Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# train.py
|
| 2 |
+
#!/usr/bin/env python
|
| 3 |
+
import os
|
| 4 |
+
import json
|
| 5 |
+
import string
|
| 6 |
+
import pandas as pd
|
| 7 |
+
import evaluate
|
| 8 |
+
import numpy as np
|
| 9 |
+
from datasets import load_dataset, DatasetDict
|
| 10 |
+
from transformers import (
|
| 11 |
+
AutoTokenizer, AutoModelForSeq2SeqLM,
|
| 12 |
+
Seq2SeqTrainingArguments, Seq2SeqTrainer,
|
| 13 |
+
DataCollatorForSeq2Seq
|
| 14 |
+
)
|
| 15 |
+
from huggingface_hub import login
|
| 16 |
+
|
| 17 |
+
# -------------------------------------------------
|
| 18 |
+
# 0. HF login (set HF_TOKEN in Secrets)
|
| 19 |
+
# -------------------------------------------------
|
| 20 |
+
login() # reads HF_TOKEN from environment
|
| 21 |
+
|
| 22 |
+
# -------------------------------------------------
|
| 23 |
+
# 1. Load dataset from Hub
|
| 24 |
+
# -------------------------------------------------
|
| 25 |
+
dataset = load_dataset("your-username/celtic-parallel")
|
| 26 |
+
data = json.loads(dataset["train"][0]["parallel_corpus.json"]) # dummy – we load the file directly
|
| 27 |
+
# Actually we load the JSON file that was uploaded:
|
| 28 |
+
raw = load_dataset("your-username/celtic-parallel", data_files="parallel_corpus.json")["train"]
|
| 29 |
+
df = pd.DataFrame(json.loads(raw[0]["parallel_corpus.json"]))
|
| 30 |
+
|
| 31 |
+
# -------------------------------------------------
|
| 32 |
+
# 2. Build English → {br, abk, cy}
|
| 33 |
+
# -------------------------------------------------
|
| 34 |
+
def is_valid(t):
|
| 35 |
+
return bool(t and t.strip() and t.strip() not in string.punctuation)
|
| 36 |
+
|
| 37 |
+
br = df[df.apply(lambda r: is_valid(r["niv_text"]) and is_valid(r["koad21_text"]), axis=1)][["niv_text","koad21_text"]].rename(columns={"niv_text":"en","koad21_text":"target"})
|
| 38 |
+
br["language"] = "br"
|
| 39 |
+
|
| 40 |
+
abk = df[df.apply(lambda r: is_valid(r["niv_text"]) and is_valid(r["abk_text"]), axis=1)][["niv_text","abk_text"]].rename(columns={"niv_text":"en","abk_text":"target"})
|
| 41 |
+
abk["language"] = "abk"
|
| 42 |
+
|
| 43 |
+
cy = df[df.apply(lambda r: is_valid(r["niv_text"]) and is_valid(r["bcnda_text"]), axis=1)][["niv_text","bcnda_text"]].rename(columns={"niv_text":"en","bcnda_text":"target"})
|
| 44 |
+
cy["language"] = "cy"
|
| 45 |
+
|
| 46 |
+
combined = pd.concat([br, abk, cy], ignore_index=True)
|
| 47 |
+
print(f"Total examples: {len(combined)} (br:{len(br)}, abk:{len(abk)}, cy:{len(cy)})")
|
| 48 |
+
|
| 49 |
+
# -------------------------------------------------
|
| 50 |
+
# 3. Train / test split
|
| 51 |
+
# -------------------------------------------------
|
| 52 |
+
from datasets import Dataset
|
| 53 |
+
ds = Dataset.from_pandas(combined).train_test_split(test_size=0.2, seed=42)
|
| 54 |
+
raw_datasets = DatasetDict({"train": ds["train"], "test": ds["test"]})
|
| 55 |
+
|
| 56 |
+
# -------------------------------------------------
|
| 57 |
+
# 4. Tokenizer & Model
|
| 58 |
+
# -------------------------------------------------
|
| 59 |
+
model_name = "google/mt5-small"
|
| 60 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
|
| 61 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
| 62 |
+
|
| 63 |
+
# -------------------------------------------------
|
| 64 |
+
# 5. Pre-process
|
| 65 |
+
# -------------------------------------------------
|
| 66 |
+
MAX_LEN = 96
|
| 67 |
+
|
| 68 |
+
def preprocess(examples):
|
| 69 |
+
inputs = [f"translate English to {lang}: {en}"
|
| 70 |
+
for lang, en in zip(examples["language"], examples["en"])]
|
| 71 |
+
targets = examples["target"]
|
| 72 |
+
model_inputs = tokenizer(inputs, max_length=MAX_LEN, truncation=True, padding="max_length")
|
| 73 |
+
labels = tokenizer(targets, max_length=MAX_LEN, truncation=True, padding="max_length").input_ids
|
| 74 |
+
model_inputs["labels"] = labels
|
| 75 |
+
return model_inputs
|
| 76 |
+
|
| 77 |
+
tokenized = raw_datasets.map(preprocess, batched=True, remove_columns=raw_datasets["train"].column_names)
|
| 78 |
+
|
| 79 |
+
# -------------------------------------------------
|
| 80 |
+
# 6. Data collator & metric
|
| 81 |
+
# -------------------------------------------------
|
| 82 |
+
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)
|
| 83 |
+
|
| 84 |
+
metric = evaluate.load("sacrebleu")
|
| 85 |
+
|
| 86 |
+
def compute_metrics(eval_preds):
|
| 87 |
+
preds, labels = eval_preds
|
| 88 |
+
if isinstance(preds, tuple):
|
| 89 |
+
preds = preds[0]
|
| 90 |
+
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
|
| 91 |
+
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
|
| 92 |
+
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
|
| 93 |
+
decoded_preds = [p.strip() for p in decoded_preds]
|
| 94 |
+
decoded_labels = [[l.strip()] for l in decoded_labels]
|
| 95 |
+
result = metric.compute(predictions=decoded_preds, references=decoded_labels)
|
| 96 |
+
return {"bleu": result["score"]}
|
| 97 |
+
|
| 98 |
+
# -------------------------------------------------
|
| 99 |
+
# 7. Training args
|
| 100 |
+
# -------------------------------------------------
|
| 101 |
+
training_args = Seq2SeqTrainingArguments(
|
| 102 |
+
output_dir="mt5-celtic-finetuned",
|
| 103 |
+
eval_strategy="epoch",
|
| 104 |
+
save_strategy="epoch",
|
| 105 |
+
learning_rate=3e-4,
|
| 106 |
+
per_device_train_batch_size=16,
|
| 107 |
+
per_device_eval_batch_size=16,
|
| 108 |
+
weight_decay=0.01,
|
| 109 |
+
num_train_epochs=3,
|
| 110 |
+
predict_with_generate=True,
|
| 111 |
+
fp16=True, # GPU
|
| 112 |
+
bf16=True, # TPU (auto-enabled if on TPU)
|
| 113 |
+
logging_steps=100,
|
| 114 |
+
report_to="wandb", # optional
|
| 115 |
+
push_to_hub=True,
|
| 116 |
+
hub_model_id="your-username/mt5-celtic-en-br-abk-cy",
|
| 117 |
+
hub_strategy="end",
|
| 118 |
+
load_best_model_at_end=True,
|
| 119 |
+
metric_for_best_model="bleu",
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
# -------------------------------------------------
|
| 123 |
+
# 8. Trainer
|
| 124 |
+
# -------------------------------------------------
|
| 125 |
+
trainer = Seq2SeqTrainer(
|
| 126 |
+
model=model,
|
| 127 |
+
args=training_args,
|
| 128 |
+
train_dataset=tokenized["train"],
|
| 129 |
+
eval_dataset=tokenized["test"],
|
| 130 |
+
tokenizer=tokenizer,
|
| 131 |
+
data_collator=data_collator,
|
| 132 |
+
compute_metrics=compute_metrics,
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
trainer.train()
|
| 136 |
+
|
| 137 |
+
# -------------------------------------------------
|
| 138 |
+
# 9. Final push
|
| 139 |
+
# -------------------------------------------------
|
| 140 |
+
trainer.push_to_hub("mt5-celtic-en-br-abk-cy")
|
| 141 |
+
print("Model pushed to Hub!")
|