLIP image encoder here if it has not been registered to the pipeline yet
         
     | 
| 102 | 
         
            +
                    if image_encoder_or_path is not None:
         
     | 
| 103 | 
         
            +
                        if isinstance(image_encoder_or_path, str):
         
     | 
| 104 | 
         
            +
                            feature_extractor_or_path = image_encoder_or_path if feature_extractor_or_path is None else feature_extractor_or_path
         
     | 
| 105 | 
         
            +
             
     | 
| 106 | 
         
            +
                            image_encoder_or_path = (
         
     | 
| 107 | 
         
            +
                                CLIPVisionModelWithProjection.from_pretrained(
         
     | 
| 108 | 
         
            +
                                    image_encoder_or_path
         
     | 
| 109 | 
         
            +
                                ) if use_clip_encoder else
         
     | 
| 110 | 
         
            +
                                AutoModel.from_pretrained(image_encoder_or_path)
         
     | 
| 111 | 
         
            +
                            )
         
     | 
| 112 | 
         | 
| 113 | 
         
            +
                    if feature_extractor_or_path is not None:
         
     | 
| 114 | 
         
            +
                        if isinstance(feature_extractor_or_path, str):
         
     | 
| 115 | 
         
            +
                            feature_extractor_or_path = (
         
     | 
| 116 | 
         
            +
                                CLIPImageProcessor() if use_clip_encoder else
         
     | 
| 117 | 
         
            +
                                AutoImageProcessor.from_pretrained(feature_extractor_or_path)
         
     | 
| 118 | 
         
            +
                            )
         
     | 
| 119 | 
         | 
| 120 | 
         
             
                    # create image encoder if it has not been registered to the pipeline yet
         
     | 
| 121 | 
         
             
                    if hasattr(pipe, "image_encoder") and getattr(pipe, "image_encoder", None) is None:
         
     | 
| 122 | 
         
            +
                        image_encoder = image_encoder_or_path.to(pipe.device, dtype=pipe.dtype)
         
     | 
| 123 | 
         
             
                        pipe.register_modules(image_encoder=image_encoder)
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 124 | 
         
             
                    else:
         
     | 
| 125 | 
         
            +
                        image_encoder = pipe.image_encoder
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 126 | 
         | 
| 127 | 
         
             
                    # create feature extractor if it has not been registered to the pipeline yet
         
     | 
| 128 | 
         
             
                    if hasattr(pipe, "feature_extractor") and getattr(pipe, "feature_extractor", None) is None:
         
     | 
| 129 | 
         
            +
                        feature_extractor = feature_extractor_or_path
         
     | 
| 130 | 
         
             
                        pipe.register_modules(feature_extractor=feature_extractor)
         
     | 
| 131 | 
         
            +
                    else:
         
     | 
| 132 | 
         
            +
                        feature_extractor = pipe.feature_extractor
         
     | 
| 133 | 
         | 
| 134 | 
         
            +
                    # load adapter into unet
         
     | 
| 135 | 
         
             
                    unet = getattr(pipe, pipe.unet_name) if not hasattr(pipe, "unet") else pipe.unet
         
     | 
| 136 | 
         
            +
                    attn_procs = init_attn_proc(unet, adapter_tokens, use_lcm, use_adaln)
         
     | 
| 137 | 
         
             
                    unet.set_attn_processor(attn_procs)
         
     | 
| 138 | 
         
            +
                    image_proj_model = Resampler(
         
     | 
| 139 | 
         
            +
                        embedding_dim=image_encoder.config.hidden_size,
         
     | 
| 140 | 
         
            +
                        output_dim=unet.config.cross_attention_dim,
         
     | 
| 141 | 
         
            +
                        num_queries=adapter_tokens,
         
     | 
| 142 | 
         
            +
                    )
         
     | 
| 143 | 
         | 
| 144 | 
         
            +
                    # Load pretrinaed model if needed.
         
     | 
| 145 | 
         
            +
                    if "ip_adapter" in state_dict.keys():
         
     | 
| 146 | 
         
            +
                        adapter_modules = torch.nn.ModuleList(unet.attn_processors.values())
         
     | 
| 147 | 
         
            +
                        missing, unexpected = adapter_modules.load_state_dict(state_dict["ip_adapter"], strict=False)
         
     | 
| 148 | 
         
            +
                        for mk in missing:
         
     | 
| 149 | 
         
            +
                            if "ln" not in mk:
         
     | 
| 150 | 
         
            +
                                raise ValueError(f"Missing keys in adapter_modules: {missing}")
         
     | 
| 151 | 
         
            +
                    if "image_proj" in state_dict.keys():
         
     | 
| 152 | 
         
            +
                        image_proj_model.load_state_dict(state_dict["image_proj"])
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 153 | 
         | 
| 154 | 
         
             
                    # convert IP-Adapter Image Projection layers to diffusers
         
     | 
| 155 | 
         
             
                    image_projection_layers = []
         
     | 
| 156 | 
         
            +
                    image_projection_layers.append(image_proj_model)
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 157 | 
         
             
                    unet.encoder_hid_proj = MultiIPAdapterImageProjection(image_projection_layers)
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 158 | 
         | 
| 159 | 
         
            +
                    # Adjust unet config to handle addtional ip hidden states.
         
     | 
| 160 | 
         
            +
                    unet.config.encoder_hid_dim_type = "ip_image_proj"
         
     | 
| 161 | 
         
             
                    unet.to(dtype=pipe.dtype, device=pipe.device)
         
     | 
| 162 | 
         
            +
             
     | 
| 163 | 
         | 
| 164 | 
         
             
            def revise_state_dict(old_state_dict_or_path, map_location="cpu"):
         
     | 
| 165 | 
         
             
                new_state_dict = OrderedDict()
         
     | 
    	
        pipelines/sdxl_instantir.py
    CHANGED
    
    | 
         @@ -1,4 +1,4 @@ 
     | 
|
| 1 | 
         
            -
            # Copyright 2024 The  
     | 
| 2 | 
         
             
            #
         
     | 
| 3 | 
         
             
            # Licensed under the Apache License, Version 2.0 (the "License");
         
     | 
| 4 | 
         
             
            # you may not use this file except in compliance with the License.
         
     | 
| 
         @@ -53,6 +53,7 @@ from diffusers.utils import ( 
     | 
|
| 53 | 
         
             
                replace_example_docstring,
         
     | 
| 54 | 
         
             
                scale_lora_layers,
         
     | 
| 55 | 
         
             
                unscale_lora_layers,
         
     | 
| 
         | 
|
| 56 | 
         
             
            )
         
     | 
| 57 | 
         
             
            from diffusers.utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor
         
     | 
| 58 | 
         
             
            from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
         
     | 
| 
         @@ -62,6 +63,7 @@ from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffus 
     | 
|
| 62 | 
         
             
            if is_invisible_watermark_available():
         
     | 
| 63 | 
         
             
                from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker
         
     | 
| 64 | 
         | 
| 
         | 
|
| 65 | 
         
             
            from module.aggregator import Aggregator
         
     | 
| 66 | 
         | 
| 67 | 
         | 
| 
         @@ -71,44 +73,52 @@ logger = logging.get_logger(__name__)  # pylint: disable=invalid-name 
     | 
|
| 71 | 
         
             
            EXAMPLE_DOC_STRING = """
         
     | 
| 72 | 
         
             
                Examples:
         
     | 
| 73 | 
         
             
                    ```py
         
     | 
| 74 | 
         
            -
                    >>> # !pip install  
     | 
| 75 | 
         
            -
                    >>> from diffusers import StableDiffusionXLControlNetPipeline, ControlNetModel, AutoencoderKL
         
     | 
| 76 | 
         
            -
                    >>> from diffusers.utils import load_image
         
     | 
| 77 | 
         
            -
                    >>> import numpy as np
         
     | 
| 78 | 
         
             
                    >>> import torch
         
     | 
| 79 | 
         
            -
             
     | 
| 80 | 
         
            -
                    >>> import cv2
         
     | 
| 81 | 
         
             
                    >>> from PIL import Image
         
     | 
| 82 | 
         | 
| 83 | 
         
            -
                    >>>  
     | 
| 84 | 
         
            -
                    >>>  
     | 
| 85 | 
         | 
| 86 | 
         
            -
                    >>>  
     | 
| 87 | 
         
            -
                    >>>  
     | 
| 88 | 
         
            -
                    ...     "https://hf.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png"
         
     | 
| 89 | 
         
            -
                    ... )
         
     | 
| 90 | 
         | 
| 91 | 
         
            -
                    >>> #  
     | 
| 92 | 
         
            -
                    >>>  
     | 
| 93 | 
         
            -
                    >>>  
     | 
| 94 | 
         
            -
                     
     | 
| 95 | 
         
            -
             
     | 
| 96 | 
         
            -
                    >>>  
     | 
| 97 | 
         
            -
                    >>> pipe =  
     | 
| 98 | 
         
             
                    ...     "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, vae=vae, torch_dtype=torch.float16
         
     | 
| 99 | 
         
             
                    ... )
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 100 | 
         
             
                    >>> pipe.enable_model_cpu_offload()
         
     | 
| 101 | 
         | 
| 102 | 
         
            -
                    >>> #  
     | 
| 103 | 
         
            -
                    >>>  
     | 
| 104 | 
         
            -
                    >>> image = cv2.Canny(image, 100, 200)
         
     | 
| 105 | 
         
            -
                    >>> image = image[:, :, None]
         
     | 
| 106 | 
         
            -
                    >>> image = np.concatenate([image, image, image], axis=2)
         
     | 
| 107 | 
         
            -
                    >>> canny_image = Image.fromarray(image)
         
     | 
| 108 | 
         | 
| 109 | 
         
            -
                    >>> #  
     | 
| 110 | 
         
             
                    >>> image = pipe(
         
     | 
| 111 | 
         
            -
                    ...      
     | 
| 
         | 
|
| 112 | 
         
             
                    ... ).images[0]
         
     | 
| 113 | 
         
             
                    ```
         
     | 
| 114 | 
         
             
            """
         
     | 
| 
         @@ -299,8 +309,8 @@ class InstantIRPipeline( 
     | 
|
| 299 | 
         
             
                    tokenizer: CLIPTokenizer,
         
     | 
| 300 | 
         
             
                    tokenizer_2: CLIPTokenizer,
         
     | 
| 301 | 
         
             
                    unet: UNet2DConditionModel,
         
     | 
| 302 | 
         
            -
                    aggregator: Aggregator,
         
     | 
| 303 | 
         
             
                    scheduler: KarrasDiffusionSchedulers,
         
     | 
| 
         | 
|
| 304 | 
         
             
                    force_zeros_for_empty_prompt: bool = True,
         
     | 
| 305 | 
         
             
                    add_watermarker: Optional[bool] = None,
         
     | 
| 306 | 
         
             
                    feature_extractor: CLIPImageProcessor = None,
         
     | 
| 
         @@ -308,6 +318,8 @@ class InstantIRPipeline( 
     | 
|
| 308 | 
         
             
                ):
         
     | 
| 309 | 
         
             
                    super().__init__()
         
     | 
| 310 | 
         | 
| 
         | 
|
| 
         | 
|
| 311 | 
         
             
                    remove_attn2(aggregator)
         
     | 
| 312 | 
         | 
| 313 | 
         
             
                    self.register_modules(
         
     | 
| 
         @@ -336,6 +348,55 @@ class InstantIRPipeline( 
     | 
|
| 336 | 
         | 
| 337 | 
         
             
                    self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
         
     | 
| 338 | 
         | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 339 | 
         
             
                # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt
         
     | 
| 340 | 
         
             
                def encode_prompt(
         
     | 
| 341 | 
         
             
                    self,
         
     | 
| 
         @@ -1011,10 +1072,10 @@ class InstantIRPipeline( 
     | 
|
| 1011 | 
         
             
                    image: PipelineImageInput = None,
         
     | 
| 1012 | 
         
             
                    height: Optional[int] = None,
         
     | 
| 1013 | 
         
             
                    width: Optional[int] = None,
         
     | 
| 1014 | 
         
            -
                    num_inference_steps: int =  
     | 
| 1015 | 
         
             
                    timesteps: List[int] = None,
         
     | 
| 1016 | 
         
             
                    denoising_end: Optional[float] = None,
         
     | 
| 1017 | 
         
            -
                    guidance_scale: float =  
     | 
| 1018 | 
         
             
                    negative_prompt: Optional[Union[str, List[str]]] = None,
         
     | 
| 1019 | 
         
             
                    negative_prompt_2: Optional[Union[str, List[str]]] = None,
         
     | 
| 1020 | 
         
             
                    num_images_per_prompt: Optional[int] = 1,
         
     | 
| 
         @@ -1032,11 +1093,14 @@ class InstantIRPipeline( 
     | 
|
| 1032 | 
         
             
                    save_preview_row: bool = False,
         
     | 
| 1033 | 
         
             
                    init_latents_with_lq: bool = True,
         
     | 
| 1034 | 
         
             
                    multistep_restore: bool = False,
         
     | 
| 
         | 
|
| 1035 | 
         
             
                    cross_attention_kwargs: Optional[Dict[str, Any]] = None,
         
     | 
| 1036 | 
         
             
                    guidance_rescale: float = 0.0,
         
     | 
| 1037 | 
         
            -
                    controlnet_conditioning_scale:  
     | 
| 1038 | 
         
            -
                    control_guidance_start:  
     | 
| 1039 | 
         
            -
                    control_guidance_end:  
     | 
| 
         | 
|
| 
         | 
|
| 1040 | 
         
             
                    original_size: Tuple[int, int] = None,
         
     | 
| 1041 | 
         
             
                    crops_coords_top_left: Tuple[int, int] = (0, 0),
         
     | 
| 1042 | 
         
             
                    target_size: Tuple[int, int] = None,
         
     | 
| 
         @@ -1212,6 +1276,8 @@ class InstantIRPipeline( 
     | 
|
| 1212 | 
         
             
                        )
         
     | 
| 1213 | 
         | 
| 1214 | 
         
             
                    aggregator = self.aggregator._orig_mod if is_compiled_module(self.aggregator) else self.aggregator
         
     | 
| 
         | 
|
| 
         | 
|
| 1215 | 
         | 
| 1216 | 
         
             
                    # 1. Check inputs. Raise error if not correct
         
     | 
| 1217 | 
         
             
                    self.check_inputs(
         
     | 
| 
         @@ -1303,8 +1369,14 @@ class InstantIRPipeline( 
     | 
|
| 1303 | 
         
             
                    )
         
     | 
| 1304 | 
         
             
                    height, width = image.shape[-2:]
         
     | 
| 1305 | 
         
             
                    if image.shape[1] != 4:
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 1306 | 
         
             
                        image = self.vae.encode(image).latent_dist.sample()
         
     | 
| 1307 | 
         
             
                        image = image * self.vae.config.scaling_factor
         
     | 
| 
         | 
|
| 
         | 
|
| 1308 | 
         
             
                    else:
         
     | 
| 1309 | 
         
             
                        height = int(height * self.vae_scale_factor)
         
     | 
| 1310 | 
         
             
                        width = int(width * self.vae_scale_factor)
         
     | 
| 
         @@ -1341,9 +1413,12 @@ class InstantIRPipeline( 
     | 
|
| 1341 | 
         | 
| 1342 | 
         
             
                    # 7.1 Create tensor stating which controlnets to keep
         
     | 
| 1343 | 
         
             
                    controlnet_keep = []
         
     | 
| 
         | 
|
| 1344 | 
         
             
                    for i in range(len(timesteps)):
         
     | 
| 1345 | 
         
             
                        keeps = 1.0 - float(i / len(timesteps) < control_guidance_start or (i + 1) / len(timesteps) > control_guidance_end)
         
     | 
| 1346 | 
         
             
                        controlnet_keep.append(keeps)
         
     | 
| 
         | 
|
| 
         | 
|
| 1347 | 
         
             
                    if isinstance(controlnet_conditioning_scale, list):
         
     | 
| 1348 | 
         
             
                        assert len(controlnet_conditioning_scale) == len(timesteps), f"{len(controlnet_conditioning_scale)} controlnet scales do not match number of sampling steps {len(timesteps)}"
         
     | 
| 1349 | 
         
             
                    else:
         
     | 
| 
         @@ -1427,83 +1502,105 @@ class InstantIRPipeline( 
     | 
|
| 1427 | 
         
             
                            # expand the latents if we are doing classifier free guidance
         
     | 
| 1428 | 
         
             
                            latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
         
     | 
| 1429 | 
         
             
                            latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
         
     | 
| 
         | 
|
| 
         | 
|
| 1430 | 
         | 
| 1431 | 
         
            -
                            added_cond_kwargs = { 
     | 
| 1432 | 
         
            -
             
     | 
| 1433 | 
         
            -
                            # preview with LCM
         
     | 
| 1434 | 
         
            -
                            previewer_model_input = latent_model_input
         
     | 
| 1435 | 
         
            -
                            previewer_prompt_embeds = prompt_embeds
         
     | 
| 1436 | 
         
            -
                            previewer_added_cond_kwargs = {
         
     | 
| 1437 | 
         
             
                                "text_embeds": add_text_embeds,
         
     | 
| 1438 | 
         
             
                                "time_ids": add_time_ids,
         
     | 
| 1439 | 
         
             
                                "image_embeds": image_embeds
         
     | 
| 1440 | 
         
             
                            }
         
     | 
| 1441 | 
         
            -
                             
     | 
| 1442 | 
         
            -
                            preview_noise = self.unet(
         
     | 
| 1443 | 
         
            -
                                previewer_model_input,
         
     | 
| 1444 | 
         
            -
                                t,
         
     | 
| 1445 | 
         
            -
                                encoder_hidden_states=previewer_prompt_embeds,
         
     | 
| 1446 | 
         
            -
                                timestep_cond=timestep_cond,
         
     | 
| 1447 | 
         
            -
                                cross_attention_kwargs=self.cross_attention_kwargs,
         
     | 
| 1448 | 
         
            -
                                added_cond_kwargs=previewer_added_cond_kwargs,
         
     | 
| 1449 | 
         
            -
                                return_dict=False,
         
     | 
| 1450 | 
         
            -
                            )[0]
         
     | 
| 1451 | 
         
            -
                            preview_latent = previewer_scheduler.step(
         
     | 
| 1452 | 
         
            -
                                preview_noise,
         
     | 
| 1453 | 
         
            -
                                t.to(dtype=torch.int64),
         
     | 
| 1454 | 
         
            -
                                # torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents,
         
     | 
| 1455 | 
         
            -
                                latent_model_input,
         
     | 
| 1456 | 
         
            -
                                return_dict=False
         
     | 
| 1457 | 
         
            -
                            )[0]
         
     | 
| 1458 | 
         
            -
                            self.unet.disable_adapters()
         
     | 
| 1459 | 
         
            -
                            if self.do_classifier_free_guidance:
         
     | 
| 1460 | 
         
            -
                                _, preview_latent_cond = preview_latent.chunk(2)
         
     | 
| 1461 | 
         
            -
                                _, noise_preview = preview_noise.chunk(2)
         
     | 
| 1462 | 
         
            -
                                preview_row.append(preview_latent_cond.to('cpu'))
         
     | 
| 1463 | 
         
            -
                            else:
         
     | 
| 1464 | 
         
            -
                                noise_preview = preview_noise
         
     | 
| 1465 | 
         
            -
                                preview_row.append(preview_latent.to('cpu'))
         
     | 
| 1466 | 
         
            -
                            # Prepare 2nd order step.
         
     | 
| 1467 | 
         
            -
                            if multistep_restore and i+1 < len(timesteps):
         
     | 
| 1468 | 
         
            -
                                first_step = self.scheduler.step(noise_preview, t, latents, **extra_step_kwargs, return_dict=True, step_forward=False)
         
     | 
| 1469 | 
         
            -
                                prev_t = timesteps[i + 1]
         
     | 
| 1470 | 
         
            -
                                unet_model_input = torch.cat([first_step.prev_sample] * 2) if self.do_classifier_free_guidance else first_step.prev_sample
         
     | 
| 1471 | 
         
            -
                                unet_model_input = self.scheduler.scale_model_input(unet_model_input, prev_t, heun_step=True)
         
     | 
| 1472 | 
         
            -
                            else:
         
     | 
| 1473 | 
         
            -
                                prev_t = t
         
     | 
| 1474 | 
         
            -
                                unet_model_input = latent_model_input
         
     | 
| 1475 | 
         | 
| 1476 | 
         
            -
                             
     | 
| 1477 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 1478 | 
         | 
| 1479 | 
         
            -
                             
     | 
| 1480 | 
         
            -
             
     | 
| 1481 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 1482 | 
         | 
| 1483 | 
         
            -
                             
     | 
| 
         | 
|
| 1484 | 
         | 
| 1485 | 
         
            -
                             
     | 
| 1486 | 
         
            -
                             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 1487 | 
         | 
| 1488 | 
         
            -
                             
     | 
| 
         | 
|
| 1489 | 
         
             
                            cond_scale = adaRes_scale * controlnet_keep[i]
         
     | 
| 1490 | 
         
             
                            cond_scale = torch.cat([cond_scale] * 2) if self.do_classifier_free_guidance else cond_scale
         
     | 
| 1491 | 
         
            -
                            print(cond_scale.squeeze())
         
     | 
| 1492 | 
         | 
| 1493 | 
         
            -
                             
     | 
| 1494 | 
         
            -
             
     | 
| 1495 | 
         
            -
             
     | 
| 1496 | 
         
            -
             
     | 
| 1497 | 
         
            -
             
     | 
| 1498 | 
         
            -
             
     | 
| 1499 | 
         
            -
             
     | 
| 1500 | 
         
            -
             
     | 
| 1501 | 
         
            -
             
     | 
| 1502 | 
         
            -
             
     | 
| 1503 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 1504 | 
         | 
| 1505 | 
         
            -
                             
     | 
| 1506 | 
         
            -
             
     | 
| 
         | 
|
| 1507 | 
         | 
| 1508 | 
         
             
                            # predict the noise residual
         
     | 
| 1509 | 
         
             
                            noise_pred = self.unet(
         
     | 
| 
         @@ -1536,14 +1633,15 @@ class InstantIRPipeline( 
     | 
|
| 1536 | 
         
             
                            unet_pred_latent = unet_step.pred_original_sample
         
     | 
| 1537 | 
         | 
| 1538 | 
         
             
                            # Adaptive restoration.
         
     | 
| 1539 | 
         
            -
                             
     | 
| 1540 | 
         
            -
             
     | 
| 1541 | 
         
            -
             
     | 
| 1542 | 
         
            -
             
     | 
| 1543 | 
         
            -
             
     | 
| 1544 | 
         
            -
             
     | 
| 1545 | 
         
            -
             
     | 
| 1546 | 
         
            -
             
     | 
| 
         | 
|
| 1547 | 
         | 
| 1548 | 
         
             
                            if latents.dtype != latents_dtype:
         
     | 
| 1549 | 
         
             
                                if torch.backends.mps.is_available():
         
     | 
| 
         @@ -1610,7 +1708,7 @@ class InstantIRPipeline( 
     | 
|
| 1610 | 
         
             
                        if needs_upcasting:
         
     | 
| 1611 | 
         
             
                            self.upcast_vae()
         
     | 
| 1612 | 
         
             
                        for preview_latents in preview_row:
         
     | 
| 1613 | 
         
            -
                            preview_latents = preview_latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
         
     | 
| 1614 | 
         
             
                            if has_latents_mean and has_latents_std:
         
     | 
| 1615 | 
         
             
                                latents_mean = (
         
     | 
| 1616 | 
         
             
                                    torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(preview_latents.device, preview_latents.dtype)
         
     | 
| 
         | 
|
| 1 | 
         
            +
            # Copyright 2024 The InstantX Team. All rights reserved.
         
     | 
| 2 | 
         
             
            #
         
     | 
| 3 | 
         
             
            # Licensed under the Apache License, Version 2.0 (the "License");
         
     | 
| 4 | 
         
             
            # you may not use this file except in compliance with the License.
         
     | 
| 
         | 
|
| 53 | 
         
             
                replace_example_docstring,
         
     | 
| 54 | 
         
             
                scale_lora_layers,
         
     | 
| 55 | 
         
             
                unscale_lora_layers,
         
     | 
| 56 | 
         
            +
                convert_unet_state_dict_to_peft
         
     | 
| 57 | 
         
             
            )
         
     | 
| 58 | 
         
             
            from diffusers.utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor
         
     | 
| 59 | 
         
             
            from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
         
     | 
| 
         | 
|
| 63 | 
         
             
            if is_invisible_watermark_available():
         
     | 
| 64 | 
         
             
                from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker
         
     | 
| 65 | 
         | 
| 66 | 
         
            +
            from peft import LoraConfig, set_peft_model_state_dict
         
     | 
| 67 | 
         
             
            from module.aggregator import Aggregator
         
     | 
| 68 | 
         | 
| 69 | 
         | 
| 
         | 
|
| 73 | 
         
             
            EXAMPLE_DOC_STRING = """
         
     | 
| 74 | 
         
             
                Examples:
         
     | 
| 75 | 
         
             
                    ```py
         
     | 
| 76 | 
         
            +
                    >>> # !pip install diffusers pillow transformers accelerate
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 77 | 
         
             
                    >>> import torch
         
     | 
| 
         | 
|
| 
         | 
|
| 78 | 
         
             
                    >>> from PIL import Image
         
     | 
| 79 | 
         | 
| 80 | 
         
            +
                    >>> from diffusers import DDPMScheduler
         
     | 
| 81 | 
         
            +
                    >>> from schedulers.lcm_single_step_scheduler import LCMSingleStepScheduler
         
     | 
| 82 | 
         | 
| 83 | 
         
            +
                    >>> from module.ip_adapter.utils import load_adapter_to_pipe
         
     | 
| 84 | 
         
            +
                    >>> from pipelines.sdxl_instantir import InstantIRPipeline
         
     | 
| 
         | 
|
| 
         | 
|
| 85 | 
         | 
| 86 | 
         
            +
                    >>> # download models under ./models
         
     | 
| 87 | 
         
            +
                    >>> dcp_adapter = f'./models/adapter.pt'
         
     | 
| 88 | 
         
            +
                    >>> previewer_lora_path = f'./models'
         
     | 
| 89 | 
         
            +
                    >>> instantir_path = f'./models/aggregator.pt'
         
     | 
| 90 | 
         
            +
             
     | 
| 91 | 
         
            +
                    >>> # load pretrained models
         
     | 
| 92 | 
         
            +
                    >>> pipe = InstantIRPipeline.from_pretrained(
         
     | 
| 93 | 
         
             
                    ...     "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, vae=vae, torch_dtype=torch.float16
         
     | 
| 94 | 
         
             
                    ... )
         
     | 
| 95 | 
         
            +
                    >>> # load adapter
         
     | 
| 96 | 
         
            +
                    >>> load_adapter_to_pipe(
         
     | 
| 97 | 
         
            +
                    ...     pipe,
         
     | 
| 98 | 
         
            +
                    ...     dcp_adapter,
         
     | 
| 99 | 
         
            +
                    ...     image_encoder_or_path = 'facebook/dinov2-large',
         
     | 
| 100 | 
         
            +
                    ... )
         
     | 
| 101 | 
         
            +
                    >>> # load previewer lora
         
     | 
| 102 | 
         
            +
                    >>> pipe.prepare_previewers(previewer_lora_path)
         
     | 
| 103 | 
         
            +
                    >>> pipe.scheduler = DDPMScheduler.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', subfolder="scheduler")
         
     | 
| 104 | 
         
            +
                    >>> lcm_scheduler = LCMSingleStepScheduler.from_config(pipe.scheduler.config)
         
     | 
| 105 | 
         
            +
             
     | 
| 106 | 
         
            +
                    >>> # load aggregator weights
         
     | 
| 107 | 
         
            +
                    >>> pretrained_state_dict = torch.load(instantir_path)
         
     | 
| 108 | 
         
            +
                    >>> pipe.aggregator.load_state_dict(pretrained_state_dict)
         
     | 
| 109 | 
         
            +
             
     | 
| 110 | 
         
            +
                    >>> # send to GPU and fp16
         
     | 
| 111 | 
         
            +
                    >>> pipe.to(device="cuda", dtype=torch.float16)
         
     | 
| 112 | 
         
            +
                    >>> pipe.aggregator.to(device="cuda", dtype=torch.float16)
         
     | 
| 113 | 
         
             
                    >>> pipe.enable_model_cpu_offload()
         
     | 
| 114 | 
         | 
| 115 | 
         
            +
                    >>> # load a broken image
         
     | 
| 116 | 
         
            +
                    >>> low_quality_image = Image.open('path/to/your-image').convert("RGB")
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 117 | 
         | 
| 118 | 
         
            +
                    >>> # restoration
         
     | 
| 119 | 
         
             
                    >>> image = pipe(
         
     | 
| 120 | 
         
            +
                    ...     image=low_quality_image,
         
     | 
| 121 | 
         
            +
                    ...     previewer_scheduler=lcm_scheduler,
         
     | 
| 122 | 
         
             
                    ... ).images[0]
         
     | 
| 123 | 
         
             
                    ```
         
     | 
| 124 | 
         
             
            """
         
     | 
| 
         | 
|
| 309 | 
         
             
                    tokenizer: CLIPTokenizer,
         
     | 
| 310 | 
         
             
                    tokenizer_2: CLIPTokenizer,
         
     | 
| 311 | 
         
             
                    unet: UNet2DConditionModel,
         
     | 
| 
         | 
|
| 312 | 
         
             
                    scheduler: KarrasDiffusionSchedulers,
         
     | 
| 313 | 
         
            +
                    aggregator: Aggregator = None,
         
     | 
| 314 | 
         
             
                    force_zeros_for_empty_prompt: bool = True,
         
     | 
| 315 | 
         
             
                    add_watermarker: Optional[bool] = None,
         
     | 
| 316 | 
         
             
                    feature_extractor: CLIPImageProcessor = None,
         
     | 
| 
         | 
|
| 318 | 
         
             
                ):
         
     | 
| 319 | 
         
             
                    super().__init__()
         
     | 
| 320 | 
         | 
| 321 | 
         
            +
                    if aggregator is None:
         
     | 
| 322 | 
         
            +
                        aggregator = Aggregator.from_unet(unet)
         
     | 
| 323 | 
         
             
                    remove_attn2(aggregator)
         
     | 
| 324 | 
         | 
| 325 | 
         
             
                    self.register_modules(
         
     | 
| 
         | 
|
| 348 | 
         | 
| 349 | 
         
             
                    self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
         
     | 
| 350 | 
         | 
| 351 | 
         
            +
                def prepare_previewers(self, previewer_lora_path: str, use_lcm=False):
         
     | 
| 352 | 
         
            +
                    if use_lcm:
         
     | 
| 353 | 
         
            +
                        lora_state_dict, alpha_dict = self.lora_state_dict(
         
     | 
| 354 | 
         
            +
                            previewer_lora_path,
         
     | 
| 355 | 
         
            +
                        )
         
     | 
| 356 | 
         
            +
                    else:
         
     | 
| 357 | 
         
            +
                        lora_state_dict, alpha_dict = self.lora_state_dict(
         
     | 
| 358 | 
         
            +
                            previewer_lora_path,
         
     | 
| 359 | 
         
            +
                            weight_name="previewer_lora_weights.bin"
         
     | 
| 360 | 
         
            +
                        )
         
     | 
| 361 | 
         
            +
                    unet_state_dict = {
         
     | 
| 362 | 
         
            +
                        f'{k.replace("unet.", "")}': v for k, v in lora_state_dict.items() if k.startswith("unet.")
         
     | 
| 363 | 
         
            +
                    }
         
     | 
| 364 | 
         
            +
                    unet_state_dict = convert_unet_state_dict_to_peft(unet_state_dict)
         
     | 
| 365 | 
         
            +
                    lora_state_dict = dict()
         
     | 
| 366 | 
         
            +
                    for k, v in unet_state_dict.items():
         
     | 
| 367 | 
         
            +
                        if "ip" in k:
         
     | 
| 368 | 
         
            +
                            k = k.replace("attn2", "attn2.processor")
         
     | 
| 369 | 
         
            +
                            lora_state_dict[k] = v
         
     | 
| 370 | 
         
            +
                        else:
         
     | 
| 371 | 
         
            +
                            lora_state_dict[k] = v
         
     | 
| 372 | 
         
            +
                    if alpha_dict:
         
     | 
| 373 | 
         
            +
                        lora_alpha = next(iter(alpha_dict.values()))
         
     | 
| 374 | 
         
            +
                    else:
         
     | 
| 375 | 
         
            +
                        lora_alpha = 1
         
     | 
| 376 | 
         
            +
                    logger.info(f"use lora alpha {lora_alpha}")
         
     | 
| 377 | 
         
            +
                    lora_config = LoraConfig(
         
     | 
| 378 | 
         
            +
                        r=64,
         
     | 
| 379 | 
         
            +
                        target_modules=LCM_LORA_MODULES if use_lcm else PREVIEWER_LORA_MODULES,
         
     | 
| 380 | 
         
            +
                        lora_alpha=lora_alpha,
         
     | 
| 381 | 
         
            +
                        lora_dropout=0.0,
         
     | 
| 382 | 
         
            +
                    )
         
     | 
| 383 | 
         
            +
             
     | 
| 384 | 
         
            +
                    adapter_name = "lcm" if use_lcm else "previewer"
         
     | 
| 385 | 
         
            +
                    self.unet.add_adapter(lora_config, adapter_name)
         
     | 
| 386 | 
         
            +
                    incompatible_keys = set_peft_model_state_dict(self.unet, lora_state_dict, adapter_name=adapter_name)
         
     | 
| 387 | 
         
            +
                    if incompatible_keys is not None:
         
     | 
| 388 | 
         
            +
                        # check only for unexpected keys
         
     | 
| 389 | 
         
            +
                        unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
         
     | 
| 390 | 
         
            +
                        missing_keys = getattr(incompatible_keys, "missing_keys", None)
         
     | 
| 391 | 
         
            +
                        if unexpected_keys:
         
     | 
| 392 | 
         
            +
                            raise ValueError(
         
     | 
| 393 | 
         
            +
                                f"Loading adapter weights from state_dict led to unexpected keys not found in the model: "
         
     | 
| 394 | 
         
            +
                                f" {unexpected_keys}. "
         
     | 
| 395 | 
         
            +
                            )
         
     | 
| 396 | 
         
            +
                    self.unet.disable_adapters()
         
     | 
| 397 | 
         
            +
             
     | 
| 398 | 
         
            +
                    return lora_alpha
         
     | 
| 399 | 
         
            +
                
         
     | 
| 400 | 
         
             
                # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt
         
     | 
| 401 | 
         
             
                def encode_prompt(
         
     | 
| 402 | 
         
             
                    self,
         
     | 
| 
         | 
|
| 1072 | 
         
             
                    image: PipelineImageInput = None,
         
     | 
| 1073 | 
         
             
                    height: Optional[int] = None,
         
     | 
| 1074 | 
         
             
                    width: Optional[int] = None,
         
     | 
| 1075 | 
         
            +
                    num_inference_steps: int = 30,
         
     | 
| 1076 | 
         
             
                    timesteps: List[int] = None,
         
     | 
| 1077 | 
         
             
                    denoising_end: Optional[float] = None,
         
     | 
| 1078 | 
         
            +
                    guidance_scale: float = 7.0,
         
     | 
| 1079 | 
         
             
                    negative_prompt: Optional[Union[str, List[str]]] = None,
         
     | 
| 1080 | 
         
             
                    negative_prompt_2: Optional[Union[str, List[str]]] = None,
         
     | 
| 1081 | 
         
             
                    num_images_per_prompt: Optional[int] = 1,
         
     | 
| 
         | 
|
| 1093 | 
         
             
                    save_preview_row: bool = False,
         
     | 
| 1094 | 
         
             
                    init_latents_with_lq: bool = True,
         
     | 
| 1095 | 
         
             
                    multistep_restore: bool = False,
         
     | 
| 1096 | 
         
            +
                    adastep_restore: bool = False,
         
     | 
| 1097 | 
         
             
                    cross_attention_kwargs: Optional[Dict[str, Any]] = None,
         
     | 
| 1098 | 
         
             
                    guidance_rescale: float = 0.0,
         
     | 
| 1099 | 
         
            +
                    controlnet_conditioning_scale: float = 1.0,
         
     | 
| 1100 | 
         
            +
                    control_guidance_start: float = 0.0,
         
     | 
| 1101 | 
         
            +
                    control_guidance_end: float = 1.0,
         
     | 
| 1102 | 
         
            +
                    preview_start: float = 0.0,
         
     | 
| 1103 | 
         
            +
                    preview_end: float = 1.0,
         
     | 
| 1104 | 
         
             
                    original_size: Tuple[int, int] = None,
         
     | 
| 1105 | 
         
             
                    crops_coords_top_left: Tuple[int, int] = (0, 0),
         
     | 
| 1106 | 
         
             
                    target_size: Tuple[int, int] = None,
         
     | 
| 
         | 
|
| 1276 | 
         
             
                        )
         
     | 
| 1277 | 
         | 
| 1278 | 
         
             
                    aggregator = self.aggregator._orig_mod if is_compiled_module(self.aggregator) else self.aggregator
         
     | 
| 1279 | 
         
            +
                    if not isinstance(ip_adapter_image, list):
         
     | 
| 1280 | 
         
            +
                        ip_adapter_image = [ip_adapter_image] if ip_adapter_image is not None else [image]
         
     | 
| 1281 | 
         | 
| 1282 | 
         
             
                    # 1. Check inputs. Raise error if not correct
         
     | 
| 1283 | 
         
             
                    self.check_inputs(
         
     | 
| 
         | 
|
| 1369 | 
         
             
                    )
         
     | 
| 1370 | 
         
             
                    height, width = image.shape[-2:]
         
     | 
| 1371 | 
         
             
                    if image.shape[1] != 4:
         
     | 
| 1372 | 
         
            +
                        needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
         
     | 
| 1373 | 
         
            +
                        if needs_upcasting:
         
     | 
| 1374 | 
         
            +
                            image = image.float()
         
     | 
| 1375 | 
         
            +
                            self.vae.to(dtype=torch.float32)
         
     | 
| 1376 | 
         
             
                        image = self.vae.encode(image).latent_dist.sample()
         
     | 
| 1377 | 
         
             
                        image = image * self.vae.config.scaling_factor
         
     | 
| 1378 | 
         
            +
                        if needs_upcasting:
         
     | 
| 1379 | 
         
            +
                            self.vae.to(dtype=torch.float16)
         
     | 
| 1380 | 
         
             
                    else:
         
     | 
| 1381 | 
         
             
                        height = int(height * self.vae_scale_factor)
         
     | 
| 1382 | 
         
             
                        width = int(width * self.vae_scale_factor)
         
     | 
| 
         | 
|
| 1413 | 
         | 
| 1414 | 
         
             
                    # 7.1 Create tensor stating which controlnets to keep
         
     | 
| 1415 | 
         
             
                    controlnet_keep = []
         
     | 
| 1416 | 
         
            +
                    previewing = []
         
     | 
| 1417 | 
         
             
                    for i in range(len(timesteps)):
         
     | 
| 1418 | 
         
             
                        keeps = 1.0 - float(i / len(timesteps) < control_guidance_start or (i + 1) / len(timesteps) > control_guidance_end)
         
     | 
| 1419 | 
         
             
                        controlnet_keep.append(keeps)
         
     | 
| 1420 | 
         
            +
                        use_preview = 1.0 - float(i / len(timesteps) < preview_start or (i + 1) / len(timesteps) > preview_end)
         
     | 
| 1421 | 
         
            +
                        previewing.append(use_preview)
         
     | 
| 1422 | 
         
             
                    if isinstance(controlnet_conditioning_scale, list):
         
     | 
| 1423 | 
         
             
                        assert len(controlnet_conditioning_scale) == len(timesteps), f"{len(controlnet_conditioning_scale)} controlnet scales do not match number of sampling steps {len(timesteps)}"
         
     | 
| 1424 | 
         
             
                    else:
         
     | 
| 
         | 
|
| 1502 | 
         
             
                            # expand the latents if we are doing classifier free guidance
         
     | 
| 1503 | 
         
             
                            latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
         
     | 
| 1504 | 
         
             
                            latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
         
     | 
| 1505 | 
         
            +
                            prev_t = t
         
     | 
| 1506 | 
         
            +
                            unet_model_input = latent_model_input
         
     | 
| 1507 | 
         | 
| 1508 | 
         
            +
                            added_cond_kwargs = {
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 1509 | 
         
             
                                "text_embeds": add_text_embeds,
         
     | 
| 1510 | 
         
             
                                "time_ids": add_time_ids,
         
     | 
| 1511 | 
         
             
                                "image_embeds": image_embeds
         
     | 
| 1512 | 
         
             
                            }
         
     | 
| 1513 | 
         
            +
                            aggregator_added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 1514 | 
         | 
| 1515 | 
         
            +
                            # prepare time_embeds in advance as adapter input
         
     | 
| 1516 | 
         
            +
                            cross_attention_t_emb = self.unet.get_time_embed(sample=latent_model_input, timestep=t)
         
     | 
| 1517 | 
         
            +
                            cross_attention_emb = self.unet.time_embedding(cross_attention_t_emb, timestep_cond)
         
     | 
| 1518 | 
         
            +
                            cross_attention_aug_emb = None
         
     | 
| 1519 | 
         | 
| 1520 | 
         
            +
                            cross_attention_aug_emb = self.unet.get_aug_embed(
         
     | 
| 1521 | 
         
            +
                                emb=cross_attention_emb,
         
     | 
| 1522 | 
         
            +
                                encoder_hidden_states=prompt_embeds,
         
     | 
| 1523 | 
         
            +
                                added_cond_kwargs=added_cond_kwargs
         
     | 
| 1524 | 
         
            +
                            )
         
     | 
| 1525 | 
         
            +
             
     | 
| 1526 | 
         
            +
                            cross_attention_emb = cross_attention_emb + cross_attention_aug_emb if cross_attention_aug_emb is not None else cross_attention_emb
         
     | 
| 1527 | 
         | 
| 1528 | 
         
            +
                            if self.unet.time_embed_act is not None:
         
     | 
| 1529 | 
         
            +
                                cross_attention_emb = self.unet.time_embed_act(cross_attention_emb)
         
     | 
| 1530 | 
         | 
| 1531 | 
         
            +
                            current_cross_attention_kwargs = {"temb": cross_attention_emb}
         
     | 
| 1532 | 
         
            +
                            if cross_attention_kwargs is not None:
         
     | 
| 1533 | 
         
            +
                                for k,v in cross_attention_kwargs.items():
         
     | 
| 1534 | 
         
            +
                                    current_cross_attention_kwargs[k] = v
         
     | 
| 1535 | 
         
            +
                            self._cross_attention_kwargs = current_cross_attention_kwargs
         
     | 
| 1536 | 
         | 
| 1537 | 
         
            +
                            # adaptive restoration factors
         
     | 
| 1538 | 
         
            +
                            adaRes_scale = preview_factor.to(latent_model_input.dtype).clamp(0.0, controlnet_conditioning_scale[i])
         
     | 
| 1539 | 
         
             
                            cond_scale = adaRes_scale * controlnet_keep[i]
         
     | 
| 1540 | 
         
             
                            cond_scale = torch.cat([cond_scale] * 2) if self.do_classifier_free_guidance else cond_scale
         
     | 
| 
         | 
|
| 1541 | 
         | 
| 1542 | 
         
            +
                            if (cond_scale>0.1).sum().item() > 0:
         
     | 
| 1543 | 
         
            +
                                if previewing[i] > 0:
         
     | 
| 1544 | 
         
            +
                                    # preview with LCM
         
     | 
| 1545 | 
         
            +
                                    self.unet.enable_adapters()
         
     | 
| 1546 | 
         
            +
                                    preview_noise = self.unet(
         
     | 
| 1547 | 
         
            +
                                        latent_model_input,
         
     | 
| 1548 | 
         
            +
                                        t,
         
     | 
| 1549 | 
         
            +
                                        encoder_hidden_states=prompt_embeds,
         
     | 
| 1550 | 
         
            +
                                        timestep_cond=timestep_cond,
         
     | 
| 1551 | 
         
            +
                                        cross_attention_kwargs=self.cross_attention_kwargs,
         
     | 
| 1552 | 
         
            +
                                        added_cond_kwargs=added_cond_kwargs,
         
     | 
| 1553 | 
         
            +
                                        return_dict=False,
         
     | 
| 1554 | 
         
            +
                                    )[0]
         
     | 
| 1555 | 
         
            +
                                    preview_latent = previewer_scheduler.step(
         
     | 
| 1556 | 
         
            +
                                        preview_noise,
         
     | 
| 1557 | 
         
            +
                                        t.to(dtype=torch.int64),
         
     | 
| 1558 | 
         
            +
                                        # torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents,
         
     | 
| 1559 | 
         
            +
                                        latent_model_input,     # scaled latents here for compatibility
         
     | 
| 1560 | 
         
            +
                                        return_dict=False
         
     | 
| 1561 | 
         
            +
                                    )[0]
         
     | 
| 1562 | 
         
            +
                                    self.unet.disable_adapters()
         
     | 
| 1563 | 
         
            +
             
     | 
| 1564 | 
         
            +
                                    if self.do_classifier_free_guidance:
         
     | 
| 1565 | 
         
            +
                                        preview_row.append(preview_latent.chunk(2)[1].to('cpu'))
         
     | 
| 1566 | 
         
            +
                                    else:
         
     | 
| 1567 | 
         
            +
                                        preview_row.append(preview_latent.to('cpu'))
         
     | 
| 1568 | 
         
            +
                                    # Prepare 2nd order step.
         
     | 
| 1569 | 
         
            +
                                    if multistep_restore and i+1 < len(timesteps):
         
     | 
| 1570 | 
         
            +
                                        noise_preview = preview_noise.chunk(2)[1] if self.do_classifier_free_guidance else preview_noise
         
     | 
| 1571 | 
         
            +
                                        first_step = self.scheduler.step(
         
     | 
| 1572 | 
         
            +
                                            noise_preview, t, latents,
         
     | 
| 1573 | 
         
            +
                                            **extra_step_kwargs, return_dict=True, step_forward=False
         
     | 
| 1574 | 
         
            +
                                        )
         
     | 
| 1575 | 
         
            +
                                        prev_t = timesteps[i + 1]
         
     | 
| 1576 | 
         
            +
                                        unet_model_input = torch.cat([first_step.prev_sample] * 2) if self.do_classifier_free_guidance else first_step.prev_sample
         
     | 
| 1577 | 
         
            +
                                        unet_model_input = self.scheduler.scale_model_input(unet_model_input, prev_t, heun_step=True)
         
     | 
| 1578 | 
         
            +
             
     | 
| 1579 | 
         
            +
                                elif reference_latents is not None:
         
     | 
| 1580 | 
         
            +
                                    preview_latent = torch.cat([reference_latents] * 2) if self.do_classifier_free_guidance else reference_latents
         
     | 
| 1581 | 
         
            +
                                else:
         
     | 
| 1582 | 
         
            +
                                    preview_latent = image
         
     | 
| 1583 | 
         
            +
             
     | 
| 1584 | 
         
            +
                                # Add fresh noise
         
     | 
| 1585 | 
         
            +
                                # preview_noise = torch.randn_like(preview_latent)
         
     | 
| 1586 | 
         
            +
                                # preview_latent = self.scheduler.add_noise(preview_latent, preview_noise, t)
         
     | 
| 1587 | 
         
            +
             
     | 
| 1588 | 
         
            +
                                preview_latent=preview_latent.to(dtype=next(aggregator.parameters()).dtype)
         
     | 
| 1589 | 
         
            +
             
     | 
| 1590 | 
         
            +
                                # Aggregator inference
         
     | 
| 1591 | 
         
            +
                                down_block_res_samples, mid_block_res_sample = aggregator(
         
     | 
| 1592 | 
         
            +
                                    image,
         
     | 
| 1593 | 
         
            +
                                    prev_t,
         
     | 
| 1594 | 
         
            +
                                    encoder_hidden_states=prompt_embeds,
         
     | 
| 1595 | 
         
            +
                                    controlnet_cond=preview_latent,
         
     | 
| 1596 | 
         
            +
                                    # conditioning_scale=cond_scale,
         
     | 
| 1597 | 
         
            +
                                    added_cond_kwargs=aggregator_added_cond_kwargs,
         
     | 
| 1598 | 
         
            +
                                    return_dict=False,
         
     | 
| 1599 | 
         
            +
                                )
         
     | 
| 1600 | 
         | 
| 1601 | 
         
            +
                            # aggregator features scaling
         
     | 
| 1602 | 
         
            +
                            down_block_res_samples = [sample*cond_scale for sample in down_block_res_samples]
         
     | 
| 1603 | 
         
            +
                            mid_block_res_sample = mid_block_res_sample*cond_scale
         
     | 
| 1604 | 
         | 
| 1605 | 
         
             
                            # predict the noise residual
         
     | 
| 1606 | 
         
             
                            noise_pred = self.unet(
         
     | 
| 
         | 
|
| 1633 | 
         
             
                            unet_pred_latent = unet_step.pred_original_sample
         
     | 
| 1634 | 
         | 
| 1635 | 
         
             
                            # Adaptive restoration.
         
     | 
| 1636 | 
         
            +
                            if adastep_restore:
         
     | 
| 1637 | 
         
            +
                                pred_x0_l2 = ((preview_latent[latents.shape[0]:].float()-unet_pred_latent.float())).pow(2).sum(dim=(1,2,3))
         
     | 
| 1638 | 
         
            +
                                previewer_l2 = ((preview_latent[latents.shape[0]:].float()-previewer_mean.float())).pow(2).sum(dim=(1,2,3))
         
     | 
| 1639 | 
         
            +
                                # unet_l2 = ((unet_pred_latent.float()-unet_mean.float())).pow(2).sum(dim=(1,2,3)).sqrt()
         
     | 
| 1640 | 
         
            +
                                # l2_error = (((preview_latent[latents.shape[0]:]-previewer_mean) - (unet_pred_latent-unet_mean))).pow(2).mean(dim=(1,2,3))
         
     | 
| 1641 | 
         
            +
                                # preview_error = torch.nn.functional.cosine_similarity(preview_latent[latents.shape[0]:].reshape(latents.shape[0], -1), unet_pred_latent.reshape(latents.shape[0],-1))
         
     | 
| 1642 | 
         
            +
                                previewer_mean = preview_latent[latents.shape[0]:]
         
     | 
| 1643 | 
         
            +
                                unet_mean = unet_pred_latent
         
     | 
| 1644 | 
         
            +
                                preview_factor = (pred_x0_l2 / previewer_l2).reshape(-1, 1, 1, 1)
         
     | 
| 1645 | 
         | 
| 1646 | 
         
             
                            if latents.dtype != latents_dtype:
         
     | 
| 1647 | 
         
             
                                if torch.backends.mps.is_available():
         
     | 
| 
         | 
|
| 1708 | 
         
             
                        if needs_upcasting:
         
     | 
| 1709 | 
         
             
                            self.upcast_vae()
         
     | 
| 1710 | 
         
             
                        for preview_latents in preview_row:
         
     | 
| 1711 | 
         
            +
                            preview_latents = preview_latents.to(device=self.device, dtype=next(iter(self.vae.post_quant_conv.parameters())).dtype)
         
     | 
| 1712 | 
         
             
                            if has_latents_mean and has_latents_std:
         
     | 
| 1713 | 
         
             
                                latents_mean = (
         
     | 
| 1714 | 
         
             
                                    torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(preview_latents.device, preview_latents.dtype)
         
     | 
    	
        pipelines/stage1_sdxl_pipeline.py
    ADDED
    
    | 
         @@ -0,0 +1,1283 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            # Copyright 2024 The HuggingFace Team. All rights reserved.
         
     | 
| 2 | 
         
            +
            #
         
     | 
| 3 | 
         
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         
     | 
| 4 | 
         
            +
            # you may not use this file except in compliance with the License.
         
     | 
| 5 | 
         
            +
            # You may obtain a copy of the License at
         
     | 
| 6 | 
         
            +
            #
         
     | 
| 7 | 
         
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         
     | 
| 8 | 
         
            +
            #
         
     | 
| 9 | 
         
            +
            # Unless required by applicable law or agreed to in writing, software
         
     | 
| 10 | 
         
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         
     | 
| 11 | 
         
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         
     | 
| 12 | 
         
            +
            # See the License for the specific language governing permissions and
         
     | 
| 13 | 
         
            +
            # limitations under the License.
         
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
            import inspect
         
     | 
| 16 | 
         
            +
            from typing import Any, Callable, Dict, List, Optional, Tuple, Union
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
            import torch
         
     | 
| 19 | 
         
            +
            from transformers import (
         
     | 
| 20 | 
         
            +
                CLIPImageProcessor,
         
     | 
| 21 | 
         
            +
                CLIPTextModel,
         
     | 
| 22 | 
         
            +
                CLIPTextModelWithProjection,
         
     | 
| 23 | 
         
            +
                CLIPTokenizer,
         
     | 
| 24 | 
         
            +
                CLIPVisionModelWithProjection,
         
     | 
| 25 | 
         
            +
            )
         
     | 
| 26 | 
         
            +
             
     | 
| 27 | 
         
            +
            from ...image_processor import PipelineImageInput, VaeImageProcessor
         
     | 
| 28 | 
         
            +
            from ...loaders import (
         
     | 
| 29 | 
         
            +
                FromSingleFileMixin,
         
     | 
| 30 | 
         
            +
                IPAdapterMixin,
         
     | 
| 31 | 
         
            +
                StableDiffusionXLLoraLoaderMixin,
         
     | 
| 32 | 
         
            +
                TextualInversionLoaderMixin,
         
     | 
| 33 | 
         
            +
            )
         
     | 
| 34 | 
         
            +
            from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel
         
     | 
| 35 | 
         
            +
            from ...models.attention_processor import (
         
     | 
| 36 | 
         
            +
                AttnProcessor2_0,
         
     | 
| 37 | 
         
            +
                FusedAttnProcessor2_0,
         
     | 
| 38 | 
         
            +
                LoRAAttnProcessor2_0,
         
     | 
| 39 | 
         
            +
                LoRAXFormersAttnProcessor,
         
     | 
| 40 | 
         
            +
                XFormersAttnProcessor,
         
     | 
| 41 | 
         
            +
            )
         
     | 
| 42 | 
         
            +
            from ...models.lora import adjust_lora_scale_text_encoder
         
     | 
| 43 | 
         
            +
            from ...schedulers import KarrasDiffusionSchedulers
         
     | 
| 44 | 
         
            +
            from ...utils import (
         
     | 
| 45 | 
         
            +
                USE_PEFT_BACKEND,
         
     | 
| 46 | 
         
            +
                deprecate,
         
     | 
| 47 | 
         
            +
                is_invisible_watermark_available,
         
     | 
| 48 | 
         
            +
                is_torch_xla_available,
         
     | 
| 49 | 
         
            +
                logging,
         
     | 
| 50 | 
         
            +
                replace_example_docstring,
         
     | 
| 51 | 
         
            +
                scale_lora_layers,
         
     | 
| 52 | 
         
            +
                unscale_lora_layers,
         
     | 
| 53 | 
         
            +
            )
         
     | 
| 54 | 
         
            +
            from ...utils.torch_utils import randn_tensor
         
     | 
| 55 | 
         
            +
            from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
         
     | 
| 56 | 
         
            +
            from .pipeline_output import StableDiffusionXLPipelineOutput
         
     | 
| 57 | 
         
            +
             
     | 
| 58 | 
         
            +
             
     | 
| 59 | 
         
            +
            if is_invisible_watermark_available():
         
     | 
| 60 | 
         
            +
                from .watermark import StableDiffusionXLWatermarker
         
     | 
| 61 | 
         
            +
             
     | 
| 62 | 
         
            +
            if is_torch_xla_available():
         
     | 
| 63 | 
         
            +
                import torch_xla.core.xla_model as xm
         
     | 
| 64 | 
         
            +
             
     | 
| 65 | 
         
            +
                XLA_AVAILABLE = True
         
     | 
| 66 | 
         
            +
            else:
         
     | 
| 67 | 
         
            +
                XLA_AVAILABLE = False
         
     | 
| 68 | 
         
            +
             
     | 
| 69 | 
         
            +
             
     | 
| 70 | 
         
            +
            logger = logging.get_logger(__name__)  # pylint: disable=invalid-name
         
     | 
| 71 | 
         
            +
             
     | 
| 72 | 
         
            +
            EXAMPLE_DOC_STRING = """
         
     | 
| 73 | 
         
            +
                Examples:
         
     | 
| 74 | 
         
            +
                    ```py
         
     | 
| 75 | 
         
            +
                    >>> import torch
         
     | 
| 76 | 
         
            +
                    >>> from diffusers import StableDiffusionXLPipeline
         
     | 
| 77 | 
         
            +
             
     | 
| 78 | 
         
            +
                    >>> pipe = StableDiffusionXLPipeline.from_pretrained(
         
     | 
| 79 | 
         
            +
                    ...     "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
         
     | 
| 80 | 
         
            +
                    ... )
         
     | 
| 81 | 
         
            +
                    >>> pipe = pipe.to("cuda")
         
     | 
| 82 | 
         
            +
             
     | 
| 83 | 
         
            +
                    >>> prompt = "a photo of an astronaut riding a horse on mars"
         
     | 
| 84 | 
         
            +
                    >>> image = pipe(prompt).images[0]
         
     | 
| 85 | 
         
            +
                    ```
         
     | 
| 86 | 
         
            +
            """
         
     | 
| 87 | 
         
            +
             
     | 
| 88 | 
         
            +
             
     | 
| 89 | 
         
            +
            # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
         
     | 
| 90 | 
         
            +
            def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
         
     | 
| 91 | 
         
            +
                """
         
     | 
| 92 | 
         
            +
                Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
         
     | 
| 93 | 
         
            +
                Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
         
     | 
| 94 | 
         
            +
                """
         
     | 
| 95 | 
         
            +
                std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
         
     | 
| 96 | 
         
            +
                std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
         
     | 
| 97 | 
         
            +
                # rescale the results from guidance (fixes overexposure)
         
     | 
| 98 | 
         
            +
                noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
         
     | 
| 99 | 
         
            +
                # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
         
     | 
| 100 | 
         
            +
                noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
         
     | 
| 101 | 
         
            +
                return noise_cfg
         
     | 
| 102 | 
         
            +
             
     | 
| 103 | 
         
            +
             
     | 
| 104 | 
         
            +
            # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
         
     | 
| 105 | 
         
            +
            def retrieve_timesteps(
         
     | 
| 106 | 
         
            +
                scheduler,
         
     | 
| 107 | 
         
            +
                num_inference_steps: Optional[int] = None,
         
     | 
| 108 | 
         
            +
                device: Optional[Union[str, torch.device]] = None,
         
     | 
| 109 | 
         
            +
                timesteps: Optional[List[int]] = None,
         
     | 
| 110 | 
         
            +
                **kwargs,
         
     | 
| 111 | 
         
            +
            ):
         
     | 
| 112 | 
         
            +
                """
         
     | 
| 113 | 
         
            +
                Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
         
     | 
| 114 | 
         
            +
                custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
         
     | 
| 115 | 
         
            +
             
     | 
| 116 | 
         
            +
                Args:
         
     | 
| 117 | 
         
            +
                    scheduler (`SchedulerMixin`):
         
     | 
| 118 | 
         
            +
                        The scheduler to get timesteps from.
         
     | 
| 119 | 
         
            +
                    num_inference_steps (`int`):
         
     | 
| 120 | 
         
            +
                        The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
         
     | 
| 121 | 
         
            +
                        must be `None`.
         
     | 
| 122 | 
         
            +
                    device (`str` or `torch.device`, *optional*):
         
     | 
| 123 | 
         
            +
                        The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
         
     | 
| 124 | 
         
            +
                    timesteps (`List[int]`, *optional*):
         
     | 
| 125 | 
         
            +
                            Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
         
     | 
| 126 | 
         
            +
                            timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
         
     | 
| 127 | 
         
            +
                            must be `None`.
         
     | 
| 128 | 
         
            +
             
     | 
| 129 | 
         
            +
                Returns:
         
     | 
| 130 | 
         
            +
                    `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
         
     | 
| 131 | 
         
            +
                    second element is the number of inference steps.
         
     | 
| 132 | 
         
            +
                """
         
     | 
| 133 | 
         
            +
                if timesteps is not None:
         
     | 
| 134 | 
         
            +
                    accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
         
     | 
| 135 | 
         
            +
                    if not accepts_timesteps:
         
     | 
| 136 | 
         
            +
                        raise ValueError(
         
     | 
| 137 | 
         
            +
                            f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
         
     | 
| 138 | 
         
            +
                            f" timestep schedules. Please check whether you are using the correct scheduler."
         
     | 
| 139 | 
         
            +
                        )
         
     | 
| 140 | 
         
            +
                    scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
         
     | 
| 141 | 
         
            +
                    timesteps = scheduler.timesteps
         
     | 
| 142 | 
         
            +
                    num_inference_steps = len(timesteps)
         
     | 
| 143 | 
         
            +
                else:
         
     | 
| 144 | 
         
            +
                    scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
         
     | 
| 145 | 
         
            +
                    timesteps = scheduler.timesteps
         
     | 
| 146 | 
         
            +
                return timesteps, num_inference_steps
         
     | 
| 147 | 
         
            +
             
     | 
| 148 | 
         
            +
             
     | 
| 149 | 
         
            +
            class StableDiffusionXLPipeline(
         
     | 
| 150 | 
         
            +
                DiffusionPipeline,
         
     | 
| 151 | 
         
            +
                StableDiffusionMixin,
         
     | 
| 152 | 
         
            +
                FromSingleFileMixin,
         
     | 
| 153 | 
         
            +
                StableDiffusionXLLoraLoaderMixin,
         
     | 
| 154 | 
         
            +
                TextualInversionLoaderMixin,
         
     | 
| 155 | 
         
            +
                IPAdapterMixin,
         
     | 
| 156 | 
         
            +
            ):
         
     | 
| 157 | 
         
            +
                r"""
         
     | 
| 158 | 
         
            +
                Pipeline for text-to-image generation using Stable Diffusion XL.
         
     | 
| 159 | 
         
            +
             
     | 
| 160 | 
         
            +
                This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
         
     | 
| 161 | 
         
            +
                library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
         
     | 
| 162 | 
         
            +
             
     | 
| 163 | 
         
            +
                The pipeline also inherits the following loading methods:
         
     | 
| 164 | 
         
            +
                    - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
         
     | 
| 165 | 
         
            +
                    - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
         
     | 
| 166 | 
         
            +
                    - [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
         
     | 
| 167 | 
         
            +
                    - [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
         
     | 
| 168 | 
         
            +
                    - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
         
     | 
| 169 | 
         
            +
             
     | 
| 170 | 
         
            +
                Args:
         
     | 
| 171 | 
         
            +
                    vae ([`AutoencoderKL`]):
         
     | 
| 172 | 
         
            +
                        Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
         
     | 
| 173 | 
         
            +
                    text_encoder ([`CLIPTextModel`]):
         
     | 
| 174 | 
         
            +
                        Frozen text-encoder. Stable Diffusion XL uses the text portion of
         
     | 
| 175 | 
         
            +
                        [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
         
     | 
| 176 | 
         
            +
                        the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
         
     | 
| 177 | 
         
            +
                    text_encoder_2 ([` CLIPTextModelWithProjection`]):
         
     | 
| 178 | 
         
            +
                        Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of
         
     | 
| 179 | 
         
            +
                        [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
         
     | 
| 180 | 
         
            +
                        specifically the
         
     | 
| 181 | 
         
            +
                        [laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
         
     | 
| 182 | 
         
            +
                        variant.
         
     | 
| 183 | 
         
            +
                    tokenizer (`CLIPTokenizer`):
         
     | 
| 184 | 
         
            +
                        Tokenizer of class
         
     | 
| 185 | 
         
            +
                        [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
         
     | 
| 186 | 
         
            +
                    tokenizer_2 (`CLIPTokenizer`):
         
     | 
| 187 | 
         
            +
                        Second Tokenizer of class
         
     | 
| 188 | 
         
            +
                        [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
         
     | 
| 189 | 
         
            +
                    unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
         
     | 
| 190 | 
         
            +
                    scheduler ([`SchedulerMixin`]):
         
     | 
| 191 | 
         
            +
                        A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
         
     | 
| 192 | 
         
            +
                        [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
         
     | 
| 193 | 
         
            +
                    force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
         
     | 
| 194 | 
         
            +
                        Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of
         
     | 
| 195 | 
         
            +
                        `stabilityai/stable-diffusion-xl-base-1-0`.
         
     | 
| 196 | 
         
            +
                    add_watermarker (`bool`, *optional*):
         
     | 
| 197 | 
         
            +
                        Whether to use the [invisible_watermark library](https://github.com/ShieldMnt/invisible-watermark/) to
         
     | 
| 198 | 
         
            +
                        watermark output images. If not defined, it will default to True if the package is installed, otherwise no
         
     | 
| 199 | 
         
            +
                        watermarker will be used.
         
     | 
| 200 | 
         
            +
                """
         
     | 
| 201 | 
         
            +
             
     | 
| 202 | 
         
            +
                model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->unet->vae"
         
     | 
| 203 | 
         
            +
                _optional_components = [
         
     | 
| 204 | 
         
            +
                    "tokenizer",
         
     | 
| 205 | 
         
            +
                    "tokenizer_2",
         
     | 
| 206 | 
         
            +
                    "text_encoder",
         
     | 
| 207 | 
         
            +
                    "text_encoder_2",
         
     | 
| 208 | 
         
            +
                    "image_encoder",
         
     | 
| 209 | 
         
            +
                    "feature_extractor",
         
     | 
| 210 | 
         
            +
                ]
         
     | 
| 211 | 
         
            +
                _callback_tensor_inputs = [
         
     | 
| 212 | 
         
            +
                    "latents",
         
     | 
| 213 | 
         
            +
                    "prompt_embeds",
         
     | 
| 214 | 
         
            +
                    "negative_prompt_embeds",
         
     | 
| 215 | 
         
            +
                    "add_text_embeds",
         
     | 
| 216 | 
         
            +
                    "add_time_ids",
         
     | 
| 217 | 
         
            +
                    "negative_pooled_prompt_embeds",
         
     | 
| 218 | 
         
            +
                    "negative_add_time_ids",
         
     | 
| 219 | 
         
            +
                ]
         
     | 
| 220 | 
         
            +
             
     | 
| 221 | 
         
            +
                def __init__(
         
     | 
| 222 | 
         
            +
                    self,
         
     | 
| 223 | 
         
            +
                    vae: AutoencoderKL,
         
     | 
| 224 | 
         
            +
                    text_encoder: CLIPTextModel,
         
     | 
| 225 | 
         
            +
                    text_encoder_2: CLIPTextModelWithProjection,
         
     | 
| 226 | 
         
            +
                    tokenizer: CLIPTokenizer,
         
     | 
| 227 | 
         
            +
                    tokenizer_2: CLIPTokenizer,
         
     | 
| 228 | 
         
            +
                    unet: UNet2DConditionModel,
         
     | 
| 229 | 
         
            +
                    scheduler: KarrasDiffusionSchedulers,
         
     | 
| 230 | 
         
            +
                    image_encoder: CLIPVisionModelWithProjection = None,
         
     | 
| 231 | 
         
            +
                    feature_extractor: CLIPImageProcessor = None,
         
     | 
| 232 | 
         
            +
                    force_zeros_for_empty_prompt: bool = True,
         
     | 
| 233 | 
         
            +
                    add_watermarker: Optional[bool] = None,
         
     | 
| 234 | 
         
            +
                ):
         
     | 
| 235 | 
         
            +
                    super().__init__()
         
     | 
| 236 | 
         
            +
             
     | 
| 237 | 
         
            +
                    self.register_modules(
         
     | 
| 238 | 
         
            +
                        vae=vae,
         
     | 
| 239 | 
         
            +
                        text_encoder=text_encoder,
         
     | 
| 240 | 
         
            +
                        text_encoder_2=text_encoder_2,
         
     | 
| 241 | 
         
            +
                        tokenizer=tokenizer,
         
     | 
| 242 | 
         
            +
                        tokenizer_2=tokenizer_2,
         
     | 
| 243 | 
         
            +
                        unet=unet,
         
     | 
| 244 | 
         
            +
                        scheduler=scheduler,
         
     | 
| 245 | 
         
            +
                        image_encoder=image_encoder,
         
     | 
| 246 | 
         
            +
                        feature_extractor=feature_extractor,
         
     | 
| 247 | 
         
            +
                    )
         
     | 
| 248 | 
         
            +
                    self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
         
     | 
| 249 | 
         
            +
                    self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
         
     | 
| 250 | 
         
            +
                    self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
         
     | 
| 251 | 
         
            +
             
     | 
| 252 | 
         
            +
                    self.default_sample_size = self.unet.config.sample_size
         
     | 
| 253 | 
         
            +
             
     | 
| 254 | 
         
            +
                    add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available()
         
     | 
| 255 | 
         
            +
             
     | 
| 256 | 
         
            +
                    if add_watermarker:
         
     | 
| 257 | 
         
            +
                        self.watermark = StableDiffusionXLWatermarker()
         
     | 
| 258 | 
         
            +
                    else:
         
     | 
| 259 | 
         
            +
                        self.watermark = None
         
     | 
| 260 | 
         
            +
             
     | 
| 261 | 
         
            +
                def encode_prompt(
         
     | 
| 262 | 
         
            +
                    self,
         
     | 
| 263 | 
         
            +
                    prompt: str,
         
     | 
| 264 | 
         
            +
                    prompt_2: Optional[str] = None,
         
     | 
| 265 | 
         
            +
                    device: Optional[torch.device] = None,
         
     | 
| 266 | 
         
            +
                    num_images_per_prompt: int = 1,
         
     | 
| 267 | 
         
            +
                    do_classifier_free_guidance: bool = True,
         
     | 
| 268 | 
         
            +
                    negative_prompt: Optional[str] = None,
         
     | 
| 269 | 
         
            +
                    negative_prompt_2: Optional[str] = None,
         
     | 
| 270 | 
         
            +
                    prompt_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 271 | 
         
            +
                    negative_prompt_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 272 | 
         
            +
                    pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 273 | 
         
            +
                    negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 274 | 
         
            +
                    lora_scale: Optional[float] = None,
         
     | 
| 275 | 
         
            +
                    clip_skip: Optional[int] = None,
         
     | 
| 276 | 
         
            +
                ):
         
     | 
| 277 | 
         
            +
                    r"""
         
     | 
| 278 | 
         
            +
                    Encodes the prompt into text encoder hidden states.
         
     | 
| 279 | 
         
            +
             
     | 
| 280 | 
         
            +
                    Args:
         
     | 
| 281 | 
         
            +
                        prompt (`str` or `List[str]`, *optional*):
         
     | 
| 282 | 
         
            +
                            prompt to be encoded
         
     | 
| 283 | 
         
            +
                        prompt_2 (`str` or `List[str]`, *optional*):
         
     | 
| 284 | 
         
            +
                            The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
         
     | 
| 285 | 
         
            +
                            used in both text-encoders
         
     | 
| 286 | 
         
            +
                        device: (`torch.device`):
         
     | 
| 287 | 
         
            +
                            torch device
         
     | 
| 288 | 
         
            +
                        num_images_per_prompt (`int`):
         
     | 
| 289 | 
         
            +
                            number of images that should be generated per prompt
         
     | 
| 290 | 
         
            +
                        do_classifier_free_guidance (`bool`):
         
     | 
| 291 | 
         
            +
                            whether to use classifier free guidance or not
         
     | 
| 292 | 
         
            +
                        negative_prompt (`str` or `List[str]`, *optional*):
         
     | 
| 293 | 
         
            +
                            The prompt or prompts not to guide the image generation. If not defined, one has to pass
         
     | 
| 294 | 
         
            +
                            `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
         
     | 
| 295 | 
         
            +
                            less than `1`).
         
     | 
| 296 | 
         
            +
                        negative_prompt_2 (`str` or `List[str]`, *optional*):
         
     | 
| 297 | 
         
            +
                            The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
         
     | 
| 298 | 
         
            +
                            `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
         
     | 
| 299 | 
         
            +
                        prompt_embeds (`torch.FloatTensor`, *optional*):
         
     | 
| 300 | 
         
            +
                            Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
         
     | 
| 301 | 
         
            +
                            provided, text embeddings will be generated from `prompt` input argument.
         
     | 
| 302 | 
         
            +
                        negative_prompt_embeds (`torch.FloatTensor`, *optional*):
         
     | 
| 303 | 
         
            +
                            Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
         
     | 
| 304 | 
         
            +
                            weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
         
     | 
| 305 | 
         
            +
                            argument.
         
     | 
| 306 | 
         
            +
                        pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
         
     | 
| 307 | 
         
            +
                            Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
         
     | 
| 308 | 
         
            +
                            If not provided, pooled text embeddings will be generated from `prompt` input argument.
         
     | 
| 309 | 
         
            +
                        negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
         
     | 
| 310 | 
         
            +
                            Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
         
     | 
| 311 | 
         
            +
                            weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
         
     | 
| 312 | 
         
            +
                            input argument.
         
     | 
| 313 | 
         
            +
                        lora_scale (`float`, *optional*):
         
     | 
| 314 | 
         
            +
                            A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
         
     | 
| 315 | 
         
            +
                        clip_skip (`int`, *optional*):
         
     | 
| 316 | 
         
            +
                            Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
         
     | 
| 317 | 
         
            +
                            the output of the pre-final layer will be used for computing the prompt embeddings.
         
     | 
| 318 | 
         
            +
                    """
         
     | 
| 319 | 
         
            +
                    device = device or self._execution_device
         
     | 
| 320 | 
         
            +
             
     | 
| 321 | 
         
            +
                    # set lora scale so that monkey patched LoRA
         
     | 
| 322 | 
         
            +
                    # function of text encoder can correctly access it
         
     | 
| 323 | 
         
            +
                    if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
         
     | 
| 324 | 
         
            +
                        self._lora_scale = lora_scale
         
     | 
| 325 | 
         
            +
             
     | 
| 326 | 
         
            +
                        # dynamically adjust the LoRA scale
         
     | 
| 327 | 
         
            +
                        if self.text_encoder is not None:
         
     | 
| 328 | 
         
            +
                            if not USE_PEFT_BACKEND:
         
     | 
| 329 | 
         
            +
                                adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
         
     | 
| 330 | 
         
            +
                            else:
         
     | 
| 331 | 
         
            +
                                scale_lora_layers(self.text_encoder, lora_scale)
         
     | 
| 332 | 
         
            +
             
     | 
| 333 | 
         
            +
                        if self.text_encoder_2 is not None:
         
     | 
| 334 | 
         
            +
                            if not USE_PEFT_BACKEND:
         
     | 
| 335 | 
         
            +
                                adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale)
         
     | 
| 336 | 
         
            +
                            else:
         
     | 
| 337 | 
         
            +
                                scale_lora_layers(self.text_encoder_2, lora_scale)
         
     | 
| 338 | 
         
            +
             
     | 
| 339 | 
         
            +
                    prompt = [prompt] if isinstance(prompt, str) else prompt
         
     | 
| 340 | 
         
            +
             
     | 
| 341 | 
         
            +
                    if prompt is not None:
         
     | 
| 342 | 
         
            +
                        batch_size = len(prompt)
         
     | 
| 343 | 
         
            +
                    else:
         
     | 
| 344 | 
         
            +
                        batch_size = prompt_embeds.shape[0]
         
     | 
| 345 | 
         
            +
             
     | 
| 346 | 
         
            +
                    # Define tokenizers and text encoders
         
     | 
| 347 | 
         
            +
                    tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
         
     | 
| 348 | 
         
            +
                    text_encoders = (
         
     | 
| 349 | 
         
            +
                        [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
         
     | 
| 350 | 
         
            +
                    )
         
     | 
| 351 | 
         
            +
             
     | 
| 352 | 
         
            +
                    if prompt_embeds is None:
         
     | 
| 353 | 
         
            +
                        prompt_2 = prompt_2 or prompt
         
     | 
| 354 | 
         
            +
                        prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
         
     | 
| 355 | 
         
            +
             
     | 
| 356 | 
         
            +
                        # textual inversion: process multi-vector tokens if necessary
         
     | 
| 357 | 
         
            +
                        prompt_embeds_list = []
         
     | 
| 358 | 
         
            +
                        prompts = [prompt, prompt_2]
         
     | 
| 359 | 
         
            +
                        for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
         
     | 
| 360 | 
         
            +
                            if isinstance(self, TextualInversionLoaderMixin):
         
     | 
| 361 | 
         
            +
                                prompt = self.maybe_convert_prompt(prompt, tokenizer)
         
     | 
| 362 | 
         
            +
             
     | 
| 363 | 
         
            +
                            text_inputs = tokenizer(
         
     | 
| 364 | 
         
            +
                                prompt,
         
     | 
| 365 | 
         
            +
                                padding="max_length",
         
     | 
| 366 | 
         
            +
                                max_length=tokenizer.model_max_length,
         
     | 
| 367 | 
         
            +
                                truncation=True,
         
     | 
| 368 | 
         
            +
                                return_tensors="pt",
         
     | 
| 369 | 
         
            +
                            )
         
     | 
| 370 | 
         
            +
             
     | 
| 371 | 
         
            +
                            text_input_ids = text_inputs.input_ids
         
     | 
| 372 | 
         
            +
                            untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
         
     | 
| 373 | 
         
            +
             
     | 
| 374 | 
         
            +
                            if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
         
     | 
| 375 | 
         
            +
                                text_input_ids, untruncated_ids
         
     | 
| 376 | 
         
            +
                            ):
         
     | 
| 377 | 
         
            +
                                removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
         
     | 
| 378 | 
         
            +
                                logger.warning(
         
     | 
| 379 | 
         
            +
                                    "The following part of your input was truncated because CLIP can only handle sequences up to"
         
     | 
| 380 | 
         
            +
                                    f" {tokenizer.model_max_length} tokens: {removed_text}"
         
     | 
| 381 | 
         
            +
                                )
         
     | 
| 382 | 
         
            +
             
     | 
| 383 | 
         
            +
                            prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
         
     | 
| 384 | 
         
            +
             
     | 
| 385 | 
         
            +
                            # We are only ALWAYS interested in the pooled output of the final text encoder
         
     | 
| 386 | 
         
            +
                            pooled_prompt_embeds = prompt_embeds[0]
         
     | 
| 387 | 
         
            +
                            if clip_skip is None:
         
     | 
| 388 | 
         
            +
                                prompt_embeds = prompt_embeds.hidden_states[-2]
         
     | 
| 389 | 
         
            +
                            else:
         
     | 
| 390 | 
         
            +
                                # "2" because SDXL always indexes from the penultimate layer.
         
     | 
| 391 | 
         
            +
                                prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
         
     | 
| 392 | 
         
            +
             
     | 
| 393 | 
         
            +
                            prompt_embeds_list.append(prompt_embeds)
         
     | 
| 394 | 
         
            +
             
     | 
| 395 | 
         
            +
                        prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
         
     | 
| 396 | 
         
            +
             
     | 
| 397 | 
         
            +
                    # get unconditional embeddings for classifier free guidance
         
     | 
| 398 | 
         
            +
                    zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
         
     | 
| 399 | 
         
            +
                    if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
         
     | 
| 400 | 
         
            +
                        negative_prompt_embeds = torch.zeros_like(prompt_embeds)
         
     | 
| 401 | 
         
            +
                        negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
         
     | 
| 402 | 
         
            +
                    elif do_classifier_free_guidance and negative_prompt_embeds is None:
         
     | 
| 403 | 
         
            +
                        negative_prompt = negative_prompt or ""
         
     | 
| 404 | 
         
            +
                        negative_prompt_2 = negative_prompt_2 or negative_prompt
         
     | 
| 405 | 
         
            +
             
     | 
| 406 | 
         
            +
                        # normalize str to list
         
     | 
| 407 | 
         
            +
                        negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
         
     | 
| 408 | 
         
            +
                        negative_prompt_2 = (
         
     | 
| 409 | 
         
            +
                            batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
         
     | 
| 410 | 
         
            +
                        )
         
     | 
| 411 | 
         
            +
             
     | 
| 412 | 
         
            +
                        uncond_tokens: List[str]
         
     | 
| 413 | 
         
            +
                        if prompt is not None and type(prompt) is not type(negative_prompt):
         
     | 
| 414 | 
         
            +
                            raise TypeError(
         
     | 
| 415 | 
         
            +
                                f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
         
     | 
| 416 | 
         
            +
                                f" {type(prompt)}."
         
     | 
| 417 | 
         
            +
                            )
         
     | 
| 418 | 
         
            +
                        elif batch_size != len(negative_prompt):
         
     | 
| 419 | 
         
            +
                            raise ValueError(
         
     | 
| 420 | 
         
            +
                                f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
         
     | 
| 421 | 
         
            +
                                f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
         
     | 
| 422 | 
         
            +
                                " the batch size of `prompt`."
         
     | 
| 423 | 
         
            +
                            )
         
     | 
| 424 | 
         
            +
                        else:
         
     | 
| 425 | 
         
            +
                            uncond_tokens = [negative_prompt, negative_prompt_2]
         
     | 
| 426 | 
         
            +
             
     | 
| 427 | 
         
            +
                        negative_prompt_embeds_list = []
         
     | 
| 428 | 
         
            +
                        for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
         
     | 
| 429 | 
         
            +
                            if isinstance(self, TextualInversionLoaderMixin):
         
     | 
| 430 | 
         
            +
                                negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)
         
     | 
| 431 | 
         
            +
             
     | 
| 432 | 
         
            +
                            max_length = prompt_embeds.shape[1]
         
     | 
| 433 | 
         
            +
                            uncond_input = tokenizer(
         
     | 
| 434 | 
         
            +
                                negative_prompt,
         
     | 
| 435 | 
         
            +
                                padding="max_length",
         
     | 
| 436 | 
         
            +
                                max_length=max_length,
         
     | 
| 437 | 
         
            +
                                truncation=True,
         
     | 
| 438 | 
         
            +
                                return_tensors="pt",
         
     | 
| 439 | 
         
            +
                            )
         
     | 
| 440 | 
         
            +
             
     | 
| 441 | 
         
            +
                            negative_prompt_embeds = text_encoder(
         
     | 
| 442 | 
         
            +
                                uncond_input.input_ids.to(device),
         
     | 
| 443 | 
         
            +
                                output_hidden_states=True,
         
     | 
| 444 | 
         
            +
                            )
         
     | 
| 445 | 
         
            +
                            # We are only ALWAYS interested in the pooled output of the final text encoder
         
     | 
| 446 | 
         
            +
                            negative_pooled_prompt_embeds = negative_prompt_embeds[0]
         
     | 
| 447 | 
         
            +
                            negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
         
     | 
| 448 | 
         
            +
             
     | 
| 449 | 
         
            +
                            negative_prompt_embeds_list.append(negative_prompt_embeds)
         
     | 
| 450 | 
         
            +
             
     | 
| 451 | 
         
            +
                        negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
         
     | 
| 452 | 
         
            +
             
     | 
| 453 | 
         
            +
                    if self.text_encoder_2 is not None:
         
     | 
| 454 | 
         
            +
                        prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
         
     | 
| 455 | 
         
            +
                    else:
         
     | 
| 456 | 
         
            +
                        prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device)
         
     | 
| 457 | 
         
            +
             
     | 
| 458 | 
         
            +
                    bs_embed, seq_len, _ = prompt_embeds.shape
         
     | 
| 459 | 
         
            +
                    # duplicate text embeddings for each generation per prompt, using mps friendly method
         
     | 
| 460 | 
         
            +
                    prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
         
     | 
| 461 | 
         
            +
                    prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
         
     | 
| 462 | 
         
            +
             
     | 
| 463 | 
         
            +
                    if do_classifier_free_guidance:
         
     | 
| 464 | 
         
            +
                        # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
         
     | 
| 465 | 
         
            +
                        seq_len = negative_prompt_embeds.shape[1]
         
     | 
| 466 | 
         
            +
             
     | 
| 467 | 
         
            +
                        if self.text_encoder_2 is not None:
         
     | 
| 468 | 
         
            +
                            negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
         
     | 
| 469 | 
         
            +
                        else:
         
     | 
| 470 | 
         
            +
                            negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device)
         
     | 
| 471 | 
         
            +
             
     | 
| 472 | 
         
            +
                        negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
         
     | 
| 473 | 
         
            +
                        negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
         
     | 
| 474 | 
         
            +
             
     | 
| 475 | 
         
            +
                    pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
         
     | 
| 476 | 
         
            +
                        bs_embed * num_images_per_prompt, -1
         
     | 
| 477 | 
         
            +
                    )
         
     | 
| 478 | 
         
            +
                    if do_classifier_free_guidance:
         
     | 
| 479 | 
         
            +
                        negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
         
     | 
| 480 | 
         
            +
                            bs_embed * num_images_per_prompt, -1
         
     | 
| 481 | 
         
            +
                        )
         
     | 
| 482 | 
         
            +
             
     | 
| 483 | 
         
            +
                    if self.text_encoder is not None:
         
     | 
| 484 | 
         
            +
                        if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
         
     | 
| 485 | 
         
            +
                            # Retrieve the original scale by scaling back the LoRA layers
         
     | 
| 486 | 
         
            +
                            unscale_lora_layers(self.text_encoder, lora_scale)
         
     | 
| 487 | 
         
            +
             
     | 
| 488 | 
         
            +
                    if self.text_encoder_2 is not None:
         
     | 
| 489 | 
         
            +
                        if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
         
     | 
| 490 | 
         
            +
                            # Retrieve the original scale by scaling back the LoRA layers
         
     | 
| 491 | 
         
            +
                            unscale_lora_layers(self.text_encoder_2, lora_scale)
         
     | 
| 492 | 
         
            +
             
     | 
| 493 | 
         
            +
                    return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
         
     | 
| 494 | 
         
            +
             
     | 
| 495 | 
         
            +
                # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
         
     | 
| 496 | 
         
            +
                def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
         
     | 
| 497 | 
         
            +
                    dtype = next(self.image_encoder.parameters()).dtype
         
     | 
| 498 | 
         
            +
             
     | 
| 499 | 
         
            +
                    if not isinstance(image, torch.Tensor):
         
     | 
| 500 | 
         
            +
                        image = self.feature_extractor(image, return_tensors="pt").pixel_values
         
     | 
| 501 | 
         
            +
             
     | 
| 502 | 
         
            +
                    image = image.to(device=device, dtype=dtype)
         
     | 
| 503 | 
         
            +
                    if output_hidden_states:
         
     | 
| 504 | 
         
            +
                        image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
         
     | 
| 505 | 
         
            +
                        image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
         
     | 
| 506 | 
         
            +
                        uncond_image_enc_hidden_states = self.image_encoder(
         
     | 
| 507 | 
         
            +
                            torch.zeros_like(image), output_hidden_states=True
         
     | 
| 508 | 
         
            +
                        ).hidden_states[-2]
         
     | 
| 509 | 
         
            +
                        uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
         
     | 
| 510 | 
         
            +
                            num_images_per_prompt, dim=0
         
     | 
| 511 | 
         
            +
                        )
         
     | 
| 512 | 
         
            +
                        return image_enc_hidden_states, uncond_image_enc_hidden_states
         
     | 
| 513 | 
         
            +
                    else:
         
     | 
| 514 | 
         
            +
                        image_embeds = self.image_encoder(image).image_embeds
         
     | 
| 515 | 
         
            +
                        image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
         
     | 
| 516 | 
         
            +
                        uncond_image_embeds = torch.zeros_like(image_embeds)
         
     | 
| 517 | 
         
            +
             
     | 
| 518 | 
         
            +
                        return image_embeds, uncond_image_embeds
         
     | 
| 519 | 
         
            +
             
     | 
| 520 | 
         
            +
                # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
         
     | 
| 521 | 
         
            +
                def prepare_ip_adapter_image_embeds(
         
     | 
| 522 | 
         
            +
                    self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
         
     | 
| 523 | 
         
            +
                ):
         
     | 
| 524 | 
         
            +
                    if ip_adapter_image_embeds is None:
         
     | 
| 525 | 
         
            +
                        if not isinstance(ip_adapter_image, list):
         
     | 
| 526 | 
         
            +
                            ip_adapter_image = [ip_adapter_image]
         
     | 
| 527 | 
         
            +
             
     | 
| 528 | 
         
            +
                        if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
         
     | 
| 529 | 
         
            +
                            raise ValueError(
         
     | 
| 530 | 
         
            +
                                f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
         
     | 
| 531 | 
         
            +
                            )
         
     | 
| 532 | 
         
            +
             
     | 
| 533 | 
         
            +
                        image_embeds = []
         
     | 
| 534 | 
         
            +
                        for single_ip_adapter_image, image_proj_layer in zip(
         
     | 
| 535 | 
         
            +
                            ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
         
     | 
| 536 | 
         
            +
                        ):
         
     | 
| 537 | 
         
            +
                            output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
         
     | 
| 538 | 
         
            +
                            single_image_embeds, single_negative_image_embeds = self.encode_image(
         
     | 
| 539 | 
         
            +
                                single_ip_adapter_image, device, 1, output_hidden_state
         
     | 
| 540 | 
         
            +
                            )
         
     | 
| 541 | 
         
            +
                            single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
         
     | 
| 542 | 
         
            +
                            single_negative_image_embeds = torch.stack(
         
     | 
| 543 | 
         
            +
                                [single_negative_image_embeds] * num_images_per_prompt, dim=0
         
     | 
| 544 | 
         
            +
                            )
         
     | 
| 545 | 
         
            +
             
     | 
| 546 | 
         
            +
                            if do_classifier_free_guidance:
         
     | 
| 547 | 
         
            +
                                single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
         
     | 
| 548 | 
         
            +
                                single_image_embeds = single_image_embeds.to(device)
         
     | 
| 549 | 
         
            +
             
     | 
| 550 | 
         
            +
                            image_embeds.append(single_image_embeds)
         
     | 
| 551 | 
         
            +
                    else:
         
     | 
| 552 | 
         
            +
                        repeat_dims = [1]
         
     | 
| 553 | 
         
            +
                        image_embeds = []
         
     | 
| 554 | 
         
            +
                        for single_image_embeds in ip_adapter_image_embeds:
         
     | 
| 555 | 
         
            +
                            if do_classifier_free_guidance:
         
     | 
| 556 | 
         
            +
                                single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
         
     | 
| 557 | 
         
            +
                                single_image_embeds = single_image_embeds.repeat(
         
     | 
| 558 | 
         
            +
                                    num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
         
     | 
| 559 | 
         
            +
                                )
         
     | 
| 560 | 
         
            +
                                single_negative_image_embeds = single_negative_image_embeds.repeat(
         
     | 
| 561 | 
         
            +
                                    num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
         
     | 
| 562 | 
         
            +
                                )
         
     | 
| 563 | 
         
            +
                                single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
         
     | 
| 564 | 
         
            +
                            else:
         
     | 
| 565 | 
         
            +
                                single_image_embeds = single_image_embeds.repeat(
         
     | 
| 566 | 
         
            +
                                    num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
         
     | 
| 567 | 
         
            +
                                )
         
     | 
| 568 | 
         
            +
                            image_embeds.append(single_image_embeds)
         
     | 
| 569 | 
         
            +
             
     | 
| 570 | 
         
            +
                    return image_embeds
         
     | 
| 571 | 
         
            +
             
     | 
| 572 | 
         
            +
                # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
         
     | 
| 573 | 
         
            +
                def prepare_extra_step_kwargs(self, generator, eta):
         
     | 
| 574 | 
         
            +
                    # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
         
     | 
| 575 | 
         
            +
                    # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
         
     | 
| 576 | 
         
            +
                    # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
         
     | 
| 577 | 
         
            +
                    # and should be between [0, 1]
         
     | 
| 578 | 
         
            +
             
     | 
| 579 | 
         
            +
                    accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
         
     | 
| 580 | 
         
            +
                    extra_step_kwargs = {}
         
     | 
| 581 | 
         
            +
                    if accepts_eta:
         
     | 
| 582 | 
         
            +
                        extra_step_kwargs["eta"] = eta
         
     | 
| 583 | 
         
            +
             
     | 
| 584 | 
         
            +
                    # check if the scheduler accepts generator
         
     | 
| 585 | 
         
            +
                    accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
         
     | 
| 586 | 
         
            +
                    if accepts_generator:
         
     | 
| 587 | 
         
            +
                        extra_step_kwargs["generator"] = generator
         
     | 
| 588 | 
         
            +
                    return extra_step_kwargs
         
     | 
| 589 | 
         
            +
             
     | 
| 590 | 
         
            +
                def check_inputs(
         
     | 
| 591 | 
         
            +
                    self,
         
     | 
| 592 | 
         
            +
                    prompt,
         
     | 
| 593 | 
         
            +
                    prompt_2,
         
     | 
| 594 | 
         
            +
                    height,
         
     | 
| 595 | 
         
            +
                    width,
         
     | 
| 596 | 
         
            +
                    callback_steps,
         
     | 
| 597 | 
         
            +
                    negative_prompt=None,
         
     | 
| 598 | 
         
            +
                    negative_prompt_2=None,
         
     | 
| 599 | 
         
            +
                    prompt_embeds=None,
         
     | 
| 600 | 
         
            +
                    negative_prompt_embeds=None,
         
     | 
| 601 | 
         
            +
                    pooled_prompt_embeds=None,
         
     | 
| 602 | 
         
            +
                    negative_pooled_prompt_embeds=None,
         
     | 
| 603 | 
         
            +
                    ip_adapter_image=None,
         
     | 
| 604 | 
         
            +
                    ip_adapter_image_embeds=None,
         
     | 
| 605 | 
         
            +
                    callback_on_step_end_tensor_inputs=None,
         
     | 
| 606 | 
         
            +
                ):
         
     | 
| 607 | 
         
            +
                    if height % 8 != 0 or width % 8 != 0:
         
     | 
| 608 | 
         
            +
                        raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
         
     | 
| 609 | 
         
            +
             
     | 
| 610 | 
         
            +
                    if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
         
     | 
| 611 | 
         
            +
                        raise ValueError(
         
     | 
| 612 | 
         
            +
                            f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
         
     | 
| 613 | 
         
            +
                            f" {type(callback_steps)}."
         
     | 
| 614 | 
         
            +
                        )
         
     | 
| 615 | 
         
            +
             
     | 
| 616 | 
         
            +
                    if callback_on_step_end_tensor_inputs is not None and not all(
         
     | 
| 617 | 
         
            +
                        k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
         
     | 
| 618 | 
         
            +
                    ):
         
     | 
| 619 | 
         
            +
                        raise ValueError(
         
     | 
| 620 | 
         
            +
                            f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
         
     | 
| 621 | 
         
            +
                        )
         
     | 
| 622 | 
         
            +
             
     | 
| 623 | 
         
            +
                    if prompt is not None and prompt_embeds is not None:
         
     | 
| 624 | 
         
            +
                        raise ValueError(
         
     | 
| 625 | 
         
            +
                            f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
         
     | 
| 626 | 
         
            +
                            " only forward one of the two."
         
     | 
| 627 | 
         
            +
                        )
         
     | 
| 628 | 
         
            +
                    elif prompt_2 is not None and prompt_embeds is not None:
         
     | 
| 629 | 
         
            +
                        raise ValueError(
         
     | 
| 630 | 
         
            +
                            f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
         
     | 
| 631 | 
         
            +
                            " only forward one of the two."
         
     | 
| 632 | 
         
            +
                        )
         
     | 
| 633 | 
         
            +
                    elif prompt is None and prompt_embeds is None:
         
     | 
| 634 | 
         
            +
                        raise ValueError(
         
     | 
| 635 | 
         
            +
                            "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
         
     | 
| 636 | 
         
            +
                        )
         
     | 
| 637 | 
         
            +
                    elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
         
     | 
| 638 | 
         
            +
                        raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
         
     | 
| 639 | 
         
            +
                    elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
         
     | 
| 640 | 
         
            +
                        raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
         
     | 
| 641 | 
         
            +
             
     | 
| 642 | 
         
            +
                    if negative_prompt is not None and negative_prompt_embeds is not None:
         
     | 
| 643 | 
         
            +
                        raise ValueError(
         
     | 
| 644 | 
         
            +
                            f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
         
     | 
| 645 | 
         
            +
                            f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
         
     | 
| 646 | 
         
            +
                        )
         
     | 
| 647 | 
         
            +
                    elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
         
     | 
| 648 | 
         
            +
                        raise ValueError(
         
     | 
| 649 | 
         
            +
                            f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
         
     | 
| 650 | 
         
            +
                            f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
         
     | 
| 651 | 
         
            +
                        )
         
     | 
| 652 | 
         
            +
             
     | 
| 653 | 
         
            +
                    if prompt_embeds is not None and negative_prompt_embeds is not None:
         
     | 
| 654 | 
         
            +
                        if prompt_embeds.shape != negative_prompt_embeds.shape:
         
     | 
| 655 | 
         
            +
                            raise ValueError(
         
     | 
| 656 | 
         
            +
                                "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
         
     | 
| 657 | 
         
            +
                                f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
         
     | 
| 658 | 
         
            +
                                f" {negative_prompt_embeds.shape}."
         
     | 
| 659 | 
         
            +
                            )
         
     | 
| 660 | 
         
            +
             
     | 
| 661 | 
         
            +
                    if prompt_embeds is not None and pooled_prompt_embeds is None:
         
     | 
| 662 | 
         
            +
                        raise ValueError(
         
     | 
| 663 | 
         
            +
                            "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
         
     | 
| 664 | 
         
            +
                        )
         
     | 
| 665 | 
         
            +
             
     | 
| 666 | 
         
            +
                    if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
         
     | 
| 667 | 
         
            +
                        raise ValueError(
         
     | 
| 668 | 
         
            +
                            "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
         
     | 
| 669 | 
         
            +
                        )
         
     | 
| 670 | 
         
            +
             
     | 
| 671 | 
         
            +
                    if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
         
     | 
| 672 | 
         
            +
                        raise ValueError(
         
     | 
| 673 | 
         
            +
                            "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
         
     | 
| 674 | 
         
            +
                        )
         
     | 
| 675 | 
         
            +
             
     | 
| 676 | 
         
            +
                    if ip_adapter_image_embeds is not None:
         
     | 
| 677 | 
         
            +
                        if not isinstance(ip_adapter_image_embeds, list):
         
     | 
| 678 | 
         
            +
                            raise ValueError(
         
     | 
| 679 | 
         
            +
                                f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
         
     | 
| 680 | 
         
            +
                            )
         
     | 
| 681 | 
         
            +
                        elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
         
     | 
| 682 | 
         
            +
                            raise ValueError(
         
     | 
| 683 | 
         
            +
                                f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
         
     | 
| 684 | 
         
            +
                            )
         
     | 
| 685 | 
         
            +
             
     | 
| 686 | 
         
            +
                # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
         
     | 
| 687 | 
         
            +
                def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
         
     | 
| 688 | 
         
            +
                    shape = (
         
     | 
| 689 | 
         
            +
                        batch_size,
         
     | 
| 690 | 
         
            +
                        num_channels_latents,
         
     | 
| 691 | 
         
            +
                        int(height) // self.vae_scale_factor,
         
     | 
| 692 | 
         
            +
                        int(width) // self.vae_scale_factor,
         
     | 
| 693 | 
         
            +
                    )
         
     | 
| 694 | 
         
            +
                    if isinstance(generator, list) and len(generator) != batch_size:
         
     | 
| 695 | 
         
            +
                        raise ValueError(
         
     | 
| 696 | 
         
            +
                            f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
         
     | 
| 697 | 
         
            +
                            f" size of {batch_size}. Make sure the batch size matches the length of the generators."
         
     | 
| 698 | 
         
            +
                        )
         
     | 
| 699 | 
         
            +
             
     | 
| 700 | 
         
            +
                    if latents is None:
         
     | 
| 701 | 
         
            +
                        latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
         
     | 
| 702 | 
         
            +
                    else:
         
     | 
| 703 | 
         
            +
                        latents = latents.to(device)
         
     | 
| 704 | 
         
            +
             
     | 
| 705 | 
         
            +
                    # scale the initial noise by the standard deviation required by the scheduler
         
     | 
| 706 | 
         
            +
                    latents = latents * self.scheduler.init_noise_sigma
         
     | 
| 707 | 
         
            +
                    return latents
         
     | 
| 708 | 
         
            +
             
     | 
| 709 | 
         
            +
                def _get_add_time_ids(
         
     | 
| 710 | 
         
            +
                    self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None
         
     | 
| 711 | 
         
            +
                ):
         
     | 
| 712 | 
         
            +
                    add_time_ids = list(original_size + crops_coords_top_left + target_size)
         
     | 
| 713 | 
         
            +
             
     | 
| 714 | 
         
            +
                    passed_add_embed_dim = (
         
     | 
| 715 | 
         
            +
                        self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim
         
     | 
| 716 | 
         
            +
                    )
         
     | 
| 717 | 
         
            +
                    expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
         
     | 
| 718 | 
         
            +
             
     | 
| 719 | 
         
            +
                    if expected_add_embed_dim != passed_add_embed_dim:
         
     | 
| 720 | 
         
            +
                        raise ValueError(
         
     | 
| 721 | 
         
            +
                            f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
         
     | 
| 722 | 
         
            +
                        )
         
     | 
| 723 | 
         
            +
             
     | 
| 724 | 
         
            +
                    add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
         
     | 
| 725 | 
         
            +
                    return add_time_ids
         
     | 
| 726 | 
         
            +
             
     | 
| 727 | 
         
            +
                def upcast_vae(self):
         
     | 
| 728 | 
         
            +
                    dtype = self.vae.dtype
         
     | 
| 729 | 
         
            +
                    self.vae.to(dtype=torch.float32)
         
     | 
| 730 | 
         
            +
                    use_torch_2_0_or_xformers = isinstance(
         
     | 
| 731 | 
         
            +
                        self.vae.decoder.mid_block.attentions[0].processor,
         
     | 
| 732 | 
         
            +
                        (
         
     | 
| 733 | 
         
            +
                            AttnProcessor2_0,
         
     | 
| 734 | 
         
            +
                            XFormersAttnProcessor,
         
     | 
| 735 | 
         
            +
                            LoRAXFormersAttnProcessor,
         
     | 
| 736 | 
         
            +
                            LoRAAttnProcessor2_0,
         
     | 
| 737 | 
         
            +
                            FusedAttnProcessor2_0,
         
     | 
| 738 | 
         
            +
                        ),
         
     | 
| 739 | 
         
            +
                    )
         
     | 
| 740 | 
         
            +
                    # if xformers or torch_2_0 is used attention block does not need
         
     | 
| 741 | 
         
            +
                    # to be in float32 which can save lots of memory
         
     | 
| 742 | 
         
            +
                    if use_torch_2_0_or_xformers:
         
     | 
| 743 | 
         
            +
                        self.vae.post_quant_conv.to(dtype)
         
     | 
| 744 | 
         
            +
                        self.vae.decoder.conv_in.to(dtype)
         
     | 
| 745 | 
         
            +
                        self.vae.decoder.mid_block.to(dtype)
         
     | 
| 746 | 
         
            +
             
     | 
| 747 | 
         
            +
                # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
         
     | 
| 748 | 
         
            +
                def get_guidance_scale_embedding(
         
     | 
| 749 | 
         
            +
                    self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
         
     | 
| 750 | 
         
            +
                ) -> torch.FloatTensor:
         
     | 
| 751 | 
         
            +
                    """
         
     | 
| 752 | 
         
            +
                    See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
         
     | 
| 753 | 
         
            +
             
     | 
| 754 | 
         
            +
                    Args:
         
     | 
| 755 | 
         
            +
                        w (`torch.Tensor`):
         
     | 
| 756 | 
         
            +
                            Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
         
     | 
| 757 | 
         
            +
                        embedding_dim (`int`, *optional*, defaults to 512):
         
     | 
| 758 | 
         
            +
                            Dimension of the embeddings to generate.
         
     | 
| 759 | 
         
            +
                        dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
         
     | 
| 760 | 
         
            +
                            Data type of the generated embeddings.
         
     | 
| 761 | 
         
            +
             
     | 
| 762 | 
         
            +
                    Returns:
         
     | 
| 763 | 
         
            +
                        `torch.FloatTensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
         
     | 
| 764 | 
         
            +
                    """
         
     | 
| 765 | 
         
            +
                    assert len(w.shape) == 1
         
     | 
| 766 | 
         
            +
                    w = w * 1000.0
         
     | 
| 767 | 
         
            +
             
     | 
| 768 | 
         
            +
                    half_dim = embedding_dim // 2
         
     | 
| 769 | 
         
            +
                    emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
         
     | 
| 770 | 
         
            +
                    emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
         
     | 
| 771 | 
         
            +
                    emb = w.to(dtype)[:, None] * emb[None, :]
         
     | 
| 772 | 
         
            +
                    emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
         
     | 
| 773 | 
         
            +
                    if embedding_dim % 2 == 1:  # zero pad
         
     | 
| 774 | 
         
            +
                        emb = torch.nn.functional.pad(emb, (0, 1))
         
     | 
| 775 | 
         
            +
                    assert emb.shape == (w.shape[0], embedding_dim)
         
     | 
| 776 | 
         
            +
                    return emb
         
     | 
| 777 | 
         
            +
             
     | 
| 778 | 
         
            +
                @property
         
     | 
| 779 | 
         
            +
                def guidance_scale(self):
         
     | 
| 780 | 
         
            +
                    return self._guidance_scale
         
     | 
| 781 | 
         
            +
             
     | 
| 782 | 
         
            +
                @property
         
     | 
| 783 | 
         
            +
                def guidance_rescale(self):
         
     | 
| 784 | 
         
            +
                    return self._guidance_rescale
         
     | 
| 785 | 
         
            +
             
     | 
| 786 | 
         
            +
                @property
         
     | 
| 787 | 
         
            +
                def clip_skip(self):
         
     | 
| 788 | 
         
            +
                    return self._clip_skip
         
     | 
| 789 | 
         
            +
             
     | 
| 790 | 
         
            +
                # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
         
     | 
| 791 | 
         
            +
                # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
         
     | 
| 792 | 
         
            +
                # corresponds to doing no classifier free guidance.
         
     | 
| 793 | 
         
            +
                @property
         
     | 
| 794 | 
         
            +
                def do_classifier_free_guidance(self):
         
     | 
| 795 | 
         
            +
                    return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
         
     | 
| 796 | 
         
            +
             
     | 
| 797 | 
         
            +
                @property
         
     | 
| 798 | 
         
            +
                def cross_attention_kwargs(self):
         
     | 
| 799 | 
         
            +
                    return self._cross_attention_kwargs
         
     | 
| 800 | 
         
            +
             
     | 
| 801 | 
         
            +
                @property
         
     | 
| 802 | 
         
            +
                def denoising_end(self):
         
     | 
| 803 | 
         
            +
                    return self._denoising_end
         
     | 
| 804 | 
         
            +
             
     | 
| 805 | 
         
            +
                @property
         
     | 
| 806 | 
         
            +
                def num_timesteps(self):
         
     | 
| 807 | 
         
            +
                    return self._num_timesteps
         
     | 
| 808 | 
         
            +
             
     | 
| 809 | 
         
            +
                @property
         
     | 
| 810 | 
         
            +
                def interrupt(self):
         
     | 
| 811 | 
         
            +
                    return self._interrupt
         
     | 
| 812 | 
         
            +
             
     | 
| 813 | 
         
            +
                @torch.no_grad()
         
     | 
| 814 | 
         
            +
                @replace_example_docstring(EXAMPLE_DOC_STRING)
         
     | 
| 815 | 
         
            +
                def __call__(
         
     | 
| 816 | 
         
            +
                    self,
         
     | 
| 817 | 
         
            +
                    prompt: Union[str, List[str]] = None,
         
     | 
| 818 | 
         
            +
                    prompt_2: Optional[Union[str, List[str]]] = None,
         
     | 
| 819 | 
         
            +
                    height: Optional[int] = None,
         
     | 
| 820 | 
         
            +
                    width: Optional[int] = None,
         
     | 
| 821 | 
         
            +
                    num_inference_steps: int = 50,
         
     | 
| 822 | 
         
            +
                    timesteps: List[int] = None,
         
     | 
| 823 | 
         
            +
                    denoising_end: Optional[float] = None,
         
     | 
| 824 | 
         
            +
                    guidance_scale: float = 5.0,
         
     | 
| 825 | 
         
            +
                    negative_prompt: Optional[Union[str, List[str]]] = None,
         
     | 
| 826 | 
         
            +
                    negative_prompt_2: Optional[Union[str, List[str]]] = None,
         
     | 
| 827 | 
         
            +
                    num_images_per_prompt: Optional[int] = 1,
         
     | 
| 828 | 
         
            +
                    eta: float = 0.0,
         
     | 
| 829 | 
         
            +
                    generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
         
     | 
| 830 | 
         
            +
                    latents: Optional[torch.FloatTensor] = None,
         
     | 
| 831 | 
         
            +
                    prompt_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 832 | 
         
            +
                    negative_prompt_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 833 | 
         
            +
                    pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 834 | 
         
            +
                    negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 835 | 
         
            +
                    ip_adapter_image: Optional[PipelineImageInput] = None,
         
     | 
| 836 | 
         
            +
                    ip_adapter_image_embeds: Optional[List[torch.FloatTensor]] = None,
         
     | 
| 837 | 
         
            +
                    output_type: Optional[str] = "pil",
         
     | 
| 838 | 
         
            +
                    return_dict: bool = True,
         
     | 
| 839 | 
         
            +
                    cross_attention_kwargs: Optional[Dict[str, Any]] = None,
         
     | 
| 840 | 
         
            +
                    guidance_rescale: float = 0.0,
         
     | 
| 841 | 
         
            +
                    original_size: Optional[Tuple[int, int]] = None,
         
     | 
| 842 | 
         
            +
                    crops_coords_top_left: Tuple[int, int] = (0, 0),
         
     | 
| 843 | 
         
            +
                    target_size: Optional[Tuple[int, int]] = None,
         
     | 
| 844 | 
         
            +
                    negative_original_size: Optional[Tuple[int, int]] = None,
         
     | 
| 845 | 
         
            +
                    negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
         
     | 
| 846 | 
         
            +
                    negative_target_size: Optional[Tuple[int, int]] = None,
         
     | 
| 847 | 
         
            +
                    clip_skip: Optional[int] = None,
         
     | 
| 848 | 
         
            +
                    callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
         
     | 
| 849 | 
         
            +
                    callback_on_step_end_tensor_inputs: List[str] = ["latents"],
         
     | 
| 850 | 
         
            +
                    **kwargs,
         
     | 
| 851 | 
         
            +
                ):
         
     | 
| 852 | 
         
            +
                    r"""
         
     | 
| 853 | 
         
            +
                    Function invoked when calling the pipeline for generation.
         
     | 
| 854 | 
         
            +
             
     | 
| 855 | 
         
            +
                    Args:
         
     | 
| 856 | 
         
            +
                        prompt (`str` or `List[str]`, *optional*):
         
     | 
| 857 | 
         
            +
                            The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
         
     | 
| 858 | 
         
            +
                            instead.
         
     | 
| 859 | 
         
            +
                        prompt_2 (`str` or `List[str]`, *optional*):
         
     | 
| 860 | 
         
            +
                            The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
         
     | 
| 861 | 
         
            +
                            used in both text-encoders
         
     | 
| 862 | 
         
            +
                        height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
         
     | 
| 863 | 
         
            +
                            The height in pixels of the generated image. This is set to 1024 by default for the best results.
         
     | 
| 864 | 
         
            +
                            Anything below 512 pixels won't work well for
         
     | 
| 865 | 
         
            +
                            [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
         
     | 
| 866 | 
         
            +
                            and checkpoints that are not specifically fine-tuned on low resolutions.
         
     | 
| 867 | 
         
            +
                        width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
         
     | 
| 868 | 
         
            +
                            The width in pixels of the generated image. This is set to 1024 by default for the best results.
         
     | 
| 869 | 
         
            +
                            Anything below 512 pixels won't work well for
         
     | 
| 870 | 
         
            +
                            [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
         
     | 
| 871 | 
         
            +
                            and checkpoints that are not specifically fine-tuned on low resolutions.
         
     | 
| 872 | 
         
            +
                        num_inference_steps (`int`, *optional*, defaults to 50):
         
     | 
| 873 | 
         
            +
                            The number of denoising steps. More denoising steps usually lead to a higher quality image at the
         
     | 
| 874 | 
         
            +
                            expense of slower inference.
         
     | 
| 875 | 
         
            +
                        timesteps (`List[int]`, *optional*):
         
     | 
| 876 | 
         
            +
                            Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
         
     | 
| 877 | 
         
            +
                            in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
         
     | 
| 878 | 
         
            +
                            passed will be used. Must be in descending order.
         
     | 
| 879 | 
         
            +
                        denoising_end (`float`, *optional*):
         
     | 
| 880 | 
         
            +
                            When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
         
     | 
| 881 | 
         
            +
                            completed before it is intentionally prematurely terminated. As a result, the returned sample will
         
     | 
| 882 | 
         
            +
                            still retain a substantial amount of noise as determined by the discrete timesteps selected by the
         
     | 
| 883 | 
         
            +
                            scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
         
     | 
| 884 | 
         
            +
                            "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
         
     | 
| 885 | 
         
            +
                            Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
         
     | 
| 886 | 
         
            +
                        guidance_scale (`float`, *optional*, defaults to 5.0):
         
     | 
| 887 | 
         
            +
                            Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
         
     | 
| 888 | 
         
            +
                            `guidance_scale` is defined as `w` of equation 2. of [Imagen
         
     | 
| 889 | 
         
            +
                            Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
         
     | 
| 890 | 
         
            +
                            1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
         
     | 
| 891 | 
         
            +
                            usually at the expense of lower image quality.
         
     | 
| 892 | 
         
            +
                        negative_prompt (`str` or `List[str]`, *optional*):
         
     | 
| 893 | 
         
            +
                            The prompt or prompts not to guide the image generation. If not defined, one has to pass
         
     | 
| 894 | 
         
            +
                            `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
         
     | 
| 895 | 
         
            +
                            less than `1`).
         
     | 
| 896 | 
         
            +
                        negative_prompt_2 (`str` or `List[str]`, *optional*):
         
     | 
| 897 | 
         
            +
                            The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
         
     | 
| 898 | 
         
            +
                            `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
         
     | 
| 899 | 
         
            +
                        num_images_per_prompt (`int`, *optional*, defaults to 1):
         
     | 
| 900 | 
         
            +
                            The number of images to generate per prompt.
         
     | 
| 901 | 
         
            +
                        eta (`float`, *optional*, defaults to 0.0):
         
     | 
| 902 | 
         
            +
                            Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
         
     | 
| 903 | 
         
            +
                            [`schedulers.DDIMScheduler`], will be ignored for others.
         
     | 
| 904 | 
         
            +
                        generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
         
     | 
| 905 | 
         
            +
                            One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
         
     | 
| 906 | 
         
            +
                            to make generation deterministic.
         
     | 
| 907 | 
         
            +
                        latents (`torch.FloatTensor`, *optional*):
         
     | 
| 908 | 
         
            +
                            Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
         
     | 
| 909 | 
         
            +
                            generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
         
     | 
| 910 | 
         
            +
                            tensor will ge generated by sampling using the supplied random `generator`.
         
     | 
| 911 | 
         
            +
                        prompt_embeds (`torch.FloatTensor`, *optional*):
         
     | 
| 912 | 
         
            +
                            Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
         
     | 
| 913 | 
         
            +
                            provided, text embeddings will be generated from `prompt` input argument.
         
     | 
| 914 | 
         
            +
                        negative_prompt_embeds (`torch.FloatTensor`, *optional*):
         
     | 
| 915 | 
         
            +
                            Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
         
     | 
| 916 | 
         
            +
                            weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
         
     | 
| 917 | 
         
            +
                            argument.
         
     | 
| 918 | 
         
            +
                        pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
         
     | 
| 919 | 
         
            +
                            Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
         
     | 
| 920 | 
         
            +
                            If not provided, pooled text embeddings will be generated from `prompt` input argument.
         
     | 
| 921 | 
         
            +
                        negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
         
     | 
| 922 | 
         
            +
                            Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
         
     | 
| 923 | 
         
            +
                            weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
         
     | 
| 924 | 
         
            +
                            input argument.
         
     | 
| 925 | 
         
            +
                        ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
         
     | 
| 926 | 
         
            +
                        ip_adapter_image_embeds (`List[torch.FloatTensor]`, *optional*):
         
     | 
| 927 | 
         
            +
                            Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
         
     | 
| 928 | 
         
            +
                            IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
         
     | 
| 929 | 
         
            +
                            contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
         
     | 
| 930 | 
         
            +
                            provided, embeddings are computed from the `ip_adapter_image` input argument.
         
     | 
| 931 | 
         
            +
                        output_type (`str`, *optional*, defaults to `"pil"`):
         
     | 
| 932 | 
         
            +
                            The output format of the generate image. Choose between
         
     | 
| 933 | 
         
            +
                            [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
         
     | 
| 934 | 
         
            +
                        return_dict (`bool`, *optional*, defaults to `True`):
         
     | 
| 935 | 
         
            +
                            Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
         
     | 
| 936 | 
         
            +
                            of a plain tuple.
         
     | 
| 937 | 
         
            +
                        cross_attention_kwargs (`dict`, *optional*):
         
     | 
| 938 | 
         
            +
                            A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
         
     | 
| 939 | 
         
            +
                            `self.processor` in
         
     | 
| 940 | 
         
            +
                            [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
         
     | 
| 941 | 
         
            +
                        guidance_rescale (`float`, *optional*, defaults to 0.0):
         
     | 
| 942 | 
         
            +
                            Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
         
     | 
| 943 | 
         
            +
                            Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
         
     | 
| 944 | 
         
            +
                            [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
         
     | 
| 945 | 
         
            +
                            Guidance rescale factor should fix overexposure when using zero terminal SNR.
         
     | 
| 946 | 
         
            +
                        original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
         
     | 
| 947 | 
         
            +
                            If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
         
     | 
| 948 | 
         
            +
                            `original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
         
     | 
| 949 | 
         
            +
                            explained in section 2.2 of
         
     | 
| 950 | 
         
            +
                            [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
         
     | 
| 951 | 
         
            +
                        crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
         
     | 
| 952 | 
         
            +
                            `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
         
     | 
| 953 | 
         
            +
                            `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
         
     | 
| 954 | 
         
            +
                            `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
         
     | 
| 955 | 
         
            +
                            [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
         
     | 
| 956 | 
         
            +
                        target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
         
     | 
| 957 | 
         
            +
                            For most cases, `target_size` should be set to the desired height and width of the generated image. If
         
     | 
| 958 | 
         
            +
                            not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
         
     | 
| 959 | 
         
            +
                            section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
         
     | 
| 960 | 
         
            +
                        negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
         
     | 
| 961 | 
         
            +
                            To negatively condition the generation process based on a specific image resolution. Part of SDXL's
         
     | 
| 962 | 
         
            +
                            micro-conditioning as explained in section 2.2 of
         
     | 
| 963 | 
         
            +
                            [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
         
     | 
| 964 | 
         
            +
                            information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
         
     | 
| 965 | 
         
            +
                        negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
         
     | 
| 966 | 
         
            +
                            To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
         
     | 
| 967 | 
         
            +
                            micro-conditioning as explained in section 2.2 of
         
     | 
| 968 | 
         
            +
                            [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
         
     | 
| 969 | 
         
            +
                            information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
         
     | 
| 970 | 
         
            +
                        negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
         
     | 
| 971 | 
         
            +
                            To negatively condition the generation process based on a target image resolution. It should be as same
         
     | 
| 972 | 
         
            +
                            as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
         
     | 
| 973 | 
         
            +
                            [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
         
     | 
| 974 | 
         
            +
                            information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
         
     | 
| 975 | 
         
            +
                        callback_on_step_end (`Callable`, *optional*):
         
     | 
| 976 | 
         
            +
                            A function that calls at the end of each denoising steps during the inference. The function is called
         
     | 
| 977 | 
         
            +
                            with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
         
     | 
| 978 | 
         
            +
                            callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
         
     | 
| 979 | 
         
            +
                            `callback_on_step_end_tensor_inputs`.
         
     | 
| 980 | 
         
            +
                        callback_on_step_end_tensor_inputs (`List`, *optional*):
         
     | 
| 981 | 
         
            +
                            The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
         
     | 
| 982 | 
         
            +
                            will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
         
     | 
| 983 | 
         
            +
                            `._callback_tensor_inputs` attribute of your pipeline class.
         
     | 
| 984 | 
         
            +
             
     | 
| 985 | 
         
            +
                    Examples:
         
     | 
| 986 | 
         
            +
             
     | 
| 987 | 
         
            +
                    Returns:
         
     | 
| 988 | 
         
            +
                        [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`:
         
     | 
| 989 | 
         
            +
                        [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
         
     | 
| 990 | 
         
            +
                        `tuple`. When returning a tuple, the first element is a list with the generated images.
         
     | 
| 991 | 
         
            +
                    """
         
     | 
| 992 | 
         
            +
             
     | 
| 993 | 
         
            +
                    callback = kwargs.pop("callback", None)
         
     | 
| 994 | 
         
            +
                    callback_steps = kwargs.pop("callback_steps", None)
         
     | 
| 995 | 
         
            +
             
     | 
| 996 | 
         
            +
                    if callback is not None:
         
     | 
| 997 | 
         
            +
                        deprecate(
         
     | 
| 998 | 
         
            +
                            "callback",
         
     | 
| 999 | 
         
            +
                            "1.0.0",
         
     | 
| 1000 | 
         
            +
                            "Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
         
     | 
| 1001 | 
         
            +
                        )
         
     | 
| 1002 | 
         
            +
                    if callback_steps is not None:
         
     | 
| 1003 | 
         
            +
                        deprecate(
         
     | 
| 1004 | 
         
            +
                            "callback_steps",
         
     | 
| 1005 | 
         
            +
                            "1.0.0",
         
     | 
| 1006 | 
         
            +
                            "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
         
     | 
| 1007 | 
         
            +
                        )
         
     | 
| 1008 | 
         
            +
             
     | 
| 1009 | 
         
            +
                    # 0. Default height and width to unet
         
     | 
| 1010 | 
         
            +
                    height = height or self.default_sample_size * self.vae_scale_factor
         
     | 
| 1011 | 
         
            +
                    width = width or self.default_sample_size * self.vae_scale_factor
         
     | 
| 1012 | 
         
            +
             
     | 
| 1013 | 
         
            +
                    original_size = original_size or (height, width)
         
     | 
| 1014 | 
         
            +
                    target_size = target_size or (height, width)
         
     | 
| 1015 | 
         
            +
             
     | 
| 1016 | 
         
            +
                    # 1. Check inputs. Raise error if not correct
         
     | 
| 1017 | 
         
            +
                    self.check_inputs(
         
     | 
| 1018 | 
         
            +
                        prompt,
         
     | 
| 1019 | 
         
            +
                        prompt_2,
         
     | 
| 1020 | 
         
            +
                        height,
         
     | 
| 1021 | 
         
            +
                        width,
         
     | 
| 1022 | 
         
            +
                        callback_steps,
         
     | 
| 1023 | 
         
            +
                        negative_prompt,
         
     | 
| 1024 | 
         
            +
                        negative_prompt_2,
         
     | 
| 1025 | 
         
            +
                        prompt_embeds,
         
     | 
| 1026 | 
         
            +
                        negative_prompt_embeds,
         
     | 
| 1027 | 
         
            +
                        pooled_prompt_embeds,
         
     | 
| 1028 | 
         
            +
                        negative_pooled_prompt_embeds,
         
     | 
| 1029 | 
         
            +
                        ip_adapter_image,
         
     | 
| 1030 | 
         
            +
                        ip_adapter_image_embeds,
         
     | 
| 1031 | 
         
            +
                        callback_on_step_end_tensor_inputs,
         
     | 
| 1032 | 
         
            +
                    )
         
     | 
| 1033 | 
         
            +
             
     | 
| 1034 | 
         
            +
                    self._guidance_scale = guidance_scale
         
     | 
| 1035 | 
         
            +
                    self._guidance_rescale = guidance_rescale
         
     | 
| 1036 | 
         
            +
                    self._clip_skip = clip_skip
         
     | 
| 1037 | 
         
            +
                    self._cross_attention_kwargs = cross_attention_kwargs
         
     | 
| 1038 | 
         
            +
                    self._denoising_end = denoising_end
         
     | 
| 1039 | 
         
            +
                    self._interrupt = False
         
     | 
| 1040 | 
         
            +
             
     | 
| 1041 | 
         
            +
                    # 2. Define call parameters
         
     | 
| 1042 | 
         
            +
                    if prompt is not None and isinstance(prompt, str):
         
     | 
| 1043 | 
         
            +
                        batch_size = 1
         
     | 
| 1044 | 
         
            +
                    elif prompt is not None and isinstance(prompt, list):
         
     | 
| 1045 | 
         
            +
                        batch_size = len(prompt)
         
     | 
| 1046 | 
         
            +
                    else:
         
     | 
| 1047 | 
         
            +
                        batch_size = prompt_embeds.shape[0]
         
     | 
| 1048 | 
         
            +
             
     | 
| 1049 | 
         
            +
                    device = self._execution_device
         
     | 
| 1050 | 
         
            +
             
     | 
| 1051 | 
         
            +
                    # 3. Encode input prompt
         
     | 
| 1052 | 
         
            +
                    lora_scale = (
         
     | 
| 1053 | 
         
            +
                        self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
         
     | 
| 1054 | 
         
            +
                    )
         
     | 
| 1055 | 
         
            +
             
     | 
| 1056 | 
         
            +
                    (
         
     | 
| 1057 | 
         
            +
                        prompt_embeds,
         
     | 
| 1058 | 
         
            +
                        negative_prompt_embeds,
         
     | 
| 1059 | 
         
            +
                        pooled_prompt_embeds,
         
     | 
| 1060 | 
         
            +
                        negative_pooled_prompt_embeds,
         
     | 
| 1061 | 
         
            +
                    ) = self.encode_prompt(
         
     | 
| 1062 | 
         
            +
                        prompt=prompt,
         
     | 
| 1063 | 
         
            +
                        prompt_2=prompt_2,
         
     | 
| 1064 | 
         
            +
                        device=device,
         
     | 
| 1065 | 
         
            +
                        num_images_per_prompt=num_images_per_prompt,
         
     | 
| 1066 | 
         
            +
                        do_classifier_free_guidance=self.do_classifier_free_guidance,
         
     | 
| 1067 | 
         
            +
                        negative_prompt=negative_prompt,
         
     | 
| 1068 | 
         
            +
                        negative_prompt_2=negative_prompt_2,
         
     | 
| 1069 | 
         
            +
                        prompt_embeds=prompt_embeds,
         
     | 
| 1070 | 
         
            +
                        negative_prompt_embeds=negative_prompt_embeds,
         
     | 
| 1071 | 
         
            +
                        pooled_prompt_embeds=pooled_prompt_embeds,
         
     | 
| 1072 | 
         
            +
                        negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
         
     | 
| 1073 | 
         
            +
                        lora_scale=lora_scale,
         
     | 
| 1074 | 
         
            +
                        clip_skip=self.clip_skip,
         
     | 
| 1075 | 
         
            +
                    )
         
     | 
| 1076 | 
         
            +
             
     | 
| 1077 | 
         
            +
                    # 4. Prepare timesteps
         
     | 
| 1078 | 
         
            +
                    timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
         
     | 
| 1079 | 
         
            +
             
     | 
| 1080 | 
         
            +
                    # 5. Prepare latent variables
         
     | 
| 1081 | 
         
            +
                    num_channels_latents = self.unet.config.in_channels
         
     | 
| 1082 | 
         
            +
                    latents = self.prepare_latents(
         
     | 
| 1083 | 
         
            +
                        batch_size * num_images_per_prompt,
         
     | 
| 1084 | 
         
            +
                        num_channels_latents,
         
     | 
| 1085 | 
         
            +
                        height,
         
     | 
| 1086 | 
         
            +
                        width,
         
     | 
| 1087 | 
         
            +
                        prompt_embeds.dtype,
         
     | 
| 1088 | 
         
            +
                        device,
         
     | 
| 1089 | 
         
            +
                        generator,
         
     | 
| 1090 | 
         
            +
                        latents,
         
     | 
| 1091 | 
         
            +
                    )
         
     | 
| 1092 | 
         
            +
             
     | 
| 1093 | 
         
            +
                    # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
         
     | 
| 1094 | 
         
            +
                    extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
         
     | 
| 1095 | 
         
            +
             
     | 
| 1096 | 
         
            +
                    # 7. Prepare added time ids & embeddings
         
     | 
| 1097 | 
         
            +
                    add_text_embeds = pooled_prompt_embeds
         
     | 
| 1098 | 
         
            +
                    if self.text_encoder_2 is None:
         
     | 
| 1099 | 
         
            +
                        text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
         
     | 
| 1100 | 
         
            +
                    else:
         
     | 
| 1101 | 
         
            +
                        text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
         
     | 
| 1102 | 
         
            +
             
     | 
| 1103 | 
         
            +
                    add_time_ids = self._get_add_time_ids(
         
     | 
| 1104 | 
         
            +
                        original_size,
         
     | 
| 1105 | 
         
            +
                        crops_coords_top_left,
         
     | 
| 1106 | 
         
            +
                        target_size,
         
     | 
| 1107 | 
         
            +
                        dtype=prompt_embeds.dtype,
         
     | 
| 1108 | 
         
            +
                        text_encoder_projection_dim=text_encoder_projection_dim,
         
     | 
| 1109 | 
         
            +
                    )
         
     | 
| 1110 | 
         
            +
                    if negative_original_size is not None and negative_target_size is not None:
         
     | 
| 1111 | 
         
            +
                        negative_add_time_ids = self._get_add_time_ids(
         
     | 
| 1112 | 
         
            +
                            negative_original_size,
         
     | 
| 1113 | 
         
            +
                            negative_crops_coords_top_left,
         
     | 
| 1114 | 
         
            +
                            negative_target_size,
         
     | 
| 1115 | 
         
            +
                            dtype=prompt_embeds.dtype,
         
     | 
| 1116 | 
         
            +
                            text_encoder_projection_dim=text_encoder_projection_dim,
         
     | 
| 1117 | 
         
            +
                        )
         
     | 
| 1118 | 
         
            +
                    else:
         
     | 
| 1119 | 
         
            +
                        negative_add_time_ids = add_time_ids
         
     | 
| 1120 | 
         
            +
             
     | 
| 1121 | 
         
            +
                    if self.do_classifier_free_guidance:
         
     | 
| 1122 | 
         
            +
                        prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
         
     | 
| 1123 | 
         
            +
                        add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
         
     | 
| 1124 | 
         
            +
                        add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
         
     | 
| 1125 | 
         
            +
             
     | 
| 1126 | 
         
            +
                    prompt_embeds = prompt_embeds.to(device)
         
     | 
| 1127 | 
         
            +
                    add_text_embeds = add_text_embeds.to(device)
         
     | 
| 1128 | 
         
            +
                    add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
         
     | 
| 1129 | 
         
            +
             
     | 
| 1130 | 
         
            +
                    if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
         
     | 
| 1131 | 
         
            +
                        image_embeds = self.prepare_ip_adapter_image_embeds(
         
     | 
| 1132 | 
         
            +
                            ip_adapter_image,
         
     | 
| 1133 | 
         
            +
                            ip_adapter_image_embeds,
         
     | 
| 1134 | 
         
            +
                            device,
         
     | 
| 1135 | 
         
            +
                            batch_size * num_images_per_prompt,
         
     | 
| 1136 | 
         
            +
                            self.do_classifier_free_guidance,
         
     | 
| 1137 | 
         
            +
                        )
         
     | 
| 1138 | 
         
            +
             
     | 
| 1139 | 
         
            +
                    # 8. Denoising loop
         
     | 
| 1140 | 
         
            +
                    num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
         
     | 
| 1141 | 
         
            +
             
     | 
| 1142 | 
         
            +
                    # 8.1 Apply denoising_end
         
     | 
| 1143 | 
         
            +
                    if (
         
     | 
| 1144 | 
         
            +
                        self.denoising_end is not None
         
     | 
| 1145 | 
         
            +
                        and isinstance(self.denoising_end, float)
         
     | 
| 1146 | 
         
            +
                        and self.denoising_end > 0
         
     | 
| 1147 | 
         
            +
                        and self.denoising_end < 1
         
     | 
| 1148 | 
         
            +
                    ):
         
     | 
| 1149 | 
         
            +
                        discrete_timestep_cutoff = int(
         
     | 
| 1150 | 
         
            +
                            round(
         
     | 
| 1151 | 
         
            +
                                self.scheduler.config.num_train_timesteps
         
     | 
| 1152 | 
         
            +
                                - (self.denoising_end * self.scheduler.config.num_train_timesteps)
         
     | 
| 1153 | 
         
            +
                            )
         
     | 
| 1154 | 
         
            +
                        )
         
     | 
| 1155 | 
         
            +
                        num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
         
     | 
| 1156 | 
         
            +
                        timesteps = timesteps[:num_inference_steps]
         
     | 
| 1157 | 
         
            +
             
     | 
| 1158 | 
         
            +
                    # 9. Optionally get Guidance Scale Embedding
         
     | 
| 1159 | 
         
            +
                    timestep_cond = None
         
     | 
| 1160 | 
         
            +
                    if self.unet.config.time_cond_proj_dim is not None:
         
     | 
| 1161 | 
         
            +
                        guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
         
     | 
| 1162 | 
         
            +
                        timestep_cond = self.get_guidance_scale_embedding(
         
     | 
| 1163 | 
         
            +
                            guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
         
     | 
| 1164 | 
         
            +
                        ).to(device=device, dtype=latents.dtype)
         
     | 
| 1165 | 
         
            +
             
     | 
| 1166 | 
         
            +
                    self._num_timesteps = len(timesteps)
         
     | 
| 1167 | 
         
            +
                    with self.progress_bar(total=num_inference_steps) as progress_bar:
         
     | 
| 1168 | 
         
            +
                        for i, t in enumerate(timesteps):
         
     | 
| 1169 | 
         
            +
                            if self.interrupt:
         
     | 
| 1170 | 
         
            +
                                continue
         
     | 
| 1171 | 
         
            +
             
     | 
| 1172 | 
         
            +
                            # expand the latents if we are doing classifier free guidance
         
     | 
| 1173 | 
         
            +
                            latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
         
     | 
| 1174 | 
         
            +
             
     | 
| 1175 | 
         
            +
                            latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
         
     | 
| 1176 | 
         
            +
             
     | 
| 1177 | 
         
            +
                            # predict the noise residual
         
     | 
| 1178 | 
         
            +
                            added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
         
     | 
| 1179 | 
         
            +
                            if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
         
     | 
| 1180 | 
         
            +
                                added_cond_kwargs["image_embeds"] = image_embeds
         
     | 
| 1181 | 
         
            +
             
     | 
| 1182 | 
         
            +
                            noise_pred = self.unet(
         
     | 
| 1183 | 
         
            +
                                latent_model_input,
         
     | 
| 1184 | 
         
            +
                                t,
         
     | 
| 1185 | 
         
            +
                                encoder_hidden_states=prompt_embeds,                # [B, 77, 2048]
         
     | 
| 1186 | 
         
            +
                                timestep_cond=timestep_cond,                        # None
         
     | 
| 1187 | 
         
            +
                                cross_attention_kwargs=self.cross_attention_kwargs, # None
         
     | 
| 1188 | 
         
            +
                                added_cond_kwargs=added_cond_kwargs,                # {[B, 1280], [B, 6]}
         
     | 
| 1189 | 
         
            +
                                return_dict=False,
         
     | 
| 1190 | 
         
            +
                            )[0]
         
     | 
| 1191 | 
         
            +
             
     | 
| 1192 | 
         
            +
                            # perform guidance
         
     | 
| 1193 | 
         
            +
                            if self.do_classifier_free_guidance:
         
     | 
| 1194 | 
         
            +
                                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
         
     | 
| 1195 | 
         
            +
                                noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
         
     | 
| 1196 | 
         
            +
             
     | 
| 1197 | 
         
            +
                            if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
         
     | 
| 1198 | 
         
            +
                                # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
         
     | 
| 1199 | 
         
            +
                                noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
         
     | 
| 1200 | 
         
            +
             
     | 
| 1201 | 
         
            +
                            # compute the previous noisy sample x_t -> x_t-1
         
     | 
| 1202 | 
         
            +
                            latents_dtype = latents.dtype
         
     | 
| 1203 | 
         
            +
                            latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
         
     | 
| 1204 | 
         
            +
                            if latents.dtype != latents_dtype:
         
     | 
| 1205 | 
         
            +
                                if torch.backends.mps.is_available():
         
     | 
| 1206 | 
         
            +
                                    # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
         
     | 
| 1207 | 
         
            +
                                    latents = latents.to(latents_dtype)
         
     | 
| 1208 | 
         
            +
             
     | 
| 1209 | 
         
            +
                            if callback_on_step_end is not None:
         
     | 
| 1210 | 
         
            +
                                callback_kwargs = {}
         
     | 
| 1211 | 
         
            +
                                for k in callback_on_step_end_tensor_inputs:
         
     | 
| 1212 | 
         
            +
                                    callback_kwargs[k] = locals()[k]
         
     | 
| 1213 | 
         
            +
                                callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
         
     | 
| 1214 | 
         
            +
             
     | 
| 1215 | 
         
            +
                                latents = callback_outputs.pop("latents", latents)
         
     | 
| 1216 | 
         
            +
                                prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
         
     | 
| 1217 | 
         
            +
                                negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
         
     | 
| 1218 | 
         
            +
                                add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds)
         
     | 
| 1219 | 
         
            +
                                negative_pooled_prompt_embeds = callback_outputs.pop(
         
     | 
| 1220 | 
         
            +
                                    "negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
         
     | 
| 1221 | 
         
            +
                                )
         
     | 
| 1222 | 
         
            +
                                add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
         
     | 
| 1223 | 
         
            +
                                negative_add_time_ids = callback_outputs.pop("negative_add_time_ids", negative_add_time_ids)
         
     | 
| 1224 | 
         
            +
             
     | 
| 1225 | 
         
            +
                            # call the callback, if provided
         
     | 
| 1226 | 
         
            +
                            if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
         
     | 
| 1227 | 
         
            +
                                progress_bar.update()
         
     | 
| 1228 | 
         
            +
                                if callback is not None and i % callback_steps == 0:
         
     | 
| 1229 | 
         
            +
                                    step_idx = i // getattr(self.scheduler, "order", 1)
         
     | 
| 1230 | 
         
            +
                                    callback(step_idx, t, latents)
         
     | 
| 1231 | 
         
            +
             
     | 
| 1232 | 
         
            +
                            if XLA_AVAILABLE:
         
     | 
| 1233 | 
         
            +
                                xm.mark_step()
         
     | 
| 1234 | 
         
            +
             
     | 
| 1235 | 
         
            +
                    if not output_type == "latent":
         
     | 
| 1236 | 
         
            +
                        # make sure the VAE is in float32 mode, as it overflows in float16
         
     | 
| 1237 | 
         
            +
                        needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
         
     | 
| 1238 | 
         
            +
             
     | 
| 1239 | 
         
            +
                        if needs_upcasting:
         
     | 
| 1240 | 
         
            +
                            self.upcast_vae()
         
     | 
| 1241 | 
         
            +
                            latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
         
     | 
| 1242 | 
         
            +
                        elif latents.dtype != self.vae.dtype:
         
     | 
| 1243 | 
         
            +
                            if torch.backends.mps.is_available():
         
     | 
| 1244 | 
         
            +
                                # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
         
     | 
| 1245 | 
         
            +
                                self.vae = self.vae.to(latents.dtype)
         
     | 
| 1246 | 
         
            +
             
     | 
| 1247 | 
         
            +
                        # unscale/denormalize the latents
         
     | 
| 1248 | 
         
            +
                        # denormalize with the mean and std if available and not None
         
     | 
| 1249 | 
         
            +
                        has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None
         
     | 
| 1250 | 
         
            +
                        has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None
         
     | 
| 1251 | 
         
            +
                        if has_latents_mean and has_latents_std:
         
     | 
| 1252 | 
         
            +
                            latents_mean = (
         
     | 
| 1253 | 
         
            +
                                torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype)
         
     | 
| 1254 | 
         
            +
                            )
         
     | 
| 1255 | 
         
            +
                            latents_std = (
         
     | 
| 1256 | 
         
            +
                                torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype)
         
     | 
| 1257 | 
         
            +
                            )
         
     | 
| 1258 | 
         
            +
                            latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean
         
     | 
| 1259 | 
         
            +
                        else:
         
     | 
| 1260 | 
         
            +
                            latents = latents / self.vae.config.scaling_factor
         
     | 
| 1261 | 
         
            +
             
     | 
| 1262 | 
         
            +
                        image = self.vae.decode(latents, return_dict=False)[0]
         
     | 
| 1263 | 
         
            +
             
     | 
| 1264 | 
         
            +
                        # cast back to fp16 if needed
         
     | 
| 1265 | 
         
            +
                        if needs_upcasting:
         
     | 
| 1266 | 
         
            +
                            self.vae.to(dtype=torch.float16)
         
     | 
| 1267 | 
         
            +
                    else:
         
     | 
| 1268 | 
         
            +
                        image = latents
         
     | 
| 1269 | 
         
            +
             
     | 
| 1270 | 
         
            +
                    if not output_type == "latent":
         
     | 
| 1271 | 
         
            +
                        # apply watermark if available
         
     | 
| 1272 | 
         
            +
                        if self.watermark is not None:
         
     | 
| 1273 | 
         
            +
                            image = self.watermark.apply_watermark(image)
         
     | 
| 1274 | 
         
            +
             
     | 
| 1275 | 
         
            +
                        image = self.image_processor.postprocess(image, output_type=output_type)
         
     | 
| 1276 | 
         
            +
             
     | 
| 1277 | 
         
            +
                    # Offload all models
         
     | 
| 1278 | 
         
            +
                    self.maybe_free_model_hooks()
         
     | 
| 1279 | 
         
            +
             
     | 
| 1280 | 
         
            +
                    if not return_dict:
         
     | 
| 1281 | 
         
            +
                        return (image,)
         
     | 
| 1282 | 
         
            +
             
     | 
| 1283 | 
         
            +
                    return StableDiffusionXLPipelineOutput(images=image)
         
     |