Spaces:
Running
Running
File size: 16,657 Bytes
96f36aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 |
import argparse
import torch
import os
from tqdm import tqdm
import random
from PIL import Image
import numpy as np
import torch.nn.functional as F
import datetime
from model.segment_anything import SamPredictor, sam_model_registry
from dataset.refer_seg_dataset import ValDataset
from dataset.grefer_seg_dataset import grefcocoValDataset
from data.question_answer_list import QUESTION_PARTIAL
from segment_predictor import GenerativeSegmenter
from eval.utils import AverageMeter, Summary, intersectionAndUnionGPU, \
compute_logits_from_mask, masks_sample_points
from torch.utils.data import Dataset, DataLoader
import math
# --- Accelerate Import ---
from accelerate import Accelerator
def get_chunk(ds, n, k):
chunk_size = math.ceil(len(ds) / n)
i = chunk_size * k
start_index = i
end_index = i + chunk_size
ds.refer_seg_ds["images"] = ds.refer_seg_ds["images"][start_index:end_index]
return ds
def gget_chunk(ds, n, k):
chunk_size = math.ceil(len(ds) / n)
i = chunk_size * k
start_index = i
end_index = i + chunk_size
ds.loaded_images = ds.loaded_images[start_index:end_index]
return ds
class CustomDataset(Dataset):
def __init__(self, sub_dataset):
self.dataset = sub_dataset
def __getitem__(self, index):
image, masks, questions, image_path = self.dataset[index]
image_name = os.path.basename(image_path).split(".")[0]
questions = [random.choice(QUESTION_PARTIAL).replace("[class_name]", q) for q in questions]
return image, masks, image_name, questions, image_path
def __len__(self):
return len(self.dataset)
def collate_fn(batch):
images, masks, image_names, questions, image_paths = zip(*batch)
return images, masks, image_names, questions, image_paths
def create_data_loader(args, sub_dataset, batch_size=1):
assert batch_size == 1, "Batch size must be 1 for this evaluation script."
dataset = CustomDataset(sub_dataset)
return DataLoader(dataset, batch_size=batch_size, num_workers=4, shuffle=False, collate_fn=collate_fn)
def eval_model(args):
# --- Initialize Accelerator ---
accelerator = Accelerator()
# --- Model and Predictor Initialization ---
segmenter = GenerativeSegmenter(args.model_path, device_map=accelerator.device, min_pixels=args.min_pixels,
max_pixels=args.max_pixels)
sam_help = args.sam_path is not None
if sam_help:
sam = sam_model_registry["vit_h"](checkpoint=args.sam_path)
sam = sam.to(dtype=torch.float32, device=accelerator.device)
predictor = SamPredictor(sam)
else:
predictor = None
# --- Dataset and DataLoader Initialization ---
if accelerator.is_main_process:
print("Loading dataset...")
# First, load the full dataset based on the parameters
if "grefcoco" in args.dataset_split:
val_dataset = grefcocoValDataset(args.image_folder, args.dataset_split)
else:
val_dataset = ValDataset(args.image_folder, args.dataset_split)
if accelerator.is_main_process:
total_data_size = len(val_dataset)
print(f"Total evaluation data volume (full dataset): {total_data_size} samples.")
# Then, get a chunk of the dataset as needed
if "grefcoco" in args.dataset_split:
sub_dataset = gget_chunk(val_dataset, args.num_chunks, args.chunk_idx)
else:
sub_dataset = get_chunk(val_dataset, args.num_chunks, args.chunk_idx)
data_loader = create_data_loader(args, sub_dataset)
data_loader = accelerator.prepare(data_loader)
# --- Metric Meters Initialization ---
intersection_meter = AverageMeter("Intersec", ":6.3f", Summary.SUM)
union_meter = AverageMeter("Union", ":6.3f", Summary.SUM)
acc_iou_meter = AverageMeter("gIoU", ":6.3f", Summary.SUM)
if sam_help:
intersection_meter_sam = AverageMeter("Intersec", ":6.3f", Summary.SUM)
union_meter_sam = AverageMeter("Union", ":6.3f", Summary.SUM)
acc_iou_meter_sam = AverageMeter("gIoU", ":6.3f", Summary.SUM)
progress_bar = tqdm(data_loader, disable=not accelerator.is_main_process, total=len(data_loader))
for batch in progress_bar:
images, masks, image_names, questions, image_paths = batch
image, gt_masks, image_name, prompts = images[0], masks[0], image_names[0], questions[0]
w_ori, h_ori = image.size
total_intersection = torch.zeros(2, device=accelerator.device)
total_union = torch.zeros(2, device=accelerator.device)
total_acc_iou = torch.zeros(2, device=accelerator.device)
if sam_help:
total_intersection_sam = torch.zeros(2, device=accelerator.device)
total_union_sam = torch.zeros(2, device=accelerator.device)
total_acc_iou_sam = torch.zeros(2, device=accelerator.device)
num_masks_in_image = len(prompts)
with torch.inference_mode():
if sam_help:
predictor.set_image(np.array(image))
for i, question in enumerate(prompts):
gt_mask = gt_masks[i].to(accelerator.device).float().contiguous()
segmentation_masks, _ = segmenter.generate_with_segmentation(image, question)
if segmentation_masks is None or len(segmentation_masks) == 0:
pred_mask = torch.zeros((h_ori, w_ori), device=accelerator.device)
else:
mask = segmentation_masks[0].to(accelerator.device)
pred_mask = F.interpolate(mask.unsqueeze(0).unsqueeze(0).double(), size=(h_ori, w_ori),
mode='nearest').squeeze()
# if accelerator.is_main_process:
# print("\n" + "=" * 20 + " DEBUG INFO (first iteration) " + "=" * 20)
# print(f"Image Name: {image_name}")
# print(f"GT Mask Shape: {gt_mask.shape}")
# print(f"GT Mask DType: {gt_mask.dtype}")
# print(f"Unique values in GT Mask: {torch.unique(gt_mask)}")
# print(f"Pred Mask Shape: {pred_mask.shape}")
# print(f"Pred Mask DType: {pred_mask.dtype}")
# # Print the number of non-zero pixels in the predicted mask to check if the model generated an all-black image
# print(f"Number of non-zero pixels in Pred Mask: {torch.count_nonzero(pred_mask)}")
# print("=" * 68)
sam_refined_mask = torch.zeros_like(pred_mask)
if sam_help:
unique_classes = torch.unique(pred_mask)
for class_id in unique_classes:
if class_id == 0: continue
binary_mask = (pred_mask == class_id).double().cpu()
try:
logits = compute_logits_from_mask(pred_mask.cpu())
point_coords, point_labels = masks_sample_points(binary_mask)
sam_mask, _, logit = predictor.predict(point_coords=point_coords,
point_labels=point_labels,
mask_input=logits, multimask_output=False)
for _ in range(2):
sam_mask, _, logit = predictor.predict(point_coords=point_coords,
point_labels=point_labels,
mask_input=logit, multimask_output=False)
sam_mask = sam_mask[0].astype(np.float32)
except Exception as E:
print(f"Error: {E}")
sam_mask = np.zeros((h_ori, w_ori))
sam_refined_mask = torch.from_numpy(sam_mask).to(accelerator.device)
# sam_refined_mask[torch.from_numpy(sam_mask[0] > 0).to(accelerator.device)] = class_id
intersection_i, union_i, _ = intersectionAndUnionGPU(pred_mask, gt_mask, 2, ignore_index=255)
total_intersection += intersection_i
total_union += union_i
iou_per_sample = intersection_i / (union_i + 1e-5)
iou_per_sample[union_i == 0] = 1.0
total_acc_iou += iou_per_sample
if sam_help:
intersection_sam_i, union_sam_i, _ = intersectionAndUnionGPU(sam_refined_mask, gt_mask, 2,
ignore_index=255)
total_intersection_sam += intersection_sam_i
total_union_sam += union_sam_i
iou_per_sample_sam = intersection_sam_i / (union_sam_i + 1e-5)
iou_per_sample_sam[union_sam_i == 0] = 1.0
total_acc_iou_sam += iou_per_sample_sam
if args.save_masks and accelerator.is_main_process:
ds_split_sanitized = args.dataset_split.replace("|", "_")
model_name = os.path.basename(args.model_path.strip('/'))
save_path = os.path.join(args.save_file, model_name, ds_split_sanitized, "masks", image_name)
if not os.path.exists(save_path): os.makedirs(save_path)
Image.fromarray(pred_mask.cpu().numpy().astype("uint8") * 255).convert('L').save(
os.path.join(save_path, f"{i}_pred_mask.png"))
if sam_help:
Image.fromarray(sam_refined_mask.cpu().numpy().astype("uint8") * 255).convert('L').save(
os.path.join(save_path, f"{i}_sam_mask.png"))
Image.fromarray(gt_mask.cpu().numpy().astype("uint8") * 255).convert('L').save(
os.path.join(save_path, f"{i}_gt_mask.png"))
image.save(os.path.join(save_path, f"{i}_image.png"))
intersection_meter.update(total_intersection.cpu().numpy())
union_meter.update(total_union.cpu().numpy())
if sam_help:
intersection_meter_sam.update(total_intersection_sam.cpu().numpy())
union_meter_sam.update(total_union_sam.cpu().numpy())
if num_masks_in_image > 0:
total_acc_iou = total_acc_iou / num_masks_in_image
acc_iou_meter.update(total_acc_iou.cpu().numpy(), n=num_masks_in_image)
if sam_help:
total_acc_iou_sam = total_acc_iou_sam / num_masks_in_image
acc_iou_meter_sam.update(total_acc_iou_sam.cpu().numpy(), n=num_masks_in_image)
# break
# --- Synchronize metrics across all processes ---
all_intersections = accelerator.gather_for_metrics(torch.from_numpy(intersection_meter.sum).to(accelerator.device))
all_unions = accelerator.gather_for_metrics(torch.from_numpy(union_meter.sum).to(accelerator.device))
all_giou_sum = accelerator.gather_for_metrics(torch.from_numpy(acc_iou_meter.sum).to(accelerator.device))
all_giou_count = accelerator.gather_for_metrics(torch.tensor(acc_iou_meter.count, device=accelerator.device))
all_intersections = all_intersections.view(-1, 2)
all_unions = all_unions.view(-1, 2)
all_giou_sum = all_giou_sum.view(-1, 2)
all_giou_count = all_giou_count.view(-1, 1)
if sam_help:
all_intersections_sam = accelerator.gather_for_metrics(
torch.from_numpy(intersection_meter_sam.sum).to(accelerator.device))
all_unions_sam = accelerator.gather_for_metrics(torch.from_numpy(union_meter_sam.sum).to(accelerator.device))
all_giou_sum_sam = accelerator.gather_for_metrics(
torch.from_numpy(acc_iou_meter_sam.sum).to(accelerator.device))
all_giou_count_sam = accelerator.gather_for_metrics(
torch.tensor(acc_iou_meter_sam.count, device=accelerator.device))
all_intersections_sam = all_intersections_sam.view(-1, 2)
all_unions_sam = all_unions_sam.view(-1, 2)
all_giou_sum_sam = all_giou_sum_sam.view(-1, 2)
all_giou_count_sam = all_giou_count_sam.view(-1, 1)
# --- Only calculate and output final results on the main process ---
if accelerator.is_main_process:
iou_class = torch.sum(all_intersections, dim=0) / (torch.sum(all_unions, dim=0) + 1e-5)
# print(all_intersections, all_unions, iou_class)
ciou = iou_class[1].item()
giou = (torch.sum(all_giou_sum, dim=0)[1] / torch.sum(all_giou_count)).item()
if sam_help:
iou_class_sam = torch.sum(all_intersections_sam, dim=0) / (torch.sum(all_unions_sam, dim=0) + 1e-5)
ciou_sam = iou_class_sam[1].item()
giou_sam = (torch.sum(all_giou_sum_sam, dim=0)[1] / torch.sum(all_giou_count_sam)).item()
else:
giou_sam, ciou_sam = 0.0, 0.0
# <--- Added: Calculate and print accurate evaluation totals ---
total_evaluated_images = len(sub_dataset) # Total images evaluated
total_evaluated_masks = torch.sum(all_giou_count).item() # Total masks/prompts evaluated
# <--- End added ---
print("\n" + "=" * 50)
print(f"Evaluation finished for: {args.model_path}")
print(f"Dataset: {args.dataset_split}")
print("-" * 50)
# <--- Added: Print evaluation sample counts ---
print(f"Total images evaluated: {total_evaluated_images}")
print(f"Total masks/prompts evaluated: {total_evaluated_masks}")
print("-" * 50)
# <--- End added ---
print(f"Raw Model Mask -> gIoU: {giou:.4f}, cIoU: {ciou:.4f}")
if sam_help:
print(f"SAM-Refined Mask -> gIoU: {giou_sam:.4f}, cIoU: {ciou_sam:.4f}")
print("=" * 50 + "\n")
# --- Dynamically construct output file path and write results ---
model_name = os.path.basename(args.model_path.strip('/'))
ds_split_sanitized = args.dataset_split.replace("|", "_")
output_dir = os.path.join(args.save_file, model_name, ds_split_sanitized)
os.makedirs(output_dir, exist_ok=True)
output_filepath = os.path.join(output_dir, "evaluation_results.txt")
current_time = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
chunk_info = f"(chunk {args.chunk_idx + 1}/{args.num_chunks})" if args.num_chunks > 1 else ""
header_text = f"[{current_time}] Model: {args.model_path}, Dataset: {args.dataset_split} {chunk_info}\n"
# <--- Added: Also record evaluation sample counts in the file ---
eval_stats_text = f" - Evaluated on {total_evaluated_images} images and {total_evaluated_masks} masks.\n"
# <--- End added ---
output_text = f" - Raw Model Mask -> gIoU: {giou:.4f}, cIoU: {ciou:.4f}\n"
if sam_help:
output_text += f" - SAM-Refined Mask -> gIoU: {giou_sam:.4f}, cIoU: {ciou_sam:.4f}\n"
with open(output_filepath, "a") as file:
file.write(header_text)
file.write(eval_stats_text) # <--- Added
file.write(output_text)
file.write("-" * 60 + "\n")
print(f"Results appended to: {output_filepath}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", type=str, default='/raid2/DATA/text4seg/model_trained_qwen_2b/',
help="Path to your GenerativeSegmenter model checkpoint.")
parser.add_argument("--sam_path", type=str, default='/efficient_sag4text/sam_vit_h_4b8939.pth', help="Path to the SAM checkpoint.")
parser.add_argument("--image_folder", type=str, default='/efficient_sag4text/seg_data/refer_seg', help="Root folder for the dataset images.")
parser.add_argument("--dataset_split", type=str, default="refcoco|unc|val", help="Dataset split to evaluate on.")
parser.add_argument("--save_file", type=str, default="output_eval_accelerated/",
help="Root directory to save evaluation outputs (masks and metrics).")
parser.add_argument("--save_masks", action='store_true', help="Set this flag to save output masks and images.")
parser.add_argument("--num_chunks", type=int, default=1)
parser.add_argument("--chunk-idx", type=int, default=0)
parser.add_argument("--min_pixels", type=int, default=1024*28 * 28, help="Minimum pixels for segmentation.")
parser.add_argument("--max_pixels", type=int, default=1024*28 * 28, help="Maximum pixels for segmentation.")
args = parser.parse_args()
eval_model(args) |