Spaces:
Runtime error
Runtime error
| from openai import OpenAI | |
| import gradio as gr | |
| import os | |
| import json | |
| import functools | |
| api_key = os.environ.get('FEATHERLESS_API_KEY') | |
| client = OpenAI( | |
| base_url="https://api.featherless.ai/v1", | |
| api_key=api_key | |
| ) | |
| def respond(message, history, model): | |
| history_openai_format = [] | |
| for human, assistant in history: | |
| history_openai_format.append({"role": "user", "content": human }) | |
| history_openai_format.append({"role": "assistant", "content":assistant}) | |
| history_openai_format.append({"role": "user", "content": message}) | |
| response = client.chat.completions.create( | |
| model=model, | |
| messages= history_openai_format, | |
| temperature=1.0, | |
| stream=True, | |
| max_tokens=2000 | |
| ) | |
| partial_message = "" | |
| for chunk in response: | |
| if chunk.choices[0].delta.content is not None: | |
| partial_message = partial_message + chunk.choices[0].delta.content | |
| yield partial_message | |
| logo = open('./logo.svg').read() | |
| with open('./model-cache.json', 'r') as f_model_cache: | |
| model_cache = json.load(f_model_cache) | |
| def build_model_choices(): | |
| all_choices = [] | |
| for model_class in model_cache: | |
| all_choices += [ (f"{model_id} ({model_class})", model_id) for model_id in model_cache[model_class] ] | |
| return all_choices | |
| model_choices = build_model_choices() | |
| def initial_model(referer=None): | |
| print(f"initial_model({referer})") | |
| if referer == 'http://127.0.0.1:7860/': | |
| return 'Sao10K/L3-70B-Euryale-v2.1' | |
| if referer and referer.startswith("https://huggingface.co/"): | |
| possible_model = referer[23:] | |
| full_model_list = functools.reduce(lambda x,y: x+y, model_cache.values(), []) | |
| model_is_supported = possible_model in full_model_list | |
| if model_is_supported: | |
| return possible_model | |
| return 'anakin87/yo-Llama-3-8B-Instruct' | |
| title_text="HuggingFace's missing inference widget" | |
| with gr.Blocks(title_text, css='.logo-mark { fill: #ffe184; }') as demo: | |
| gr.HTML(""" | |
| <h1 align="center">HuggingFace's missing inference widget</h1> | |
| <p align="center"> | |
| Test any <=15B LLM from the hub. | |
| </p> | |
| """) | |
| # hidden_state = gr.State(value=initial_model) | |
| model_selector = gr.Dropdown( | |
| label="Model", | |
| choices=build_model_choices(), | |
| value=initial_model | |
| # value=hidden_state | |
| ) | |
| gr.ChatInterface( | |
| respond, | |
| additional_inputs=[model_selector], | |
| head=""", | |
| <script>console.log("Hello from gradio!")</script> | |
| """, | |
| ) | |
| gr.HTML(f""" | |
| <p align="center"> | |
| Inference by <a href="https://featherless.ai">{logo}</a> | |
| </p> | |
| """) | |
| def update_initial_model_choice(request: gr.Request): | |
| return initial_model(request.headers.get('referer')) | |
| demo.load(update_initial_model_choice, outputs=model_selector) | |
| demo.launch() | |