Spaces:
Sleeping
Sleeping
Commit
·
db8b2d5
1
Parent(s):
812b01c
Add offset parameter to TJA writing functions and update inference methods for TC5, TC6, and TC7
Browse files- app.py +54 -16
- tc5/infer.py +2 -2
- tc6/infer.py +2 -2
- tc7/infer.py +2 -2
app.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
from tc5.config import SAMPLE_RATE, HOP_LENGTH
|
|
@@ -30,7 +31,7 @@ tc7.eval()
|
|
| 30 |
synthesizer = Client("ryanlinjui/taiko-music-generator")
|
| 31 |
|
| 32 |
|
| 33 |
-
def infer_tc5(audio, nps, bpm):
|
| 34 |
audio_path = audio
|
| 35 |
filename = audio_path.split("/")[-1]
|
| 36 |
# Preprocess
|
|
@@ -58,7 +59,7 @@ def infer_tc5(audio, nps, bpm):
|
|
| 58 |
output_frame_hop_sec,
|
| 59 |
)
|
| 60 |
# Generate TJA content
|
| 61 |
-
tja_content = tc5infer.write_tja(onsets, bpm=bpm, audio=filename)
|
| 62 |
|
| 63 |
# wrtie TJA content to a temporary file
|
| 64 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".tja") as temp_tja_file:
|
|
@@ -70,7 +71,7 @@ def infer_tc5(audio, nps, bpm):
|
|
| 70 |
param_1=handle_file(audio_path),
|
| 71 |
param_2="達人譜面 / Master",
|
| 72 |
param_3=16,
|
| 73 |
-
param_4=
|
| 74 |
param_5=5,
|
| 75 |
param_6=5,
|
| 76 |
param_7=5,
|
|
@@ -90,7 +91,7 @@ def infer_tc5(audio, nps, bpm):
|
|
| 90 |
return oni_audio, plot, tja_content
|
| 91 |
|
| 92 |
|
| 93 |
-
def infer_tc6(audio, nps, bpm, difficulty, level):
|
| 94 |
audio_path = audio
|
| 95 |
filename = audio_path.split("/")[-1]
|
| 96 |
# Preprocess
|
|
@@ -121,7 +122,7 @@ def infer_tc6(audio, nps, bpm, difficulty, level):
|
|
| 121 |
output_frame_hop_sec,
|
| 122 |
)
|
| 123 |
# Generate TJA content
|
| 124 |
-
tja_content = tc6infer.write_tja(onsets, bpm=bpm, audio=filename)
|
| 125 |
|
| 126 |
# wrtie TJA content to a temporary file
|
| 127 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".tja") as temp_tja_file:
|
|
@@ -133,7 +134,7 @@ def infer_tc6(audio, nps, bpm, difficulty, level):
|
|
| 133 |
param_1=handle_file(audio_path),
|
| 134 |
param_2="達人譜面 / Master",
|
| 135 |
param_3=16,
|
| 136 |
-
param_4=
|
| 137 |
param_5=5,
|
| 138 |
param_6=5,
|
| 139 |
param_7=5,
|
|
@@ -153,7 +154,7 @@ def infer_tc6(audio, nps, bpm, difficulty, level):
|
|
| 153 |
return oni_audio, plot, tja_content
|
| 154 |
|
| 155 |
|
| 156 |
-
def infer_tc7(audio, nps, bpm, difficulty, level):
|
| 157 |
audio_path = audio
|
| 158 |
filename = audio_path.split("/")[-1]
|
| 159 |
# Preprocess
|
|
@@ -184,7 +185,7 @@ def infer_tc7(audio, nps, bpm, difficulty, level):
|
|
| 184 |
output_frame_hop_sec,
|
| 185 |
)
|
| 186 |
# Generate TJA content
|
| 187 |
-
tja_content = tc7infer.write_tja(onsets, bpm=bpm, audio=filename)
|
| 188 |
|
| 189 |
# wrtie TJA content to a temporary file
|
| 190 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".tja") as temp_tja_file:
|
|
@@ -196,7 +197,7 @@ def infer_tc7(audio, nps, bpm, difficulty, level):
|
|
| 196 |
param_1=handle_file(audio_path),
|
| 197 |
param_2="達人譜面 / Master",
|
| 198 |
param_3=16,
|
| 199 |
-
param_4=
|
| 200 |
param_5=5,
|
| 201 |
param_6=5,
|
| 202 |
param_7=5,
|
|
@@ -216,17 +217,38 @@ def infer_tc7(audio, nps, bpm, difficulty, level):
|
|
| 216 |
return oni_audio, plot, tja_content
|
| 217 |
|
| 218 |
|
| 219 |
-
|
|
|
|
| 220 |
if model_choice == "TC5":
|
| 221 |
-
return infer_tc5(audio, nps, bpm)
|
| 222 |
elif model_choice == "TC6":
|
| 223 |
-
return infer_tc6(audio, nps, bpm, difficulty, level)
|
| 224 |
else: # TC7
|
| 225 |
-
return infer_tc7(audio, nps, bpm, difficulty, level)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 226 |
|
| 227 |
|
| 228 |
with gr.Blocks() as demo:
|
| 229 |
-
gr.Markdown("# Taiko Conformer 5/7 Demo")
|
| 230 |
with gr.Row():
|
| 231 |
audio_input = gr.Audio(sources="upload", type="filepath", label="Input Audio")
|
| 232 |
|
|
@@ -253,6 +275,14 @@ with gr.Blocks() as demo:
|
|
| 253 |
step=1,
|
| 254 |
label="BPM (Used by TJA Quantization)",
|
| 255 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 256 |
|
| 257 |
with gr.Row():
|
| 258 |
difficulty = gr.Slider(
|
|
@@ -274,10 +304,18 @@ with gr.Blocks() as demo:
|
|
| 274 |
info="Difficulty level from 1 to 10",
|
| 275 |
)
|
| 276 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 277 |
audio_output = gr.Audio(label="Generated Audio", type="filepath")
|
| 278 |
plot_output = gr.Plot(label="Onset/Energy Plot")
|
| 279 |
tja_output = gr.Textbox(label="TJA File Content", show_copy_button=True)
|
| 280 |
-
run_btn = gr.Button("Run Inference")
|
| 281 |
|
| 282 |
# Update visibility of TC7-specific controls based on model selection
|
| 283 |
def update_visibility(model_choice):
|
|
@@ -292,7 +330,7 @@ with gr.Blocks() as demo:
|
|
| 292 |
|
| 293 |
run_btn.click(
|
| 294 |
run_inference,
|
| 295 |
-
inputs=[audio_input, model_choice, nps, bpm, difficulty, level],
|
| 296 |
outputs=[audio_output, plot_output, tja_output],
|
| 297 |
)
|
| 298 |
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
| 4 |
from tc5.config import SAMPLE_RATE, HOP_LENGTH
|
|
|
|
| 31 |
synthesizer = Client("ryanlinjui/taiko-music-generator")
|
| 32 |
|
| 33 |
|
| 34 |
+
def infer_tc5(audio, nps, bpm, offset):
|
| 35 |
audio_path = audio
|
| 36 |
filename = audio_path.split("/")[-1]
|
| 37 |
# Preprocess
|
|
|
|
| 59 |
output_frame_hop_sec,
|
| 60 |
)
|
| 61 |
# Generate TJA content
|
| 62 |
+
tja_content = tc5infer.write_tja(onsets, bpm=bpm, audio=filename, offset=offset)
|
| 63 |
|
| 64 |
# wrtie TJA content to a temporary file
|
| 65 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".tja") as temp_tja_file:
|
|
|
|
| 71 |
param_1=handle_file(audio_path),
|
| 72 |
param_2="達人譜面 / Master",
|
| 73 |
param_3=16,
|
| 74 |
+
param_4=7,
|
| 75 |
param_5=5,
|
| 76 |
param_6=5,
|
| 77 |
param_7=5,
|
|
|
|
| 91 |
return oni_audio, plot, tja_content
|
| 92 |
|
| 93 |
|
| 94 |
+
def infer_tc6(audio, nps, bpm, offset, difficulty, level):
|
| 95 |
audio_path = audio
|
| 96 |
filename = audio_path.split("/")[-1]
|
| 97 |
# Preprocess
|
|
|
|
| 122 |
output_frame_hop_sec,
|
| 123 |
)
|
| 124 |
# Generate TJA content
|
| 125 |
+
tja_content = tc6infer.write_tja(onsets, bpm=bpm, audio=filename, offset=offset)
|
| 126 |
|
| 127 |
# wrtie TJA content to a temporary file
|
| 128 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".tja") as temp_tja_file:
|
|
|
|
| 134 |
param_1=handle_file(audio_path),
|
| 135 |
param_2="達人譜面 / Master",
|
| 136 |
param_3=16,
|
| 137 |
+
param_4=7,
|
| 138 |
param_5=5,
|
| 139 |
param_6=5,
|
| 140 |
param_7=5,
|
|
|
|
| 154 |
return oni_audio, plot, tja_content
|
| 155 |
|
| 156 |
|
| 157 |
+
def infer_tc7(audio, nps, bpm, offset, difficulty, level):
|
| 158 |
audio_path = audio
|
| 159 |
filename = audio_path.split("/")[-1]
|
| 160 |
# Preprocess
|
|
|
|
| 185 |
output_frame_hop_sec,
|
| 186 |
)
|
| 187 |
# Generate TJA content
|
| 188 |
+
tja_content = tc7infer.write_tja(onsets, bpm=bpm, audio=filename, offset=offset)
|
| 189 |
|
| 190 |
# wrtie TJA content to a temporary file
|
| 191 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".tja") as temp_tja_file:
|
|
|
|
| 197 |
param_1=handle_file(audio_path),
|
| 198 |
param_2="達人譜面 / Master",
|
| 199 |
param_3=16,
|
| 200 |
+
param_4=7,
|
| 201 |
param_5=5,
|
| 202 |
param_6=5,
|
| 203 |
param_7=5,
|
|
|
|
| 217 |
return oni_audio, plot, tja_content
|
| 218 |
|
| 219 |
|
| 220 |
+
@spaces.GPU
|
| 221 |
+
def run_inference_gpu(audio, model_choice, nps, bpm, offset, difficulty, level):
|
| 222 |
if model_choice == "TC5":
|
| 223 |
+
return infer_tc5(audio, nps, bpm, offset)
|
| 224 |
elif model_choice == "TC6":
|
| 225 |
+
return infer_tc6(audio, nps, bpm, offset, difficulty, level)
|
| 226 |
else: # TC7
|
| 227 |
+
return infer_tc7(audio, nps, bpm, offset, difficulty, level)
|
| 228 |
+
|
| 229 |
+
|
| 230 |
+
def run_inference_cpu(audio, model_choice, nps, bpm, offset, difficulty, level):
|
| 231 |
+
if model_choice == "TC5":
|
| 232 |
+
return infer_tc5(audio, nps, bpm, offset)
|
| 233 |
+
elif model_choice == "TC6":
|
| 234 |
+
return infer_tc6(audio, nps, bpm, offset, difficulty, level)
|
| 235 |
+
else: # TC7
|
| 236 |
+
return infer_tc7(audio, nps, bpm, offset, difficulty, level)
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
def run_inference(with_gpu, audio, model_choice, nps, bpm, offset, difficulty, level):
|
| 240 |
+
if with_gpu:
|
| 241 |
+
return run_inference_gpu(
|
| 242 |
+
audio, model_choice, nps, bpm, offset, difficulty, level
|
| 243 |
+
)
|
| 244 |
+
else:
|
| 245 |
+
return run_inference_cpu(
|
| 246 |
+
audio, model_choice, nps, bpm, offset, difficulty, level
|
| 247 |
+
)
|
| 248 |
|
| 249 |
|
| 250 |
with gr.Blocks() as demo:
|
| 251 |
+
gr.Markdown("# Taiko Conformer 5/6/7 Demo")
|
| 252 |
with gr.Row():
|
| 253 |
audio_input = gr.Audio(sources="upload", type="filepath", label="Input Audio")
|
| 254 |
|
|
|
|
| 275 |
step=1,
|
| 276 |
label="BPM (Used by TJA Quantization)",
|
| 277 |
)
|
| 278 |
+
offset = gr.Slider(
|
| 279 |
+
value=0.0,
|
| 280 |
+
minimum=-5.0,
|
| 281 |
+
maximum=5.0,
|
| 282 |
+
step=0.01,
|
| 283 |
+
label="Offset (in seconds)",
|
| 284 |
+
info="Adjust the offset for TJA",
|
| 285 |
+
)
|
| 286 |
|
| 287 |
with gr.Row():
|
| 288 |
difficulty = gr.Slider(
|
|
|
|
| 304 |
info="Difficulty level from 1 to 10",
|
| 305 |
)
|
| 306 |
|
| 307 |
+
with gr.Row():
|
| 308 |
+
with_gpu = gr.Checkbox(
|
| 309 |
+
value=True,
|
| 310 |
+
label="Use GPU for Inference",
|
| 311 |
+
info="Enable this to use GPU for faster inference (if available)",
|
| 312 |
+
)
|
| 313 |
+
|
| 314 |
+
run_btn = gr.Button("Run Inference", variant="primary")
|
| 315 |
+
|
| 316 |
audio_output = gr.Audio(label="Generated Audio", type="filepath")
|
| 317 |
plot_output = gr.Plot(label="Onset/Energy Plot")
|
| 318 |
tja_output = gr.Textbox(label="TJA File Content", show_copy_button=True)
|
|
|
|
| 319 |
|
| 320 |
# Update visibility of TC7-specific controls based on model selection
|
| 321 |
def update_visibility(model_choice):
|
|
|
|
| 330 |
|
| 331 |
run_btn.click(
|
| 332 |
run_inference,
|
| 333 |
+
inputs=[audio_input, model_choice, nps, bpm, offset, difficulty, level],
|
| 334 |
outputs=[audio_output, plot_output, tja_output],
|
| 335 |
)
|
| 336 |
|
tc5/infer.py
CHANGED
|
@@ -258,7 +258,7 @@ def plot_results(
|
|
| 258 |
return fig
|
| 259 |
|
| 260 |
|
| 261 |
-
def write_tja(onsets, out_path=None, bpm=160, quantize=96, audio="audio.wav"):
|
| 262 |
# TJA types: 0:no note, 1:Don, 2:Ka, 3:BigDon, 4:BigKa, 5:DrumrollStart, 8:DrumrollEnd
|
| 263 |
# Model output types: 1:Don, 2:Ka, 5:Drumroll (interpreted as start/single)
|
| 264 |
sec_per_beat = 60 / bpm
|
|
@@ -336,7 +336,7 @@ def write_tja(onsets, out_path=None, bpm=160, quantize=96, audio="audio.wav"):
|
|
| 336 |
tja_content.append(f"TITLE:{audio} (TC5, {time.strftime('%Y-%m-%d %H:%M:%S')})")
|
| 337 |
tja_content.append(f"BPM:{bpm}")
|
| 338 |
tja_content.append(f"WAVE:{audio}")
|
| 339 |
-
tja_content.append("OFFSET:
|
| 340 |
tja_content.append("COURSE:Oni\nLEVEL:9\n")
|
| 341 |
tja_content.append("#START")
|
| 342 |
for i in range(max_measure_idx + 1):
|
|
|
|
| 258 |
return fig
|
| 259 |
|
| 260 |
|
| 261 |
+
def write_tja(onsets, out_path=None, bpm=160, quantize=96, audio="audio.wav", offset=0):
|
| 262 |
# TJA types: 0:no note, 1:Don, 2:Ka, 3:BigDon, 4:BigKa, 5:DrumrollStart, 8:DrumrollEnd
|
| 263 |
# Model output types: 1:Don, 2:Ka, 5:Drumroll (interpreted as start/single)
|
| 264 |
sec_per_beat = 60 / bpm
|
|
|
|
| 336 |
tja_content.append(f"TITLE:{audio} (TC5, {time.strftime('%Y-%m-%d %H:%M:%S')})")
|
| 337 |
tja_content.append(f"BPM:{bpm}")
|
| 338 |
tja_content.append(f"WAVE:{audio}")
|
| 339 |
+
tja_content.append(f"OFFSET:{offset}")
|
| 340 |
tja_content.append("COURSE:Oni\nLEVEL:9\n")
|
| 341 |
tja_content.append("#START")
|
| 342 |
for i in range(max_measure_idx + 1):
|
tc6/infer.py
CHANGED
|
@@ -257,7 +257,7 @@ def plot_results(
|
|
| 257 |
return fig
|
| 258 |
|
| 259 |
|
| 260 |
-
def write_tja(onsets, out_path=None, bpm=160, quantize=96, audio="audio.wav"):
|
| 261 |
# TJA types: 0:no note, 1:Don, 2:Ka, 3:BigDon, 4:BigKa, 5:DrumrollStart, 8:DrumrollEnd
|
| 262 |
# Model output types: 1:Don, 2:Ka, 5:Drumroll (interpreted as start/single)
|
| 263 |
sec_per_beat = 60 / bpm
|
|
@@ -334,7 +334,7 @@ def write_tja(onsets, out_path=None, bpm=160, quantize=96, audio="audio.wav"):
|
|
| 334 |
tja_content.append(f"TITLE:{audio} (TC6, {time.strftime('%Y-%m-%d %H:%M:%S')})")
|
| 335 |
tja_content.append(f"BPM:{bpm}")
|
| 336 |
tja_content.append(f"WAVE:{audio}")
|
| 337 |
-
tja_content.append("OFFSET:
|
| 338 |
tja_content.append("COURSE:Oni\nLEVEL:9\n")
|
| 339 |
tja_content.append("#START")
|
| 340 |
for i in range(max_measure_idx + 1):
|
|
|
|
| 257 |
return fig
|
| 258 |
|
| 259 |
|
| 260 |
+
def write_tja(onsets, out_path=None, bpm=160, quantize=96, audio="audio.wav", offset=0):
|
| 261 |
# TJA types: 0:no note, 1:Don, 2:Ka, 3:BigDon, 4:BigKa, 5:DrumrollStart, 8:DrumrollEnd
|
| 262 |
# Model output types: 1:Don, 2:Ka, 5:Drumroll (interpreted as start/single)
|
| 263 |
sec_per_beat = 60 / bpm
|
|
|
|
| 334 |
tja_content.append(f"TITLE:{audio} (TC6, {time.strftime('%Y-%m-%d %H:%M:%S')})")
|
| 335 |
tja_content.append(f"BPM:{bpm}")
|
| 336 |
tja_content.append(f"WAVE:{audio}")
|
| 337 |
+
tja_content.append(f"OFFSET:{offset}")
|
| 338 |
tja_content.append("COURSE:Oni\nLEVEL:9\n")
|
| 339 |
tja_content.append("#START")
|
| 340 |
for i in range(max_measure_idx + 1):
|
tc7/infer.py
CHANGED
|
@@ -257,7 +257,7 @@ def plot_results(
|
|
| 257 |
return fig
|
| 258 |
|
| 259 |
|
| 260 |
-
def write_tja(onsets, out_path=None, bpm=160, quantize=96, audio="audio.wav"):
|
| 261 |
# TJA types: 0:no note, 1:Don, 2:Ka, 3:BigDon, 4:BigKa, 5:DrumrollStart, 8:DrumrollEnd
|
| 262 |
# Model output types: 1:Don, 2:Ka, 5:Drumroll (interpreted as start/single)
|
| 263 |
sec_per_beat = 60 / bpm
|
|
@@ -334,7 +334,7 @@ def write_tja(onsets, out_path=None, bpm=160, quantize=96, audio="audio.wav"):
|
|
| 334 |
tja_content.append(f"TITLE:{audio} (TC7, {time.strftime('%Y-%m-%d %H:%M:%S')})")
|
| 335 |
tja_content.append(f"BPM:{bpm}")
|
| 336 |
tja_content.append(f"WAVE:{audio}")
|
| 337 |
-
tja_content.append("OFFSET:
|
| 338 |
tja_content.append("COURSE:Oni\nLEVEL:9\n")
|
| 339 |
tja_content.append("#START")
|
| 340 |
for i in range(max_measure_idx + 1):
|
|
|
|
| 257 |
return fig
|
| 258 |
|
| 259 |
|
| 260 |
+
def write_tja(onsets, out_path=None, bpm=160, quantize=96, audio="audio.wav", offset=0):
|
| 261 |
# TJA types: 0:no note, 1:Don, 2:Ka, 3:BigDon, 4:BigKa, 5:DrumrollStart, 8:DrumrollEnd
|
| 262 |
# Model output types: 1:Don, 2:Ka, 5:Drumroll (interpreted as start/single)
|
| 263 |
sec_per_beat = 60 / bpm
|
|
|
|
| 334 |
tja_content.append(f"TITLE:{audio} (TC7, {time.strftime('%Y-%m-%d %H:%M:%S')})")
|
| 335 |
tja_content.append(f"BPM:{bpm}")
|
| 336 |
tja_content.append(f"WAVE:{audio}")
|
| 337 |
+
tja_content.append(f"OFFSET:{offset}")
|
| 338 |
tja_content.append("COURSE:Oni\nLEVEL:9\n")
|
| 339 |
tja_content.append("#START")
|
| 340 |
for i in range(max_measure_idx + 1):
|