Spaces:
Running
Running
realzliu
commited on
Commit
·
7c15ab5
1
Parent(s):
2e5b533
init
Browse files- .DS_Store +0 -0
- app.py +187 -0
- eval/utils.py +347 -0
- model/modeling_qwen2_vl.py +1579 -0
- model/qwen_changes.py +433 -0
- model/segment_anything/__init__.py +10 -0
- model/segment_anything/automatic_mask_generator.py +296 -0
- model/segment_anything/build_sam.py +120 -0
- model/segment_anything/modeling/__init__.py +5 -0
- model/segment_anything/modeling/common.py +35 -0
- model/segment_anything/modeling/image_encoder.py +287 -0
- model/segment_anything/modeling/mask_decoder.py +137 -0
- model/segment_anything/modeling/prompt_encoder.py +169 -0
- model/segment_anything/modeling/sam.py +103 -0
- model/segment_anything/modeling/transformer.py +196 -0
- model/segment_anything/predictor.py +180 -0
- model/segment_anything/utils/__init__.py +0 -0
- model/segment_anything/utils/amg.py +329 -0
- model/segment_anything/utils/onnx.py +135 -0
- model/segment_anything/utils/transforms.py +93 -0
- requirements.txt +112 -0
- run_seg_ref.py +203 -0
- segment_predictor_cache.py +212 -0
.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
app.py
ADDED
|
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
import numpy as np
|
| 5 |
+
import cv2
|
| 6 |
+
import os
|
| 7 |
+
from PIL import Image
|
| 8 |
+
from huggingface_hub import hf_hub_download
|
| 9 |
+
|
| 10 |
+
# --- Import local modules (Ensure these files are uploaded to the Space) ---
|
| 11 |
+
try:
|
| 12 |
+
from segment_predictor_cache import GenerativeSegmenter
|
| 13 |
+
from model.segment_anything import sam_model_registry, SamPredictor
|
| 14 |
+
from eval.utils import compute_logits_from_mask, masks_sample_points
|
| 15 |
+
except ImportError as e:
|
| 16 |
+
raise ImportError(f"Could not import custom modules: {e}. Please ensure STAMP source code (model/, eval/, segment_predictor_cache.py) is uploaded to the Space.")
|
| 17 |
+
|
| 18 |
+
# --- Configuration ---
|
| 19 |
+
MODEL_PATH = "JiaZL/STAMP-2B-uni"
|
| 20 |
+
# Use a specific repo to download SAM weights automatically
|
| 21 |
+
SAM_REPO_ID = "HCMUE-Research/SAM-vit-h"
|
| 22 |
+
SAM_FILENAME = "sam_vit_h_4b8939.pth"
|
| 23 |
+
|
| 24 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 25 |
+
|
| 26 |
+
print(f"Running on {DEVICE}...")
|
| 27 |
+
|
| 28 |
+
# --- Load Models (Cached globally) ---
|
| 29 |
+
def load_models():
|
| 30 |
+
print(f"Loading STAMP model from {MODEL_PATH}...")
|
| 31 |
+
# Adjust min/max pixels if running into OOM on smaller GPUs
|
| 32 |
+
segmenter = GenerativeSegmenter(
|
| 33 |
+
MODEL_PATH,
|
| 34 |
+
device_map=DEVICE,
|
| 35 |
+
min_pixels=512 * 28 * 28, # Reduced slightly for Space stability
|
| 36 |
+
max_pixels=1024 * 28 * 28
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
print("Downloading and Loading SAM model...")
|
| 40 |
+
sam_checkpoint = hf_hub_download(repo_id=SAM_REPO_ID, filename=SAM_FILENAME)
|
| 41 |
+
sam = sam_model_registry["vit_h"](checkpoint=sam_checkpoint)
|
| 42 |
+
sam = sam.to(dtype=torch.float32, device=DEVICE)
|
| 43 |
+
predictor = SamPredictor(sam)
|
| 44 |
+
|
| 45 |
+
return segmenter, predictor
|
| 46 |
+
|
| 47 |
+
# Initialize models
|
| 48 |
+
segmenter, sam_predictor = load_models()
|
| 49 |
+
|
| 50 |
+
# --- Core Inference Function ---
|
| 51 |
+
def run_inference(image, query, use_sam=True):
|
| 52 |
+
if image is None:
|
| 53 |
+
return None, "Please upload an image."
|
| 54 |
+
if not query:
|
| 55 |
+
return None, "Please enter a query."
|
| 56 |
+
|
| 57 |
+
# Convert to RGB PIL Image
|
| 58 |
+
image_pil = Image.fromarray(image).convert("RGB")
|
| 59 |
+
w_ori, h_ori = image_pil.size
|
| 60 |
+
|
| 61 |
+
with torch.inference_mode():
|
| 62 |
+
# 1. Set SAM image embedding
|
| 63 |
+
if use_sam:
|
| 64 |
+
sam_predictor.set_image(np.array(image_pil))
|
| 65 |
+
|
| 66 |
+
# 2. Generate Coarse Mask using STAMP
|
| 67 |
+
print(f"Generating coarse mask for query: {query}")
|
| 68 |
+
segmentation_masks, response_text = segmenter.generate_with_segmentation(
|
| 69 |
+
image_pil, query
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
if not segmentation_masks or len(segmentation_masks) == 0:
|
| 73 |
+
return image, f"No mask generated. Model response: {response_text}"
|
| 74 |
+
|
| 75 |
+
# Extract the first mask
|
| 76 |
+
mask = segmentation_masks[0]
|
| 77 |
+
|
| 78 |
+
# Resize coarse mask to original image size
|
| 79 |
+
mask_pred = F.interpolate(
|
| 80 |
+
mask.unsqueeze(0).unsqueeze(0).double(),
|
| 81 |
+
size=(h_ori, w_ori),
|
| 82 |
+
mode='nearest'
|
| 83 |
+
).squeeze(0).squeeze(0)
|
| 84 |
+
|
| 85 |
+
# --- SAM Refinement ---
|
| 86 |
+
final_mask = np.zeros((h_ori, w_ori), dtype=np.float32)
|
| 87 |
+
|
| 88 |
+
if use_sam:
|
| 89 |
+
print("Refining mask with SAM...")
|
| 90 |
+
unique_classes = torch.unique(mask_pred)
|
| 91 |
+
|
| 92 |
+
for class_id in unique_classes:
|
| 93 |
+
if class_id == 0: continue
|
| 94 |
+
|
| 95 |
+
# Get binary mask for current class
|
| 96 |
+
binary_mask = (mask_pred == class_id).double().cpu()
|
| 97 |
+
|
| 98 |
+
try:
|
| 99 |
+
logits = compute_logits_from_mask(binary_mask)
|
| 100 |
+
point_coords, point_labels = masks_sample_points(binary_mask)
|
| 101 |
+
|
| 102 |
+
# First pass
|
| 103 |
+
sam_mask, _, logit = sam_predictor.predict(
|
| 104 |
+
point_coords=point_coords,
|
| 105 |
+
point_labels=point_labels,
|
| 106 |
+
mask_input=logits,
|
| 107 |
+
multimask_output=False
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
# Iterative refinement
|
| 111 |
+
for _ in range(2):
|
| 112 |
+
sam_mask, _, logit = sam_predictor.predict(
|
| 113 |
+
point_coords=point_coords,
|
| 114 |
+
point_labels=point_labels,
|
| 115 |
+
mask_input=logit,
|
| 116 |
+
multimask_output=False
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
current_refined_mask = sam_mask[0].astype(np.float32)
|
| 120 |
+
final_mask = np.maximum(final_mask, current_refined_mask)
|
| 121 |
+
|
| 122 |
+
except Exception as e:
|
| 123 |
+
print(f"SAM Error for class {class_id}: {e}")
|
| 124 |
+
final_mask = np.maximum(final_mask, binary_mask.numpy())
|
| 125 |
+
else:
|
| 126 |
+
final_mask = mask_pred.cpu().numpy()
|
| 127 |
+
|
| 128 |
+
# --- Visualization ---
|
| 129 |
+
# Convert mask to uint8 (0 or 255)
|
| 130 |
+
mask_uint8 = (final_mask > 0).astype(np.uint8) * 255
|
| 131 |
+
|
| 132 |
+
# Create a red overlay
|
| 133 |
+
overlay = image.copy()
|
| 134 |
+
# Paint red where mask is present
|
| 135 |
+
# Format is BGR in OpenCV if read via cv2, but Gradio sends RGB numpy array
|
| 136 |
+
# We want Red: (255, 0, 0)
|
| 137 |
+
|
| 138 |
+
# Create colored mask
|
| 139 |
+
color_mask = np.zeros_like(image)
|
| 140 |
+
color_mask[:, :, 0] = 255 # R
|
| 141 |
+
color_mask[:, :, 1] = 0 # G
|
| 142 |
+
color_mask[:, :, 2] = 0 # B
|
| 143 |
+
|
| 144 |
+
# Blend
|
| 145 |
+
alpha = 0.5
|
| 146 |
+
mask_indices = mask_uint8 > 0
|
| 147 |
+
overlay[mask_indices] = (alpha * image[mask_indices] + (1 - alpha) * color_mask[mask_indices]).astype(np.uint8)
|
| 148 |
+
|
| 149 |
+
# Alternatively, just return the raw mask or the overlay.
|
| 150 |
+
# Here we return the overlay.
|
| 151 |
+
|
| 152 |
+
return overlay, f"Success! {response_text}"
|
| 153 |
+
|
| 154 |
+
# --- Gradio Interface ---
|
| 155 |
+
with gr.Blocks(title="STAMP + SAM Segmentation Demo") as demo:
|
| 156 |
+
gr.Markdown("# STAMP + SAM: Multimodal Segmentation")
|
| 157 |
+
gr.Markdown("Upload an image and provide a text query to segment objects using STAMP-2B-uni refined by SAM.")
|
| 158 |
+
|
| 159 |
+
with gr.Row():
|
| 160 |
+
with gr.Column():
|
| 161 |
+
input_image = gr.Image(label="Input Image", type="numpy")
|
| 162 |
+
text_query = gr.Textbox(label="Text Prompt", placeholder="e.g., segment the white horse")
|
| 163 |
+
use_sam_checkbox = gr.Checkbox(label="Refine with SAM", value=True)
|
| 164 |
+
submit_btn = gr.Button("Segment", variant="primary")
|
| 165 |
+
|
| 166 |
+
with gr.Column():
|
| 167 |
+
output_image = gr.Image(label="Segmentation Result")
|
| 168 |
+
status_text = gr.Textbox(label="Status/Response", interactive=False)
|
| 169 |
+
|
| 170 |
+
submit_btn.click(
|
| 171 |
+
fn=run_inference,
|
| 172 |
+
inputs=[input_image, text_query, use_sam_checkbox],
|
| 173 |
+
outputs=[output_image, status_text]
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
# Add examples
|
| 177 |
+
gr.Examples(
|
| 178 |
+
examples=[
|
| 179 |
+
["images/horses.png", "segment the white horse", True]
|
| 180 |
+
],
|
| 181 |
+
inputs=[input_image, text_query, use_sam_checkbox],
|
| 182 |
+
fn=run_inference, # Dummy fn for cache
|
| 183 |
+
cache_examples=False # Disable cache if no GPU on build
|
| 184 |
+
)
|
| 185 |
+
|
| 186 |
+
if __name__ == "__main__":
|
| 187 |
+
demo.launch()
|
eval/utils.py
ADDED
|
@@ -0,0 +1,347 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
|
| 3 |
+
import numpy as np
|
| 4 |
+
from skimage.feature import peak_local_max
|
| 5 |
+
from skimage.filters import gaussian
|
| 6 |
+
from scipy.ndimage import distance_transform_edt
|
| 7 |
+
from .transforms import ResizeLongestSide
|
| 8 |
+
import torch
|
| 9 |
+
from enum import Enum
|
| 10 |
+
import torch.distributed as dist
|
| 11 |
+
from torchvision.ops.boxes import box_area
|
| 12 |
+
import numpy as np
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def translate_sequence(sequence_str, labels_set):
|
| 16 |
+
|
| 17 |
+
# Split the string into a list of categories
|
| 18 |
+
sequence = sequence_str.split('|')
|
| 19 |
+
|
| 20 |
+
# strip the whitespace from each category
|
| 21 |
+
sequence = [seq.strip() for seq in sequence]
|
| 22 |
+
|
| 23 |
+
# Translate the sequence using the dictionary
|
| 24 |
+
# translated_sequence = [labels_set[item] for item in sequence]
|
| 25 |
+
translated_sequence = [labels_set.get(item, 0) for item in sequence]
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
return translated_sequence
|
| 29 |
+
|
| 30 |
+
def decode_mask(encoded_str):
|
| 31 |
+
rows = encoded_str.strip("\n").split("\n ")
|
| 32 |
+
decoded_list = []
|
| 33 |
+
for row in rows:
|
| 34 |
+
tokens = row.split("| ")
|
| 35 |
+
for token in tokens:
|
| 36 |
+
label, count = token.split(" *")
|
| 37 |
+
decoded_list.extend([label] * int(count))
|
| 38 |
+
return "|".join(decoded_list)
|
| 39 |
+
|
| 40 |
+
# compute the bounding box from a mask. SAM expects the following input:
|
| 41 |
+
# box (np.ndarray or None): A length 4 array given a box prompt to the model, in XYXY format.
|
| 42 |
+
def compute_box_from_mask(mask, original_size=None, box_extension=0):
|
| 43 |
+
coords = np.where(mask == 1)
|
| 44 |
+
min_y, min_x = coords[0].min(), coords[1].min()
|
| 45 |
+
max_y, max_x = coords[0].max(), coords[1].max()
|
| 46 |
+
box = np.array([min_y, min_x, max_y + 1, max_x + 1])
|
| 47 |
+
return process_box(box, mask.shape, original_size=original_size, box_extension=box_extension)
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
# sample points from a mask. SAM expects the following point inputs:
|
| 51 |
+
def compute_points_from_mask(mask, original_size, box_extension):
|
| 52 |
+
box = compute_box_from_mask(mask, box_extension=box_extension)
|
| 53 |
+
|
| 54 |
+
# get slice and offset in python coordinate convention
|
| 55 |
+
bb = (slice(box[1], box[3]), slice(box[0], box[2]))
|
| 56 |
+
offset = np.array([box[1], box[0]])
|
| 57 |
+
|
| 58 |
+
# crop the mask and compute distances
|
| 59 |
+
cropped_mask = mask[bb]
|
| 60 |
+
inner_distances = gaussian(distance_transform_edt(cropped_mask == 1))
|
| 61 |
+
outer_distances = gaussian(distance_transform_edt(cropped_mask == 0))
|
| 62 |
+
|
| 63 |
+
# sample positives and negatives from the distance maxima
|
| 64 |
+
inner_maxima = peak_local_max(inner_distances, exclude_border=False, min_distance=3)
|
| 65 |
+
outer_maxima = peak_local_max(outer_distances, exclude_border=False, min_distance=5)
|
| 66 |
+
|
| 67 |
+
# derive the positive (=inner maxima) and negative (=outer maxima) points
|
| 68 |
+
point_coords = np.concatenate([inner_maxima, outer_maxima]).astype("float64")
|
| 69 |
+
point_coords += offset
|
| 70 |
+
|
| 71 |
+
if original_size is not None:
|
| 72 |
+
scale_factor = np.array([
|
| 73 |
+
original_size[0] / float(mask.shape[0]), original_size[1] / float(mask.shape[1])
|
| 74 |
+
])[None]
|
| 75 |
+
point_coords *= scale_factor
|
| 76 |
+
|
| 77 |
+
# get the point labels
|
| 78 |
+
point_labels = np.concatenate(
|
| 79 |
+
[
|
| 80 |
+
np.ones(len(inner_maxima), dtype="uint8"),
|
| 81 |
+
np.zeros(len(outer_maxima), dtype="uint8"),
|
| 82 |
+
]
|
| 83 |
+
)
|
| 84 |
+
return point_coords[:, ::-1], point_labels
|
| 85 |
+
|
| 86 |
+
def compute_logits_from_mask(mask, eps=1e-3):
|
| 87 |
+
|
| 88 |
+
def inv_sigmoid(x):
|
| 89 |
+
return np.log(x / (1 - x))
|
| 90 |
+
|
| 91 |
+
logits = np.zeros(mask.shape, dtype="float32")
|
| 92 |
+
logits[mask == 1] = 1
|
| 93 |
+
logits[mask == 0] = 0
|
| 94 |
+
|
| 95 |
+
# resize to the expected mask shape of SAM (256x256)
|
| 96 |
+
assert logits.ndim == 2
|
| 97 |
+
expected_shape = (256, 256)
|
| 98 |
+
|
| 99 |
+
if logits.shape == expected_shape: # shape matches, do nothing
|
| 100 |
+
pass
|
| 101 |
+
|
| 102 |
+
elif logits.shape[0] == logits.shape[1]: # shape is square
|
| 103 |
+
trafo = ResizeLongestSide(expected_shape[0])
|
| 104 |
+
logits = trafo.apply_image(logits[..., None])
|
| 105 |
+
|
| 106 |
+
else: # shape is not square
|
| 107 |
+
# resize the longest side to expected shape
|
| 108 |
+
trafo = ResizeLongestSide(expected_shape[0])
|
| 109 |
+
logits = trafo.apply_image(logits[..., None])
|
| 110 |
+
|
| 111 |
+
# pad the other side
|
| 112 |
+
h, w = logits.shape
|
| 113 |
+
padh = expected_shape[0] - h
|
| 114 |
+
padw = expected_shape[1] - w
|
| 115 |
+
# IMPORTANT: need to pad with zero, otherwise SAM doesn't understand the padding
|
| 116 |
+
pad_width = ((0, padh), (0, padw))
|
| 117 |
+
logits = np.pad(logits, pad_width, mode="constant", constant_values=-1)
|
| 118 |
+
|
| 119 |
+
logits = logits / 255.0
|
| 120 |
+
logits[logits >= 1] = 1 - eps
|
| 121 |
+
logits[logits == 0] = eps
|
| 122 |
+
logits[logits == -1] = 0
|
| 123 |
+
# print(logits)
|
| 124 |
+
logits = inv_sigmoid(logits)
|
| 125 |
+
|
| 126 |
+
logits = logits[None]
|
| 127 |
+
assert logits.shape == (1, 256, 256), f"{logits.shape}"
|
| 128 |
+
return logits
|
| 129 |
+
|
| 130 |
+
def process_box(box, shape, original_size=None, box_extension=0):
|
| 131 |
+
if box_extension == 0: # no extension
|
| 132 |
+
extension_y, extension_x = 0, 0
|
| 133 |
+
elif box_extension >= 1: # extension by a fixed factor
|
| 134 |
+
extension_y, extension_x = box_extension, box_extension
|
| 135 |
+
else: # extension by fraction of the box len
|
| 136 |
+
len_y, len_x = box[2] - box[0], box[3] - box[1]
|
| 137 |
+
extension_y, extension_x = box_extension * len_y, box_extension * len_x
|
| 138 |
+
|
| 139 |
+
box = np.array([
|
| 140 |
+
max(box[1] - extension_x, 0), max(box[0] - extension_y, 0),
|
| 141 |
+
min(box[3] + extension_x, shape[1]), min(box[2] + extension_y, shape[0]),
|
| 142 |
+
])
|
| 143 |
+
|
| 144 |
+
if original_size is not None:
|
| 145 |
+
trafo = ResizeLongestSide(max(original_size))
|
| 146 |
+
box = trafo.apply_boxes(box[None], (256, 256)).squeeze()
|
| 147 |
+
return box
|
| 148 |
+
|
| 149 |
+
def masks_sample_points(masks):
|
| 150 |
+
"""Sample points on mask
|
| 151 |
+
"""
|
| 152 |
+
masks = masks.unsqueeze(0)
|
| 153 |
+
if masks.numel() == 0:
|
| 154 |
+
return torch.zeros((0, 2), device=masks.device)
|
| 155 |
+
|
| 156 |
+
h, w = masks.shape[-2:]
|
| 157 |
+
|
| 158 |
+
y = torch.arange(0, h, dtype=torch.float)
|
| 159 |
+
x = torch.arange(0, w, dtype=torch.float)
|
| 160 |
+
y, x = torch.meshgrid(y, x)
|
| 161 |
+
y = y.to(masks)
|
| 162 |
+
x = x.to(masks)
|
| 163 |
+
|
| 164 |
+
k = np.random.randint(10, 11)
|
| 165 |
+
samples_pos = []
|
| 166 |
+
for b_i in range(len(masks)):
|
| 167 |
+
select_mask = (masks[b_i] > 0.5)
|
| 168 |
+
x_idx = torch.masked_select(x, select_mask)
|
| 169 |
+
y_idx = torch.masked_select(y, select_mask)
|
| 170 |
+
|
| 171 |
+
perm = torch.randperm(x_idx.size(0))
|
| 172 |
+
idx = perm[:k]
|
| 173 |
+
samples_x = x_idx[idx]
|
| 174 |
+
samples_y = y_idx[idx]
|
| 175 |
+
samples_xy = torch.cat((samples_x[:, None], samples_y[:, None]), dim=1)
|
| 176 |
+
samples_pos.append(samples_xy)
|
| 177 |
+
|
| 178 |
+
samples_pos = torch.cat(samples_pos)
|
| 179 |
+
|
| 180 |
+
k = np.random.randint(10, 11)
|
| 181 |
+
samples_neg = []
|
| 182 |
+
for b_i in range(len(masks)):
|
| 183 |
+
select_mask = (masks[b_i] < 0.5)
|
| 184 |
+
x_idx = torch.masked_select(x, select_mask)
|
| 185 |
+
y_idx = torch.masked_select(y, select_mask)
|
| 186 |
+
|
| 187 |
+
perm = torch.randperm(x_idx.size(0))
|
| 188 |
+
idx = perm[:k]
|
| 189 |
+
samples_x = x_idx[idx]
|
| 190 |
+
samples_y = y_idx[idx]
|
| 191 |
+
samples_xy = torch.cat((samples_x[:, None], samples_y[:, None]), dim=1)
|
| 192 |
+
samples_neg.append(samples_xy)
|
| 193 |
+
|
| 194 |
+
samples_neg = torch.cat(samples_neg)
|
| 195 |
+
|
| 196 |
+
# get the point labels
|
| 197 |
+
point_labels = np.concatenate(
|
| 198 |
+
[
|
| 199 |
+
np.ones(len(samples_pos), dtype="uint8"),
|
| 200 |
+
np.zeros(len(samples_neg), dtype="uint8"),
|
| 201 |
+
], axis=0
|
| 202 |
+
)
|
| 203 |
+
point_coords = np.concatenate([samples_pos, samples_neg], axis=0).astype("float64")
|
| 204 |
+
|
| 205 |
+
return point_coords, point_labels
|
| 206 |
+
|
| 207 |
+
def masks_to_boxes(masks):
|
| 208 |
+
"""Compute the bounding boxes around the provided masks
|
| 209 |
+
|
| 210 |
+
The masks should be in format [N, H, W] where N is the number of masks, (H, W) are the spatial dimensions.
|
| 211 |
+
|
| 212 |
+
Returns a [N, 4] tensors, with the boxes in xyxy format
|
| 213 |
+
"""
|
| 214 |
+
if masks.numel() == 0:
|
| 215 |
+
return torch.zeros((0, 4), device=masks.device)
|
| 216 |
+
|
| 217 |
+
h, w = masks.shape[-2:]
|
| 218 |
+
|
| 219 |
+
y = torch.arange(0, h, dtype=torch.float)
|
| 220 |
+
x = torch.arange(0, w, dtype=torch.float)
|
| 221 |
+
y, x = torch.meshgrid(y, x)
|
| 222 |
+
|
| 223 |
+
x_mask = (masks * x.unsqueeze(0))
|
| 224 |
+
x_max = x_mask.flatten(1).max(-1)[0]
|
| 225 |
+
x_min = x_mask.masked_fill(~(masks.bool()), 1e8).flatten(1).min(-1)[0]
|
| 226 |
+
|
| 227 |
+
y_mask = (masks * y.unsqueeze(0))
|
| 228 |
+
y_max = y_mask.flatten(1).max(-1)[0]
|
| 229 |
+
y_min = y_mask.masked_fill(~(masks.bool()), 1e8).flatten(1).min(-1)[0]
|
| 230 |
+
|
| 231 |
+
return torch.stack([x_min, y_min, x_max, y_max], 1)
|
| 232 |
+
|
| 233 |
+
def box_iou(boxes1, boxes2):
|
| 234 |
+
area1 = box_area(boxes1)
|
| 235 |
+
area2 = box_area(boxes2)
|
| 236 |
+
|
| 237 |
+
lt = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2]
|
| 238 |
+
rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2]
|
| 239 |
+
|
| 240 |
+
wh = (rb - lt).clamp(min=0) # [N,M,2]
|
| 241 |
+
inter = wh[:, :, 0] * wh[:, :, 1] # [N,M]
|
| 242 |
+
|
| 243 |
+
union = area1[:, None] + area2 - inter
|
| 244 |
+
|
| 245 |
+
iou = inter / union
|
| 246 |
+
return iou, union
|
| 247 |
+
|
| 248 |
+
|
| 249 |
+
def show_points(coords, labels, ax, marker_size=375):
|
| 250 |
+
pos_points = coords[labels == 1]
|
| 251 |
+
neg_points = coords[labels == 0]
|
| 252 |
+
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white',
|
| 253 |
+
linewidth=1.25)
|
| 254 |
+
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white',
|
| 255 |
+
linewidth=1.25)
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
def show_box(box, ax):
|
| 259 |
+
x0, y0 = box[0], box[1]
|
| 260 |
+
w, h = box[2] - box[0], box[3] - box[1]
|
| 261 |
+
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0, 0, 0, 0), lw=2))
|
| 262 |
+
|
| 263 |
+
|
| 264 |
+
class Summary(Enum):
|
| 265 |
+
NONE = 0
|
| 266 |
+
AVERAGE = 1
|
| 267 |
+
SUM = 2
|
| 268 |
+
COUNT = 3
|
| 269 |
+
|
| 270 |
+
|
| 271 |
+
class AverageMeter(object):
|
| 272 |
+
"""Computes and stores the average and current value"""
|
| 273 |
+
|
| 274 |
+
def __init__(self, name, fmt=":f", summary_type=Summary.AVERAGE):
|
| 275 |
+
self.name = name
|
| 276 |
+
self.fmt = fmt
|
| 277 |
+
self.summary_type = summary_type
|
| 278 |
+
self.reset()
|
| 279 |
+
|
| 280 |
+
def reset(self):
|
| 281 |
+
self.val = 0
|
| 282 |
+
self.avg = 0
|
| 283 |
+
self.sum = 0
|
| 284 |
+
self.count = 0
|
| 285 |
+
|
| 286 |
+
def update(self, val, n=1):
|
| 287 |
+
self.val = val
|
| 288 |
+
self.sum += val * n
|
| 289 |
+
self.count += n
|
| 290 |
+
self.avg = self.sum / self.count
|
| 291 |
+
|
| 292 |
+
def all_reduce(self):
|
| 293 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 294 |
+
if isinstance(self.sum, np.ndarray):
|
| 295 |
+
total = torch.tensor(
|
| 296 |
+
self.sum.tolist()
|
| 297 |
+
+ [
|
| 298 |
+
self.count,
|
| 299 |
+
],
|
| 300 |
+
dtype=torch.float32,
|
| 301 |
+
device=device,
|
| 302 |
+
)
|
| 303 |
+
else:
|
| 304 |
+
total = torch.tensor(
|
| 305 |
+
[self.sum, self.count], dtype=torch.float32, device=device
|
| 306 |
+
)
|
| 307 |
+
|
| 308 |
+
dist.all_reduce(total, dist.ReduceOp.SUM, async_op=False)
|
| 309 |
+
if total.shape[0] > 2:
|
| 310 |
+
self.sum, self.count = total[:-1].cpu().numpy(), total[-1].cpu().item()
|
| 311 |
+
else:
|
| 312 |
+
self.sum, self.count = total.tolist()
|
| 313 |
+
self.avg = self.sum / (self.count + 1e-5)
|
| 314 |
+
|
| 315 |
+
def __str__(self):
|
| 316 |
+
fmtstr = "{name} {val" + self.fmt + "} ({avg" + self.fmt + "})"
|
| 317 |
+
return fmtstr.format(**self.__dict__)
|
| 318 |
+
|
| 319 |
+
def summary(self):
|
| 320 |
+
fmtstr = ""
|
| 321 |
+
if self.summary_type is Summary.NONE:
|
| 322 |
+
fmtstr = ""
|
| 323 |
+
elif self.summary_type is Summary.AVERAGE:
|
| 324 |
+
fmtstr = "{name} {avg:.3f}"
|
| 325 |
+
elif self.summary_type is Summary.SUM:
|
| 326 |
+
fmtstr = "{name} {sum:.3f}"
|
| 327 |
+
elif self.summary_type is Summary.COUNT:
|
| 328 |
+
fmtstr = "{name} {count:.3f}"
|
| 329 |
+
else:
|
| 330 |
+
raise ValueError("invalid summary type %r" % self.summary_type)
|
| 331 |
+
|
| 332 |
+
return fmtstr.format(**self.__dict__)
|
| 333 |
+
|
| 334 |
+
|
| 335 |
+
def intersectionAndUnionGPU(output, target, K, ignore_index=255):
|
| 336 |
+
# 'K' classes, output and target sizes are N or N * L or N * H * W, each value in range 0 to K - 1.
|
| 337 |
+
assert output.dim() in [1, 2, 3]
|
| 338 |
+
assert output.shape == target.shape
|
| 339 |
+
output = output.view(-1)
|
| 340 |
+
target = target.view(-1)
|
| 341 |
+
output[target == ignore_index] = ignore_index
|
| 342 |
+
intersection = output[output == target]
|
| 343 |
+
area_intersection = torch.histc(intersection, bins=K, min=0, max=K - 1)
|
| 344 |
+
area_output = torch.histc(output, bins=K, min=0, max=K - 1)
|
| 345 |
+
area_target = torch.histc(target, bins=K, min=0, max=K - 1)
|
| 346 |
+
area_union = area_output + area_target - area_intersection
|
| 347 |
+
return area_intersection, area_union, area_target
|
model/modeling_qwen2_vl.py
ADDED
|
@@ -0,0 +1,1579 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from dataclasses import dataclass
|
| 2 |
+
from typing import Any, Callable, Optional, Union
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
import torch.nn.functional as F
|
| 7 |
+
import torch.utils.checkpoint
|
| 8 |
+
from torch.nn import LayerNorm
|
| 9 |
+
|
| 10 |
+
from transformers.activations import ACT2FN
|
| 11 |
+
from transformers.cache_utils import Cache, DynamicCache
|
| 12 |
+
from transformers.generation import GenerationMixin
|
| 13 |
+
from transformers.masking_utils import create_causal_mask, create_sliding_window_causal_mask
|
| 14 |
+
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
|
| 15 |
+
from transformers.modeling_layers import GradientCheckpointingLayer
|
| 16 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, ModelOutput
|
| 17 |
+
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
|
| 18 |
+
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
| 19 |
+
from transformers.processing_utils import Unpack
|
| 20 |
+
from transformers.utils import (
|
| 21 |
+
TransformersKwargs,
|
| 22 |
+
auto_docstring,
|
| 23 |
+
can_return_tuple,
|
| 24 |
+
is_torchdynamo_compiling,
|
| 25 |
+
logging,
|
| 26 |
+
)
|
| 27 |
+
from transformers.utils.deprecation import deprecate_kwarg
|
| 28 |
+
from transformers.models.qwen2.modeling_qwen2 import (
|
| 29 |
+
Qwen2RMSNorm,
|
| 30 |
+
)
|
| 31 |
+
from transformers.models.qwen2_vl.configuration_qwen2_vl import Qwen2VLConfig, Qwen2VLTextConfig, Qwen2VLVisionConfig
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
logger = logging.get_logger(__name__)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
@dataclass
|
| 38 |
+
@auto_docstring(
|
| 39 |
+
custom_intro="""
|
| 40 |
+
Base class for Llava outputs, with hidden states and attentions.
|
| 41 |
+
"""
|
| 42 |
+
)
|
| 43 |
+
class Qwen2VLModelOutputWithPast(ModelOutput):
|
| 44 |
+
r"""
|
| 45 |
+
past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
| 46 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
| 47 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
| 48 |
+
|
| 49 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
| 50 |
+
`past_key_values` input) to speed up sequential decoding.
|
| 51 |
+
rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
|
| 52 |
+
The rope index difference between sequence length and multimodal rope.
|
| 53 |
+
"""
|
| 54 |
+
|
| 55 |
+
last_hidden_state: torch.FloatTensor = None
|
| 56 |
+
past_key_values: Optional[list[torch.FloatTensor]] = None
|
| 57 |
+
hidden_states: Optional[tuple[torch.FloatTensor]] = None
|
| 58 |
+
attentions: Optional[tuple[torch.FloatTensor]] = None
|
| 59 |
+
rope_deltas: Optional[torch.LongTensor] = None
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
@dataclass
|
| 63 |
+
@auto_docstring(
|
| 64 |
+
custom_intro="""
|
| 65 |
+
Base class for Qwen2VL causal language model (or autoregressive) outputs.
|
| 66 |
+
"""
|
| 67 |
+
)
|
| 68 |
+
class Qwen2VLCausalLMOutputWithPast(ModelOutput):
|
| 69 |
+
r"""
|
| 70 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
| 71 |
+
Language modeling loss (for next-token prediction).
|
| 72 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
| 73 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
| 74 |
+
past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
| 75 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
| 76 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
| 77 |
+
|
| 78 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
| 79 |
+
`past_key_values` input) to speed up sequential decoding.
|
| 80 |
+
rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
|
| 81 |
+
The rope index difference between sequence length and multimodal rope.
|
| 82 |
+
"""
|
| 83 |
+
|
| 84 |
+
loss: Optional[torch.FloatTensor] = None
|
| 85 |
+
logits: Optional[torch.FloatTensor] = None
|
| 86 |
+
past_key_values: Optional[list[torch.FloatTensor]] = None
|
| 87 |
+
hidden_states: Optional[tuple[torch.FloatTensor]] = None
|
| 88 |
+
attentions: Optional[tuple[torch.FloatTensor]] = None
|
| 89 |
+
rope_deltas: Optional[torch.LongTensor] = None
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
class Qwen2VLRotaryEmbedding(nn.Module):
|
| 93 |
+
inv_freq: torch.Tensor # fix linting for `register_buffer`
|
| 94 |
+
|
| 95 |
+
def __init__(self, config: Qwen2VLTextConfig, device=None):
|
| 96 |
+
super().__init__()
|
| 97 |
+
# BC: "rope_type" was originally "type"
|
| 98 |
+
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
|
| 99 |
+
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
| 100 |
+
else:
|
| 101 |
+
self.rope_type = "default"
|
| 102 |
+
self.max_seq_len_cached = config.max_position_embeddings
|
| 103 |
+
self.original_max_seq_len = config.max_position_embeddings
|
| 104 |
+
|
| 105 |
+
self.config = config
|
| 106 |
+
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
| 107 |
+
|
| 108 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
|
| 109 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 110 |
+
self.original_inv_freq = self.inv_freq
|
| 111 |
+
|
| 112 |
+
@torch.no_grad()
|
| 113 |
+
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
|
| 114 |
+
def forward(self, x, position_ids):
|
| 115 |
+
# In contrast to other models, Qwen2_VL has different position ids for the grids
|
| 116 |
+
# So we expand the inv_freq to shape (3, ...)
|
| 117 |
+
inv_freq_expanded = self.inv_freq[None, None, :, None].float().expand(3, position_ids.shape[1], -1, 1)
|
| 118 |
+
position_ids_expanded = position_ids[:, :, None, :].float() # shape (3, bs, 1, positions)
|
| 119 |
+
|
| 120 |
+
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
|
| 121 |
+
with torch.autocast(device_type=device_type, enabled=False): # Force float32
|
| 122 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(2, 3)
|
| 123 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 124 |
+
cos = emb.cos() * self.attention_scaling
|
| 125 |
+
sin = emb.sin() * self.attention_scaling
|
| 126 |
+
|
| 127 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
def rotate_half(x):
|
| 131 |
+
"""Rotates half the hidden dims of the input."""
|
| 132 |
+
x1 = x[..., : x.shape[-1] // 2]
|
| 133 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
| 134 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
def apply_multimodal_rotary_pos_emb(q, k, cos, sin, mrope_section, unsqueeze_dim=1):
|
| 138 |
+
"""Applies Rotary Position Embedding with Multimodal Sections to the query and key tensors
|
| 139 |
+
|
| 140 |
+
Explanation:
|
| 141 |
+
Multimodal 3D rotary position embedding is an extension to 1D rotary position embedding. The input embedding
|
| 142 |
+
sequence contains vision (images / videos) embedding and text embedding or just contains text embedding. For
|
| 143 |
+
vision embedding part, we apply rotary position embedding on temporal, height and width dimension separately.
|
| 144 |
+
Here we split the channel dimension to 3 chunks for the temporal, height and width rotary position embedding.
|
| 145 |
+
For text embedding part, we just apply 1D rotary position embedding. The three rotary position index (temporal,
|
| 146 |
+
height and width) of text embedding is always the same, so the text embedding rotary position embedding has no
|
| 147 |
+
difference with modern LLMs.
|
| 148 |
+
|
| 149 |
+
Args:
|
| 150 |
+
q (`torch.Tensor`): The query tensor.
|
| 151 |
+
k (`torch.Tensor`): The key tensor.
|
| 152 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
| 153 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
| 154 |
+
position_ids (`torch.Tensor`):
|
| 155 |
+
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
|
| 156 |
+
used to pass offsetted position ids when working with a KV-cache.
|
| 157 |
+
mrope_section(`List(int)`):
|
| 158 |
+
Multimodal rope section is for channel dimension of temporal, height and width in rope calculation.
|
| 159 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
| 160 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
| 161 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
| 162 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
| 163 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
| 164 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
| 165 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
| 166 |
+
Returns:
|
| 167 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
| 168 |
+
"""
|
| 169 |
+
mrope_section = mrope_section * 2
|
| 170 |
+
cos = torch.cat([m[i % 3] for i, m in enumerate(cos.split(mrope_section, dim=-1))], dim=-1).unsqueeze(
|
| 171 |
+
unsqueeze_dim
|
| 172 |
+
)
|
| 173 |
+
sin = torch.cat([m[i % 3] for i, m in enumerate(sin.split(mrope_section, dim=-1))], dim=-1).unsqueeze(
|
| 174 |
+
unsqueeze_dim
|
| 175 |
+
)
|
| 176 |
+
|
| 177 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 178 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 179 |
+
return q_embed, k_embed
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
def apply_rotary_pos_emb_vision(
|
| 183 |
+
q: torch.Tensor, k: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor
|
| 184 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
| 185 |
+
orig_q_dtype = q.dtype
|
| 186 |
+
orig_k_dtype = k.dtype
|
| 187 |
+
q, k = q.float(), k.float()
|
| 188 |
+
cos, sin = cos.unsqueeze(-2).float(), sin.unsqueeze(-2).float()
|
| 189 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 190 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 191 |
+
q_embed = q_embed.to(orig_q_dtype)
|
| 192 |
+
k_embed = k_embed.to(orig_k_dtype)
|
| 193 |
+
return q_embed, k_embed
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
class VisionRotaryEmbedding(nn.Module):
|
| 197 |
+
inv_freq: torch.Tensor # fix linting for `register_buffer`
|
| 198 |
+
|
| 199 |
+
def __init__(self, dim: int, theta: float = 10000.0) -> None:
|
| 200 |
+
super().__init__()
|
| 201 |
+
inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim))
|
| 202 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 203 |
+
|
| 204 |
+
def forward(self, seqlen: int) -> torch.Tensor:
|
| 205 |
+
seq = torch.arange(seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
|
| 206 |
+
freqs = torch.outer(seq, self.inv_freq)
|
| 207 |
+
return freqs
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
class PatchEmbed(nn.Module):
|
| 211 |
+
def __init__(
|
| 212 |
+
self,
|
| 213 |
+
patch_size: int = 14,
|
| 214 |
+
temporal_patch_size: int = 2,
|
| 215 |
+
in_channels: int = 3,
|
| 216 |
+
embed_dim: int = 1152,
|
| 217 |
+
) -> None:
|
| 218 |
+
super().__init__()
|
| 219 |
+
self.patch_size = patch_size
|
| 220 |
+
self.temporal_patch_size = temporal_patch_size
|
| 221 |
+
self.in_channels = in_channels
|
| 222 |
+
self.embed_dim = embed_dim
|
| 223 |
+
|
| 224 |
+
kernel_size = [temporal_patch_size, patch_size, patch_size]
|
| 225 |
+
self.proj = nn.Conv3d(in_channels, embed_dim, kernel_size=kernel_size, stride=kernel_size, bias=False)
|
| 226 |
+
|
| 227 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 228 |
+
target_dtype = self.proj.weight.dtype
|
| 229 |
+
hidden_states = hidden_states.view(
|
| 230 |
+
-1, self.in_channels, self.temporal_patch_size, self.patch_size, self.patch_size
|
| 231 |
+
)
|
| 232 |
+
hidden_states = self.proj(hidden_states.to(dtype=target_dtype)).view(-1, self.embed_dim)
|
| 233 |
+
return hidden_states
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
class PatchMerger(nn.Module):
|
| 237 |
+
def __init__(self, dim: int, context_dim: int, spatial_merge_size: int = 2) -> None:
|
| 238 |
+
super().__init__()
|
| 239 |
+
self.hidden_size = context_dim * (spatial_merge_size**2)
|
| 240 |
+
self.ln_q = LayerNorm(context_dim, eps=1e-6)
|
| 241 |
+
self.mlp = nn.Sequential(
|
| 242 |
+
nn.Linear(self.hidden_size, self.hidden_size),
|
| 243 |
+
nn.GELU(),
|
| 244 |
+
nn.Linear(self.hidden_size, dim),
|
| 245 |
+
)
|
| 246 |
+
|
| 247 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 248 |
+
x = self.mlp(self.ln_q(x).view(-1, self.hidden_size))
|
| 249 |
+
return x
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
class VisionMlp(nn.Module):
|
| 253 |
+
def __init__(self, dim: int, hidden_dim: int, hidden_act: str) -> None:
|
| 254 |
+
super().__init__()
|
| 255 |
+
self.fc1 = nn.Linear(dim, hidden_dim)
|
| 256 |
+
self.act = ACT2FN[hidden_act]
|
| 257 |
+
self.fc2 = nn.Linear(hidden_dim, dim)
|
| 258 |
+
|
| 259 |
+
def forward(self, x) -> torch.Tensor:
|
| 260 |
+
return self.fc2(self.act(self.fc1(x)))
|
| 261 |
+
|
| 262 |
+
|
| 263 |
+
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
| 264 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
| 265 |
+
"""
|
| 266 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
| 267 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
| 268 |
+
"""
|
| 269 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
| 270 |
+
if n_rep == 1:
|
| 271 |
+
return hidden_states
|
| 272 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
| 273 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 274 |
+
|
| 275 |
+
|
| 276 |
+
def eager_attention_forward(
|
| 277 |
+
module: nn.Module,
|
| 278 |
+
query: torch.Tensor,
|
| 279 |
+
key: torch.Tensor,
|
| 280 |
+
value: torch.Tensor,
|
| 281 |
+
attention_mask: Optional[torch.Tensor],
|
| 282 |
+
scaling: float,
|
| 283 |
+
dropout: float = 0.0,
|
| 284 |
+
**kwargs,
|
| 285 |
+
):
|
| 286 |
+
key_states = repeat_kv(key, module.num_key_value_groups)
|
| 287 |
+
value_states = repeat_kv(value, module.num_key_value_groups)
|
| 288 |
+
|
| 289 |
+
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
|
| 290 |
+
if attention_mask is not None:
|
| 291 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
| 292 |
+
attn_weights = attn_weights + causal_mask
|
| 293 |
+
|
| 294 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
|
| 295 |
+
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
|
| 296 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
| 297 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 298 |
+
|
| 299 |
+
return attn_output, attn_weights
|
| 300 |
+
|
| 301 |
+
|
| 302 |
+
class VisionAttention(nn.Module):
|
| 303 |
+
def __init__(self, config: Qwen2VLVisionConfig) -> None:
|
| 304 |
+
super().__init__()
|
| 305 |
+
self.dim = config.embed_dim
|
| 306 |
+
self.num_heads = config.num_heads
|
| 307 |
+
self.head_dim = self.dim // self.num_heads
|
| 308 |
+
self.num_key_value_groups = 1 # needed for eager attention
|
| 309 |
+
self.qkv = nn.Linear(self.dim, self.dim * 3, bias=True)
|
| 310 |
+
self.proj = nn.Linear(self.dim, self.dim)
|
| 311 |
+
self.scaling = self.head_dim**-0.5
|
| 312 |
+
self.config = config
|
| 313 |
+
self.attention_dropout = 0.0
|
| 314 |
+
self.is_causal = False
|
| 315 |
+
|
| 316 |
+
def forward(
|
| 317 |
+
self,
|
| 318 |
+
hidden_states: torch.Tensor,
|
| 319 |
+
cu_seqlens: torch.Tensor,
|
| 320 |
+
rotary_pos_emb: Optional[torch.Tensor] = None,
|
| 321 |
+
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None,
|
| 322 |
+
**kwargs,
|
| 323 |
+
) -> torch.Tensor:
|
| 324 |
+
seq_length = hidden_states.shape[0]
|
| 325 |
+
query_states, key_states, value_states = (
|
| 326 |
+
self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
|
| 327 |
+
)
|
| 328 |
+
if position_embeddings is None:
|
| 329 |
+
logger.warning_once(
|
| 330 |
+
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
|
| 331 |
+
"through `rotary_pos_emb` (2D tensor of RoPE theta values), to using externally computed "
|
| 332 |
+
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.54 `rotary_pos_emb` will be "
|
| 333 |
+
"removed and `position_embeddings` will be mandatory."
|
| 334 |
+
)
|
| 335 |
+
emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1)
|
| 336 |
+
cos = emb.cos()
|
| 337 |
+
sin = emb.sin()
|
| 338 |
+
else:
|
| 339 |
+
cos, sin = position_embeddings
|
| 340 |
+
query_states, key_states = apply_rotary_pos_emb_vision(query_states, key_states, cos, sin)
|
| 341 |
+
|
| 342 |
+
query_states = query_states.transpose(0, 1).unsqueeze(0)
|
| 343 |
+
key_states = key_states.transpose(0, 1).unsqueeze(0)
|
| 344 |
+
value_states = value_states.transpose(0, 1).unsqueeze(0)
|
| 345 |
+
|
| 346 |
+
attention_interface: Callable = eager_attention_forward
|
| 347 |
+
if self.config._attn_implementation != "eager":
|
| 348 |
+
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
| 349 |
+
|
| 350 |
+
if self.config._attn_implementation == "flash_attention_2":
|
| 351 |
+
# Flash Attention 2: Use cu_seqlens for variable length attention
|
| 352 |
+
max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max()
|
| 353 |
+
attn_output, _ = attention_interface(
|
| 354 |
+
self,
|
| 355 |
+
query_states,
|
| 356 |
+
key_states,
|
| 357 |
+
value_states,
|
| 358 |
+
attention_mask=None,
|
| 359 |
+
scaling=self.scaling,
|
| 360 |
+
dropout=0.0 if not self.training else self.attention_dropout,
|
| 361 |
+
cu_seq_lens_q=cu_seqlens,
|
| 362 |
+
cu_seq_lens_k=cu_seqlens,
|
| 363 |
+
max_length_q=max_seqlen,
|
| 364 |
+
max_length_k=max_seqlen,
|
| 365 |
+
is_causal=False,
|
| 366 |
+
**kwargs,
|
| 367 |
+
)
|
| 368 |
+
else:
|
| 369 |
+
# Other implementations: Process each chunk separately
|
| 370 |
+
lengths = cu_seqlens[1:] - cu_seqlens[:-1]
|
| 371 |
+
splits = [
|
| 372 |
+
torch.split(tensor, lengths.tolist(), dim=2) for tensor in (query_states, key_states, value_states)
|
| 373 |
+
]
|
| 374 |
+
|
| 375 |
+
attn_outputs = [
|
| 376 |
+
attention_interface(
|
| 377 |
+
self,
|
| 378 |
+
q,
|
| 379 |
+
k,
|
| 380 |
+
v,
|
| 381 |
+
attention_mask=None,
|
| 382 |
+
scaling=self.scaling,
|
| 383 |
+
dropout=0.0 if not self.training else self.attention_dropout,
|
| 384 |
+
is_causal=False,
|
| 385 |
+
**kwargs,
|
| 386 |
+
)[0]
|
| 387 |
+
for q, k, v in zip(*splits)
|
| 388 |
+
]
|
| 389 |
+
attn_output = torch.cat(attn_outputs, dim=1)
|
| 390 |
+
|
| 391 |
+
attn_output = attn_output.reshape(seq_length, -1).contiguous()
|
| 392 |
+
attn_output = self.proj(attn_output)
|
| 393 |
+
return attn_output
|
| 394 |
+
|
| 395 |
+
|
| 396 |
+
class Qwen2VLVisionBlock(GradientCheckpointingLayer):
|
| 397 |
+
def __init__(self, config, attn_implementation: str = "sdpa") -> None:
|
| 398 |
+
super().__init__()
|
| 399 |
+
self.norm1 = LayerNorm(config.embed_dim, eps=1e-6)
|
| 400 |
+
self.norm2 = LayerNorm(config.embed_dim, eps=1e-6)
|
| 401 |
+
mlp_hidden_dim = int(config.embed_dim * config.mlp_ratio)
|
| 402 |
+
|
| 403 |
+
self.attn = VisionAttention(config=config)
|
| 404 |
+
self.mlp = VisionMlp(dim=config.embed_dim, hidden_dim=mlp_hidden_dim, hidden_act=config.hidden_act)
|
| 405 |
+
|
| 406 |
+
def forward(
|
| 407 |
+
self,
|
| 408 |
+
hidden_states: torch.Tensor,
|
| 409 |
+
cu_seqlens: torch.Tensor,
|
| 410 |
+
rotary_pos_emb: Optional[torch.Tensor] = None,
|
| 411 |
+
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None,
|
| 412 |
+
**kwargs,
|
| 413 |
+
) -> torch.Tensor:
|
| 414 |
+
hidden_states = hidden_states + self.attn(
|
| 415 |
+
self.norm1(hidden_states),
|
| 416 |
+
cu_seqlens=cu_seqlens,
|
| 417 |
+
rotary_pos_emb=rotary_pos_emb,
|
| 418 |
+
position_embeddings=position_embeddings,
|
| 419 |
+
**kwargs,
|
| 420 |
+
)
|
| 421 |
+
hidden_states = hidden_states + self.mlp(self.norm2(hidden_states))
|
| 422 |
+
return hidden_states
|
| 423 |
+
|
| 424 |
+
|
| 425 |
+
# Copied from transformers.models.qwen2.modeling_qwen2.Qwen2MLP
|
| 426 |
+
class Qwen2MLP(nn.Module):
|
| 427 |
+
def __init__(self, config):
|
| 428 |
+
super().__init__()
|
| 429 |
+
self.config = config
|
| 430 |
+
self.hidden_size = config.hidden_size
|
| 431 |
+
self.intermediate_size = config.intermediate_size
|
| 432 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 433 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 434 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
| 435 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
| 436 |
+
|
| 437 |
+
def forward(self, x):
|
| 438 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
| 439 |
+
return down_proj
|
| 440 |
+
|
| 441 |
+
|
| 442 |
+
class Qwen2VLAttention(nn.Module):
|
| 443 |
+
"""
|
| 444 |
+
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
|
| 445 |
+
and "Generating Long Sequences with Sparse Transformers".
|
| 446 |
+
"""
|
| 447 |
+
|
| 448 |
+
def __init__(self, config: Qwen2VLTextConfig, layer_idx: Optional[int] = None):
|
| 449 |
+
super().__init__()
|
| 450 |
+
self.config = config
|
| 451 |
+
self.layer_idx = layer_idx
|
| 452 |
+
if layer_idx is None:
|
| 453 |
+
logger.warning_once(
|
| 454 |
+
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
|
| 455 |
+
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
|
| 456 |
+
"when creating this class."
|
| 457 |
+
)
|
| 458 |
+
|
| 459 |
+
self.hidden_size = config.hidden_size
|
| 460 |
+
self.num_heads = config.num_attention_heads
|
| 461 |
+
self.head_dim = self.hidden_size // self.num_heads
|
| 462 |
+
self.num_key_value_heads = config.num_key_value_heads
|
| 463 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
| 464 |
+
self.is_causal = True
|
| 465 |
+
self.attention_dropout = config.attention_dropout
|
| 466 |
+
self.rope_scaling = config.rope_scaling
|
| 467 |
+
self.scaling = self.head_dim**-0.5
|
| 468 |
+
|
| 469 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
| 470 |
+
raise ValueError(
|
| 471 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
| 472 |
+
f" and `num_heads`: {self.num_heads})."
|
| 473 |
+
)
|
| 474 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True)
|
| 475 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
|
| 476 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
|
| 477 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
| 478 |
+
self.sliding_window = config.sliding_window if config.layer_types[layer_idx] == "sliding_attention" else None
|
| 479 |
+
|
| 480 |
+
self.rotary_emb = Qwen2VLRotaryEmbedding(config=config)
|
| 481 |
+
|
| 482 |
+
@deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58")
|
| 483 |
+
def forward(
|
| 484 |
+
self,
|
| 485 |
+
hidden_states: torch.Tensor,
|
| 486 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 487 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 488 |
+
past_key_values: Optional[Cache] = None,
|
| 489 |
+
output_attentions: bool = False,
|
| 490 |
+
use_cache: bool = False,
|
| 491 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 492 |
+
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
|
| 493 |
+
**kwargs: Unpack[FlashAttentionKwargs],
|
| 494 |
+
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
|
| 495 |
+
bsz, q_len, _ = hidden_states.size()
|
| 496 |
+
|
| 497 |
+
query_states = self.q_proj(hidden_states)
|
| 498 |
+
key_states = self.k_proj(hidden_states)
|
| 499 |
+
value_states = self.v_proj(hidden_states)
|
| 500 |
+
|
| 501 |
+
query_states = query_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
|
| 502 |
+
key_states = key_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
|
| 503 |
+
value_states = value_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
|
| 504 |
+
|
| 505 |
+
cos, sin = position_embeddings
|
| 506 |
+
query_states, key_states = apply_multimodal_rotary_pos_emb(
|
| 507 |
+
query_states, key_states, cos, sin, self.rope_scaling["mrope_section"]
|
| 508 |
+
)
|
| 509 |
+
|
| 510 |
+
if past_key_values is not None:
|
| 511 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
|
| 512 |
+
key_states, value_states = past_key_values.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 513 |
+
|
| 514 |
+
attention_interface: Callable = eager_attention_forward
|
| 515 |
+
if self.config._attn_implementation != "eager":
|
| 516 |
+
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
| 517 |
+
|
| 518 |
+
attn_output, attn_weights = attention_interface(
|
| 519 |
+
self,
|
| 520 |
+
query_states,
|
| 521 |
+
key_states,
|
| 522 |
+
value_states,
|
| 523 |
+
attention_mask,
|
| 524 |
+
dropout=0.0 if not self.training else self.attention_dropout,
|
| 525 |
+
scaling=self.scaling,
|
| 526 |
+
sliding_window=self.sliding_window,
|
| 527 |
+
position_ids=position_ids, # pass positions for FA2
|
| 528 |
+
**kwargs,
|
| 529 |
+
)
|
| 530 |
+
|
| 531 |
+
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
|
| 532 |
+
attn_output = self.o_proj(attn_output)
|
| 533 |
+
return attn_output, attn_weights
|
| 534 |
+
|
| 535 |
+
|
| 536 |
+
class Qwen2VLDecoderLayer(GradientCheckpointingLayer):
|
| 537 |
+
def __init__(self, config: Qwen2VLTextConfig, layer_idx: int):
|
| 538 |
+
super().__init__()
|
| 539 |
+
self.hidden_size = config.hidden_size
|
| 540 |
+
|
| 541 |
+
if config.use_sliding_window and config._attn_implementation != "flash_attention_2":
|
| 542 |
+
logger.warning_once(
|
| 543 |
+
f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; "
|
| 544 |
+
"unexpected results may be encountered."
|
| 545 |
+
)
|
| 546 |
+
self.self_attn = Qwen2VLAttention(config, layer_idx)
|
| 547 |
+
|
| 548 |
+
self.mlp = Qwen2MLP(config)
|
| 549 |
+
self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 550 |
+
self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 551 |
+
self.attention_type = config.layer_types[layer_idx]
|
| 552 |
+
|
| 553 |
+
@deprecate_kwarg("past_key_value", new_name="past_key_values", version="4.58")
|
| 554 |
+
def forward(
|
| 555 |
+
self,
|
| 556 |
+
hidden_states: torch.Tensor,
|
| 557 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 558 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 559 |
+
past_key_values: Optional[tuple[torch.Tensor]] = None,
|
| 560 |
+
output_attentions: Optional[bool] = False,
|
| 561 |
+
use_cache: Optional[bool] = False,
|
| 562 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 563 |
+
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
|
| 564 |
+
**kwargs: Unpack[FlashAttentionKwargs],
|
| 565 |
+
) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
| 566 |
+
"""
|
| 567 |
+
Args:
|
| 568 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
| 569 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
| 570 |
+
`(batch, sequence_length)` where padding elements are indicated by 0.
|
| 571 |
+
output_attentions (`bool`, *optional*):
|
| 572 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
| 573 |
+
returned tensors for more detail.
|
| 574 |
+
use_cache (`bool`, *optional*):
|
| 575 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
| 576 |
+
(see `past_key_values`).
|
| 577 |
+
past_key_values (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
| 578 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
| 579 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
| 580 |
+
position_embeddings (`tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
|
| 581 |
+
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
|
| 582 |
+
with `head_dim` being the embedding dimension of each attention head.
|
| 583 |
+
kwargs (`dict`, *optional*):
|
| 584 |
+
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
|
| 585 |
+
into the model
|
| 586 |
+
"""
|
| 587 |
+
|
| 588 |
+
residual = hidden_states
|
| 589 |
+
|
| 590 |
+
hidden_states = self.input_layernorm(hidden_states)
|
| 591 |
+
|
| 592 |
+
# Self Attention
|
| 593 |
+
hidden_states, self_attn_weights = self.self_attn(
|
| 594 |
+
hidden_states=hidden_states,
|
| 595 |
+
attention_mask=attention_mask,
|
| 596 |
+
position_ids=position_ids,
|
| 597 |
+
past_key_values=past_key_values,
|
| 598 |
+
output_attentions=output_attentions,
|
| 599 |
+
use_cache=use_cache,
|
| 600 |
+
cache_position=cache_position,
|
| 601 |
+
position_embeddings=position_embeddings,
|
| 602 |
+
**kwargs,
|
| 603 |
+
)
|
| 604 |
+
hidden_states = residual + hidden_states
|
| 605 |
+
|
| 606 |
+
# Fully Connected
|
| 607 |
+
residual = hidden_states
|
| 608 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
| 609 |
+
hidden_states = self.mlp(hidden_states)
|
| 610 |
+
hidden_states = residual + hidden_states
|
| 611 |
+
|
| 612 |
+
outputs = (hidden_states,)
|
| 613 |
+
|
| 614 |
+
if output_attentions:
|
| 615 |
+
outputs += (self_attn_weights,)
|
| 616 |
+
|
| 617 |
+
return outputs
|
| 618 |
+
|
| 619 |
+
|
| 620 |
+
@auto_docstring
|
| 621 |
+
class Qwen2VLPreTrainedModel(PreTrainedModel):
|
| 622 |
+
config: Qwen2VLConfig
|
| 623 |
+
base_model_prefix = "model"
|
| 624 |
+
supports_gradient_checkpointing = True
|
| 625 |
+
_no_split_modules = ["Qwen2VLDecoderLayer", "Qwen2VLVisionBlock"]
|
| 626 |
+
_skip_keys_device_placement = "past_key_values"
|
| 627 |
+
_supports_flash_attn = True
|
| 628 |
+
_supports_sdpa = True
|
| 629 |
+
|
| 630 |
+
_can_compile_fullgraph = True
|
| 631 |
+
_supports_attention_backend = True
|
| 632 |
+
|
| 633 |
+
|
| 634 |
+
@auto_docstring
|
| 635 |
+
class Qwen2VisionTransformerPretrainedModel(Qwen2VLPreTrainedModel):
|
| 636 |
+
config: Qwen2VLVisionConfig
|
| 637 |
+
_no_split_modules = ["Qwen2VLVisionBlock"]
|
| 638 |
+
|
| 639 |
+
def __init__(self, config) -> None:
|
| 640 |
+
super().__init__(config)
|
| 641 |
+
self.spatial_merge_size = config.spatial_merge_size
|
| 642 |
+
|
| 643 |
+
self.patch_embed = PatchEmbed(
|
| 644 |
+
patch_size=config.patch_size,
|
| 645 |
+
temporal_patch_size=config.temporal_patch_size,
|
| 646 |
+
in_channels=config.in_channels,
|
| 647 |
+
embed_dim=config.embed_dim,
|
| 648 |
+
)
|
| 649 |
+
|
| 650 |
+
head_dim = config.embed_dim // config.num_heads
|
| 651 |
+
self.rotary_pos_emb = VisionRotaryEmbedding(head_dim // 2)
|
| 652 |
+
|
| 653 |
+
self.blocks = nn.ModuleList([Qwen2VLVisionBlock(config) for _ in range(config.depth)])
|
| 654 |
+
self.merger = PatchMerger(
|
| 655 |
+
dim=config.hidden_size, context_dim=config.embed_dim, spatial_merge_size=config.spatial_merge_size
|
| 656 |
+
)
|
| 657 |
+
self.gradient_checkpointing = False
|
| 658 |
+
|
| 659 |
+
def get_dtype(self) -> torch.dtype:
|
| 660 |
+
return self.blocks[0].mlp.fc2.weight.dtype
|
| 661 |
+
|
| 662 |
+
def get_device(self) -> torch.device:
|
| 663 |
+
return self.blocks[0].mlp.fc2.weight.device
|
| 664 |
+
|
| 665 |
+
def rot_pos_emb(self, grid_thw):
|
| 666 |
+
pos_ids = []
|
| 667 |
+
for t, h, w in grid_thw:
|
| 668 |
+
hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
|
| 669 |
+
hpos_ids = hpos_ids.reshape(
|
| 670 |
+
h // self.spatial_merge_size,
|
| 671 |
+
self.spatial_merge_size,
|
| 672 |
+
w // self.spatial_merge_size,
|
| 673 |
+
self.spatial_merge_size,
|
| 674 |
+
)
|
| 675 |
+
hpos_ids = hpos_ids.permute(0, 2, 1, 3)
|
| 676 |
+
hpos_ids = hpos_ids.flatten()
|
| 677 |
+
|
| 678 |
+
wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
|
| 679 |
+
wpos_ids = wpos_ids.reshape(
|
| 680 |
+
h // self.spatial_merge_size,
|
| 681 |
+
self.spatial_merge_size,
|
| 682 |
+
w // self.spatial_merge_size,
|
| 683 |
+
self.spatial_merge_size,
|
| 684 |
+
)
|
| 685 |
+
wpos_ids = wpos_ids.permute(0, 2, 1, 3)
|
| 686 |
+
wpos_ids = wpos_ids.flatten()
|
| 687 |
+
pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
|
| 688 |
+
pos_ids = torch.cat(pos_ids, dim=0)
|
| 689 |
+
max_grid_size = grid_thw[:, 1:].max()
|
| 690 |
+
rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
|
| 691 |
+
rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
|
| 692 |
+
return rotary_pos_emb
|
| 693 |
+
|
| 694 |
+
@auto_docstring
|
| 695 |
+
def forward(
|
| 696 |
+
self,
|
| 697 |
+
hidden_states: torch.Tensor,
|
| 698 |
+
grid_thw: torch.Tensor,
|
| 699 |
+
**kwargs,
|
| 700 |
+
) -> torch.Tensor:
|
| 701 |
+
r"""
|
| 702 |
+
grid_thw (`torch.LongTensor` of shape `(num_images, 3)`):
|
| 703 |
+
The temporal, height and width dimensions of feature shape for each image. Each row contains [t, h, w] values.
|
| 704 |
+
"""
|
| 705 |
+
hidden_states = self.patch_embed(hidden_states)
|
| 706 |
+
rotary_pos_emb = self.rot_pos_emb(grid_thw)
|
| 707 |
+
emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1)
|
| 708 |
+
position_embeddings = (emb.cos(), emb.sin())
|
| 709 |
+
|
| 710 |
+
cu_seqlens = torch.repeat_interleave(grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]).cumsum(
|
| 711 |
+
dim=0,
|
| 712 |
+
dtype=grid_thw.dtype if torch.jit.is_tracing() else torch.int32,
|
| 713 |
+
)
|
| 714 |
+
cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0)
|
| 715 |
+
|
| 716 |
+
for blk in self.blocks:
|
| 717 |
+
hidden_states = blk(
|
| 718 |
+
hidden_states,
|
| 719 |
+
cu_seqlens=cu_seqlens,
|
| 720 |
+
position_embeddings=position_embeddings,
|
| 721 |
+
**kwargs,
|
| 722 |
+
)
|
| 723 |
+
|
| 724 |
+
return self.merger(hidden_states)
|
| 725 |
+
|
| 726 |
+
|
| 727 |
+
@auto_docstring
|
| 728 |
+
class Qwen2VLTextModel(Qwen2VLPreTrainedModel):
|
| 729 |
+
config: Qwen2VLTextConfig
|
| 730 |
+
|
| 731 |
+
def __init__(self, config: Qwen2VLTextConfig):
|
| 732 |
+
super().__init__(config)
|
| 733 |
+
self.padding_idx = config.pad_token_id
|
| 734 |
+
self.vocab_size = config.vocab_size
|
| 735 |
+
|
| 736 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
| 737 |
+
self.layers = nn.ModuleList(
|
| 738 |
+
[Qwen2VLDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
| 739 |
+
)
|
| 740 |
+
self._attn_implementation = config._attn_implementation
|
| 741 |
+
self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 742 |
+
self.rotary_emb = Qwen2VLRotaryEmbedding(config=config)
|
| 743 |
+
self.has_sliding_layers = "sliding_attention" in self.config.layer_types
|
| 744 |
+
|
| 745 |
+
self.gradient_checkpointing = False
|
| 746 |
+
# Initialize weights and apply final processing
|
| 747 |
+
self.post_init()
|
| 748 |
+
|
| 749 |
+
@auto_docstring
|
| 750 |
+
def forward(
|
| 751 |
+
self,
|
| 752 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 753 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 754 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 755 |
+
past_key_values: Optional[Cache] = None,
|
| 756 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 757 |
+
use_cache: Optional[bool] = None,
|
| 758 |
+
output_attentions: Optional[bool] = None,
|
| 759 |
+
output_hidden_states: Optional[bool] = None,
|
| 760 |
+
return_dict: Optional[bool] = None,
|
| 761 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 762 |
+
**kwargs: Unpack[FlashAttentionKwargs],
|
| 763 |
+
) -> Union[tuple, BaseModelOutputWithPast]:
|
| 764 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 765 |
+
output_hidden_states = (
|
| 766 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 767 |
+
)
|
| 768 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 769 |
+
|
| 770 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 771 |
+
|
| 772 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
| 773 |
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
| 774 |
+
|
| 775 |
+
if self.gradient_checkpointing and self.training:
|
| 776 |
+
if use_cache:
|
| 777 |
+
logger.warning_once(
|
| 778 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
| 779 |
+
)
|
| 780 |
+
use_cache = False
|
| 781 |
+
|
| 782 |
+
# torch.jit.trace() doesn't support cache objects in the output
|
| 783 |
+
if use_cache and past_key_values is None and not torch.jit.is_tracing():
|
| 784 |
+
past_key_values = DynamicCache(config=self.config)
|
| 785 |
+
|
| 786 |
+
if inputs_embeds is None:
|
| 787 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 788 |
+
|
| 789 |
+
if cache_position is None:
|
| 790 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 791 |
+
cache_position = torch.arange(
|
| 792 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
| 793 |
+
)
|
| 794 |
+
|
| 795 |
+
# the hard coded `3` is for temporal, height and width.
|
| 796 |
+
if position_ids is None:
|
| 797 |
+
position_ids = cache_position.view(1, 1, -1).expand(3, inputs_embeds.shape[0], -1)
|
| 798 |
+
elif position_ids.ndim == 2:
|
| 799 |
+
position_ids = position_ids[None, ...].expand(3, position_ids.shape[0], -1)
|
| 800 |
+
|
| 801 |
+
# NOTE: we need to pass text position ids for packing. Qwen2-VL uses 3D positions
|
| 802 |
+
# where each dim indicates visual spatial positions for temporal/height/width grids.
|
| 803 |
+
# There are two scenarios when FA2-like packed masking might be activated.
|
| 804 |
+
# 1. User specifically passed packed `position_ids` and no attention mask.
|
| 805 |
+
# In this case we expect the useer to create correct position ids for all 3 grids
|
| 806 |
+
# and prepend text-only position ids to it. The final tensor will be [4, bs, seq-len]
|
| 807 |
+
# 2. User runs forward with no attention mask and no position ids. In this case, position ids
|
| 808 |
+
# are prepared by the model (`get_rope_index`) as `[4, bs, seq-len]` tensor. Text-only positions are
|
| 809 |
+
# prepended by us when creating positions so that the mask is constructed correctly. NOTE: failing to pass
|
| 810 |
+
# text-only positions will cause incorrect mask construction, do not change `prepare_input_for_generation`
|
| 811 |
+
if position_ids.ndim == 3 and position_ids.shape[0] == 4:
|
| 812 |
+
text_position_ids = position_ids[0]
|
| 813 |
+
position_ids = position_ids[1:]
|
| 814 |
+
else:
|
| 815 |
+
text_position_ids = position_ids[0]
|
| 816 |
+
|
| 817 |
+
# It may already have been prepared by e.g. `generate`
|
| 818 |
+
if not isinstance(causal_mask_mapping := attention_mask, dict):
|
| 819 |
+
# Prepare mask arguments
|
| 820 |
+
mask_kwargs = {
|
| 821 |
+
"config": self.config,
|
| 822 |
+
"input_embeds": inputs_embeds,
|
| 823 |
+
"attention_mask": attention_mask,
|
| 824 |
+
"cache_position": cache_position,
|
| 825 |
+
"past_key_values": past_key_values,
|
| 826 |
+
"position_ids": text_position_ids,
|
| 827 |
+
}
|
| 828 |
+
# Create the masks
|
| 829 |
+
causal_mask_mapping = {
|
| 830 |
+
"full_attention": create_causal_mask(**mask_kwargs),
|
| 831 |
+
}
|
| 832 |
+
# The sliding window alternating layers are not always activated depending on the config
|
| 833 |
+
if self.has_sliding_layers:
|
| 834 |
+
causal_mask_mapping["sliding_attention"] = create_sliding_window_causal_mask(**mask_kwargs)
|
| 835 |
+
|
| 836 |
+
hidden_states = inputs_embeds
|
| 837 |
+
|
| 838 |
+
# create position embeddings to be shared across the decoder layers
|
| 839 |
+
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
| 840 |
+
|
| 841 |
+
# decoder layers
|
| 842 |
+
all_hidden_states = () if output_hidden_states else None
|
| 843 |
+
all_self_attns = () if output_attentions else None
|
| 844 |
+
# print(1)
|
| 845 |
+
for decoder_layer in self.layers:
|
| 846 |
+
if output_hidden_states:
|
| 847 |
+
all_hidden_states += (hidden_states,)
|
| 848 |
+
|
| 849 |
+
layer_outputs = decoder_layer(
|
| 850 |
+
hidden_states,
|
| 851 |
+
attention_mask=causal_mask_mapping[decoder_layer.attention_type],
|
| 852 |
+
position_ids=text_position_ids,
|
| 853 |
+
past_key_values=past_key_values,
|
| 854 |
+
output_attentions=output_attentions,
|
| 855 |
+
use_cache=use_cache,
|
| 856 |
+
cache_position=cache_position,
|
| 857 |
+
position_embeddings=position_embeddings,
|
| 858 |
+
**kwargs,
|
| 859 |
+
)
|
| 860 |
+
|
| 861 |
+
hidden_states = layer_outputs[0]
|
| 862 |
+
|
| 863 |
+
if output_attentions:
|
| 864 |
+
all_self_attns += (layer_outputs[1],)
|
| 865 |
+
|
| 866 |
+
hidden_states = self.norm(hidden_states)
|
| 867 |
+
|
| 868 |
+
# add hidden states from the last decoder layer
|
| 869 |
+
if output_hidden_states:
|
| 870 |
+
all_hidden_states += (hidden_states,)
|
| 871 |
+
|
| 872 |
+
if not return_dict:
|
| 873 |
+
return tuple(
|
| 874 |
+
v for v in [hidden_states, past_key_values, all_hidden_states, all_self_attns] if v is not None
|
| 875 |
+
)
|
| 876 |
+
return BaseModelOutputWithPast(
|
| 877 |
+
last_hidden_state=hidden_states,
|
| 878 |
+
past_key_values=past_key_values,
|
| 879 |
+
hidden_states=all_hidden_states,
|
| 880 |
+
attentions=all_self_attns,
|
| 881 |
+
)
|
| 882 |
+
|
| 883 |
+
|
| 884 |
+
@auto_docstring
|
| 885 |
+
class Qwen2VLModel(Qwen2VLPreTrainedModel):
|
| 886 |
+
base_model_prefix = ""
|
| 887 |
+
_checkpoint_conversion_mapping = {"^model": "language_model"}
|
| 888 |
+
accepts_loss_kwargs = False
|
| 889 |
+
|
| 890 |
+
def __init__(self, config: Qwen2VLConfig):
|
| 891 |
+
super().__init__(config)
|
| 892 |
+
self.visual = Qwen2VisionTransformerPretrainedModel._from_config(config.vision_config)
|
| 893 |
+
self.language_model = Qwen2VLTextModel._from_config(config.text_config)
|
| 894 |
+
self.rope_deltas = None # cache rope_deltas here
|
| 895 |
+
|
| 896 |
+
# Initialize weights and apply final processing
|
| 897 |
+
self.post_init()
|
| 898 |
+
|
| 899 |
+
def get_input_embeddings(self):
|
| 900 |
+
return self.language_model.get_input_embeddings()
|
| 901 |
+
|
| 902 |
+
def set_input_embeddings(self, value):
|
| 903 |
+
self.language_model.set_input_embeddings(value)
|
| 904 |
+
|
| 905 |
+
def set_decoder(self, decoder):
|
| 906 |
+
self.language_model = decoder
|
| 907 |
+
|
| 908 |
+
def get_decoder(self):
|
| 909 |
+
return self.language_model
|
| 910 |
+
|
| 911 |
+
def get_rope_index(
|
| 912 |
+
self,
|
| 913 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 914 |
+
image_grid_thw: Optional[torch.LongTensor] = None,
|
| 915 |
+
video_grid_thw: Optional[torch.LongTensor] = None,
|
| 916 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 917 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
| 918 |
+
"""
|
| 919 |
+
Calculate the 3D rope index based on image and video's temporal, height and width in LLM.
|
| 920 |
+
|
| 921 |
+
Explanation:
|
| 922 |
+
Each embedding sequence contains vision embedding and text embedding or just contains text embedding.
|
| 923 |
+
|
| 924 |
+
For pure text embedding sequence, the rotary position embedding has no difference with modern LLMs.
|
| 925 |
+
Examples:
|
| 926 |
+
input_ids: [T T T T T], here T is for text.
|
| 927 |
+
temporal position_ids: [0, 1, 2, 3, 4]
|
| 928 |
+
height position_ids: [0, 1, 2, 3, 4]
|
| 929 |
+
width position_ids: [0, 1, 2, 3, 4]
|
| 930 |
+
|
| 931 |
+
For vision and text embedding sequence, we calculate 3D rotary position embedding for vision part
|
| 932 |
+
and 1D rotary position embedding for text part.
|
| 933 |
+
Examples:
|
| 934 |
+
Assume we have a video input with 3 temporal patches, 2 height patches and 2 width patches.
|
| 935 |
+
input_ids: [V V V V V V V V V V V V T T T T T], here V is for vision.
|
| 936 |
+
vision temporal position_ids: [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2]
|
| 937 |
+
vision height position_ids: [0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1]
|
| 938 |
+
vision width position_ids: [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]
|
| 939 |
+
text temporal position_ids: [3, 4, 5, 6, 7]
|
| 940 |
+
text height position_ids: [3, 4, 5, 6, 7]
|
| 941 |
+
text width position_ids: [3, 4, 5, 6, 7]
|
| 942 |
+
Here we calculate the text start position_ids as the max vision position_ids plus 1.
|
| 943 |
+
|
| 944 |
+
Args:
|
| 945 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 946 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
| 947 |
+
it.
|
| 948 |
+
image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
|
| 949 |
+
The temporal, height and width of feature shape of each image in LLM.
|
| 950 |
+
video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
|
| 951 |
+
The temporal, height and width of feature shape of each video in LLM.
|
| 952 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 953 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 954 |
+
|
| 955 |
+
- 1 for tokens that are **not masked**,
|
| 956 |
+
- 0 for tokens that are **masked**.
|
| 957 |
+
|
| 958 |
+
Returns:
|
| 959 |
+
position_ids (`torch.LongTensor` of shape `(3, batch_size, sequence_length)`)
|
| 960 |
+
mrope_position_deltas (`torch.Tensor` of shape `(batch_size)`)
|
| 961 |
+
"""
|
| 962 |
+
spatial_merge_size = self.config.vision_config.spatial_merge_size
|
| 963 |
+
image_token_id = self.config.image_token_id
|
| 964 |
+
video_token_id = self.config.video_token_id
|
| 965 |
+
vision_start_token_id = self.config.vision_start_token_id
|
| 966 |
+
mrope_position_deltas = []
|
| 967 |
+
if input_ids is not None and (image_grid_thw is not None or video_grid_thw is not None):
|
| 968 |
+
total_input_ids = input_ids
|
| 969 |
+
if attention_mask is None:
|
| 970 |
+
attention_mask = torch.ones_like(total_input_ids)
|
| 971 |
+
position_ids = torch.ones(
|
| 972 |
+
3, input_ids.shape[0], input_ids.shape[1], dtype=input_ids.dtype, device=input_ids.device
|
| 973 |
+
)
|
| 974 |
+
image_index, video_index = 0, 0
|
| 975 |
+
for i, input_ids in enumerate(total_input_ids):
|
| 976 |
+
input_ids = input_ids[attention_mask[i].to(input_ids.device) == 1]
|
| 977 |
+
image_nums, video_nums = 0, 0
|
| 978 |
+
vision_start_indices = torch.argwhere(input_ids == vision_start_token_id).squeeze(1)
|
| 979 |
+
vision_tokens = input_ids[vision_start_indices + 1]
|
| 980 |
+
image_nums = (vision_tokens == image_token_id).sum()
|
| 981 |
+
video_nums = (vision_tokens == video_token_id).sum()
|
| 982 |
+
input_tokens = input_ids.tolist()
|
| 983 |
+
llm_pos_ids_list: list = []
|
| 984 |
+
st = 0
|
| 985 |
+
remain_images, remain_videos = image_nums, video_nums
|
| 986 |
+
for _ in range(image_nums + video_nums):
|
| 987 |
+
if image_token_id in input_tokens and remain_images > 0:
|
| 988 |
+
ed_image = input_tokens.index(image_token_id, st)
|
| 989 |
+
else:
|
| 990 |
+
ed_image = len(input_tokens) + 1
|
| 991 |
+
if video_token_id in input_tokens and remain_videos > 0:
|
| 992 |
+
ed_video = input_tokens.index(video_token_id, st)
|
| 993 |
+
else:
|
| 994 |
+
ed_video = len(input_tokens) + 1
|
| 995 |
+
if ed_image < ed_video:
|
| 996 |
+
t, h, w = (
|
| 997 |
+
image_grid_thw[image_index][0],
|
| 998 |
+
image_grid_thw[image_index][1],
|
| 999 |
+
image_grid_thw[image_index][2],
|
| 1000 |
+
)
|
| 1001 |
+
image_index += 1
|
| 1002 |
+
remain_images -= 1
|
| 1003 |
+
ed = ed_image
|
| 1004 |
+
else:
|
| 1005 |
+
t, h, w = (
|
| 1006 |
+
video_grid_thw[video_index][0],
|
| 1007 |
+
video_grid_thw[video_index][1],
|
| 1008 |
+
video_grid_thw[video_index][2],
|
| 1009 |
+
)
|
| 1010 |
+
video_index += 1
|
| 1011 |
+
remain_videos -= 1
|
| 1012 |
+
ed = ed_video
|
| 1013 |
+
llm_grid_t, llm_grid_h, llm_grid_w = (
|
| 1014 |
+
t.item(),
|
| 1015 |
+
h.item() // spatial_merge_size,
|
| 1016 |
+
w.item() // spatial_merge_size,
|
| 1017 |
+
)
|
| 1018 |
+
text_len = ed - st
|
| 1019 |
+
|
| 1020 |
+
st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
|
| 1021 |
+
llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx)
|
| 1022 |
+
|
| 1023 |
+
t_index = torch.arange(llm_grid_t).view(-1, 1).expand(-1, llm_grid_h * llm_grid_w).flatten()
|
| 1024 |
+
h_index = torch.arange(llm_grid_h).view(1, -1, 1).expand(llm_grid_t, -1, llm_grid_w).flatten()
|
| 1025 |
+
w_index = torch.arange(llm_grid_w).view(1, 1, -1).expand(llm_grid_t, llm_grid_h, -1).flatten()
|
| 1026 |
+
llm_pos_ids_list.append(torch.stack([t_index, h_index, w_index]) + text_len + st_idx)
|
| 1027 |
+
st = ed + llm_grid_t * llm_grid_h * llm_grid_w
|
| 1028 |
+
|
| 1029 |
+
if st < len(input_tokens):
|
| 1030 |
+
st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
|
| 1031 |
+
text_len = len(input_tokens) - st
|
| 1032 |
+
llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx)
|
| 1033 |
+
|
| 1034 |
+
llm_positions = torch.cat(llm_pos_ids_list, dim=1).reshape(3, -1)
|
| 1035 |
+
position_ids[..., i, attention_mask[i] == 1] = llm_positions.to(position_ids.device)
|
| 1036 |
+
mrope_position_deltas.append(llm_positions.max() + 1 - len(total_input_ids[i]))
|
| 1037 |
+
mrope_position_deltas = torch.tensor(mrope_position_deltas, device=input_ids.device).unsqueeze(1)
|
| 1038 |
+
return position_ids, mrope_position_deltas
|
| 1039 |
+
else:
|
| 1040 |
+
if attention_mask is not None:
|
| 1041 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
| 1042 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
| 1043 |
+
position_ids = position_ids.unsqueeze(0).expand(3, -1, -1).to(attention_mask.device)
|
| 1044 |
+
max_position_ids = position_ids.max(0, keepdim=False)[0].max(-1, keepdim=True)[0]
|
| 1045 |
+
mrope_position_deltas = max_position_ids + 1 - attention_mask.shape[-1]
|
| 1046 |
+
else:
|
| 1047 |
+
position_ids = (
|
| 1048 |
+
torch.arange(input_ids.shape[1], device=input_ids.device)
|
| 1049 |
+
.view(1, 1, -1)
|
| 1050 |
+
.expand(3, input_ids.shape[0], -1)
|
| 1051 |
+
)
|
| 1052 |
+
mrope_position_deltas = torch.zeros(
|
| 1053 |
+
[input_ids.shape[0], 1],
|
| 1054 |
+
device=input_ids.device,
|
| 1055 |
+
dtype=input_ids.dtype,
|
| 1056 |
+
)
|
| 1057 |
+
|
| 1058 |
+
return position_ids, mrope_position_deltas
|
| 1059 |
+
|
| 1060 |
+
def get_video_features(
|
| 1061 |
+
self, pixel_values_videos: torch.FloatTensor, video_grid_thw: Optional[torch.LongTensor] = None
|
| 1062 |
+
):
|
| 1063 |
+
"""
|
| 1064 |
+
Encodes videos into continuous embeddings that can be forwarded to the language model.
|
| 1065 |
+
|
| 1066 |
+
Args:
|
| 1067 |
+
pixel_values_videos (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`):
|
| 1068 |
+
The tensors corresponding to the input videos.
|
| 1069 |
+
video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
|
| 1070 |
+
The temporal, height and width of feature shape of each video in LLM.
|
| 1071 |
+
"""
|
| 1072 |
+
pixel_values_videos = pixel_values_videos.type(self.visual.dtype)
|
| 1073 |
+
video_embeds = self.visual(pixel_values_videos, grid_thw=video_grid_thw)
|
| 1074 |
+
split_sizes = (video_grid_thw.prod(-1) // self.visual.spatial_merge_size**2).tolist()
|
| 1075 |
+
video_embeds = torch.split(video_embeds, split_sizes)
|
| 1076 |
+
return video_embeds
|
| 1077 |
+
|
| 1078 |
+
def get_image_features(self, pixel_values: torch.FloatTensor, image_grid_thw: Optional[torch.LongTensor] = None):
|
| 1079 |
+
"""
|
| 1080 |
+
Encodes images into continuous embeddings that can be forwarded to the language model.
|
| 1081 |
+
|
| 1082 |
+
Args:
|
| 1083 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`):
|
| 1084 |
+
The tensors corresponding to the input images.
|
| 1085 |
+
image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
|
| 1086 |
+
The temporal, height and width of feature shape of each image in LLM.
|
| 1087 |
+
"""
|
| 1088 |
+
pixel_values = pixel_values.type(self.visual.dtype)
|
| 1089 |
+
image_embeds = self.visual(pixel_values, grid_thw=image_grid_thw)
|
| 1090 |
+
split_sizes = (image_grid_thw.prod(-1) // self.visual.spatial_merge_size**2).tolist()
|
| 1091 |
+
image_embeds = torch.split(image_embeds, split_sizes)
|
| 1092 |
+
return image_embeds
|
| 1093 |
+
|
| 1094 |
+
def get_placeholder_mask(
|
| 1095 |
+
self,
|
| 1096 |
+
input_ids: torch.LongTensor,
|
| 1097 |
+
inputs_embeds: torch.FloatTensor,
|
| 1098 |
+
image_features: torch.FloatTensor = None,
|
| 1099 |
+
video_features: torch.FloatTensor = None,
|
| 1100 |
+
):
|
| 1101 |
+
"""
|
| 1102 |
+
Obtains multimodal placeholder mask from `input_ids` or `inputs_embeds`, and checks that the placeholder token count is
|
| 1103 |
+
equal to the length of multimodal features. If the lengths are different, an error is raised.
|
| 1104 |
+
"""
|
| 1105 |
+
if input_ids is None:
|
| 1106 |
+
special_image_mask = inputs_embeds == self.get_input_embeddings()(
|
| 1107 |
+
torch.tensor(self.config.image_token_id, dtype=torch.long, device=inputs_embeds.device)
|
| 1108 |
+
)
|
| 1109 |
+
special_image_mask = special_image_mask.all(-1)
|
| 1110 |
+
special_video_mask = inputs_embeds == self.get_input_embeddings()(
|
| 1111 |
+
torch.tensor(self.config.video_token_id, dtype=torch.long, device=inputs_embeds.device)
|
| 1112 |
+
)
|
| 1113 |
+
special_video_mask = special_video_mask.all(-1)
|
| 1114 |
+
else:
|
| 1115 |
+
special_image_mask = input_ids == self.config.image_token_id
|
| 1116 |
+
special_video_mask = input_ids == self.config.video_token_id
|
| 1117 |
+
|
| 1118 |
+
n_image_tokens = special_image_mask.sum()
|
| 1119 |
+
special_image_mask = special_image_mask.unsqueeze(-1).expand_as(inputs_embeds).to(inputs_embeds.device)
|
| 1120 |
+
if image_features is not None and inputs_embeds[special_image_mask].numel() != image_features.numel():
|
| 1121 |
+
raise ValueError(
|
| 1122 |
+
f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {image_features.shape[0]}"
|
| 1123 |
+
)
|
| 1124 |
+
|
| 1125 |
+
n_video_tokens = special_video_mask.sum()
|
| 1126 |
+
special_video_mask = special_video_mask.unsqueeze(-1).expand_as(inputs_embeds).to(inputs_embeds.device)
|
| 1127 |
+
if video_features is not None and inputs_embeds[special_video_mask].numel() != video_features.numel():
|
| 1128 |
+
raise ValueError(
|
| 1129 |
+
f"Videos features and video tokens do not match: tokens: {n_video_tokens}, features {video_features.shape[0]}"
|
| 1130 |
+
)
|
| 1131 |
+
|
| 1132 |
+
return special_image_mask, special_video_mask
|
| 1133 |
+
|
| 1134 |
+
@auto_docstring
|
| 1135 |
+
def forward(
|
| 1136 |
+
self,
|
| 1137 |
+
input_ids: torch.LongTensor = None,
|
| 1138 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1139 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1140 |
+
past_key_values: Optional[Cache] = None,
|
| 1141 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1142 |
+
use_cache: Optional[bool] = None,
|
| 1143 |
+
output_attentions: Optional[bool] = None,
|
| 1144 |
+
output_hidden_states: Optional[bool] = None,
|
| 1145 |
+
return_dict: Optional[bool] = None,
|
| 1146 |
+
pixel_values: Optional[torch.Tensor] = None,
|
| 1147 |
+
pixel_values_videos: Optional[torch.FloatTensor] = None,
|
| 1148 |
+
image_grid_thw: Optional[torch.LongTensor] = None,
|
| 1149 |
+
video_grid_thw: Optional[torch.LongTensor] = None,
|
| 1150 |
+
rope_deltas: Optional[torch.LongTensor] = None,
|
| 1151 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 1152 |
+
seg_mask: Optional[torch.Tensor] = None,
|
| 1153 |
+
**kwargs: Unpack[TransformersKwargs],
|
| 1154 |
+
) -> Union[tuple, Qwen2VLModelOutputWithPast]:
|
| 1155 |
+
r"""
|
| 1156 |
+
image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
|
| 1157 |
+
The temporal, height and width of feature shape of each image in LLM.
|
| 1158 |
+
video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
|
| 1159 |
+
The temporal, height and width of feature shape of each video in LLM.
|
| 1160 |
+
rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
|
| 1161 |
+
The rope index difference between sequence length and multimodal rope.
|
| 1162 |
+
"""
|
| 1163 |
+
|
| 1164 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1165 |
+
output_hidden_states = (
|
| 1166 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1167 |
+
)
|
| 1168 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1169 |
+
|
| 1170 |
+
if inputs_embeds is None:
|
| 1171 |
+
inputs_embeds = self.get_input_embeddings()(input_ids)
|
| 1172 |
+
|
| 1173 |
+
if pixel_values is not None:
|
| 1174 |
+
image_embeds = self.get_image_features(pixel_values, image_grid_thw)
|
| 1175 |
+
image_embeds = torch.cat(image_embeds, dim=0).to(inputs_embeds.device, inputs_embeds.dtype)
|
| 1176 |
+
image_mask, _ = self.get_placeholder_mask(
|
| 1177 |
+
input_ids, inputs_embeds=inputs_embeds, image_features=image_embeds
|
| 1178 |
+
)
|
| 1179 |
+
inputs_embeds = inputs_embeds.masked_scatter(image_mask, image_embeds)
|
| 1180 |
+
|
| 1181 |
+
if pixel_values_videos is not None:
|
| 1182 |
+
video_embeds = self.get_video_features(pixel_values_videos, video_grid_thw)
|
| 1183 |
+
video_embeds = torch.cat(video_embeds, dim=0).to(inputs_embeds.device, inputs_embeds.dtype)
|
| 1184 |
+
_, video_mask = self.get_placeholder_mask(
|
| 1185 |
+
input_ids, inputs_embeds=inputs_embeds, video_features=video_embeds
|
| 1186 |
+
)
|
| 1187 |
+
inputs_embeds = inputs_embeds.masked_scatter(video_mask, video_embeds)
|
| 1188 |
+
|
| 1189 |
+
if position_ids is None:
|
| 1190 |
+
if self.rope_deltas is None or cache_position is None or cache_position[0] == 0:
|
| 1191 |
+
position_ids, rope_deltas = self.get_rope_index(
|
| 1192 |
+
input_ids, image_grid_thw, video_grid_thw, attention_mask
|
| 1193 |
+
)
|
| 1194 |
+
self.rope_deltas = rope_deltas
|
| 1195 |
+
# then use the prev pre-calculated rope-deltas to get the correct position ids
|
| 1196 |
+
else:
|
| 1197 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
| 1198 |
+
position_ids = torch.arange(seq_length, device=inputs_embeds.device)
|
| 1199 |
+
position_ids = position_ids.view(1, 1, -1).expand(3, batch_size, -1)
|
| 1200 |
+
if cache_position is not None:
|
| 1201 |
+
delta = (cache_position[0] + self.rope_deltas).to(inputs_embeds.device)
|
| 1202 |
+
else:
|
| 1203 |
+
delta = torch.zeros((batch_size, seq_length), device=inputs_embeds.device)
|
| 1204 |
+
delta = delta.repeat_interleave(batch_size // delta.shape[0], dim=0)
|
| 1205 |
+
position_ids += delta.to(position_ids.device)
|
| 1206 |
+
|
| 1207 |
+
### CHANGE
|
| 1208 |
+
if seg_mask is not None:
|
| 1209 |
+
(
|
| 1210 |
+
attention_mask,
|
| 1211 |
+
final_position_ids,
|
| 1212 |
+
final_past_key_values,
|
| 1213 |
+
final_use_cache,
|
| 1214 |
+
final_cache_position,
|
| 1215 |
+
) = self._create_hybrid_mask_and_dependencies(
|
| 1216 |
+
seg_mask,
|
| 1217 |
+
inputs_embeds,
|
| 1218 |
+
attention_mask,
|
| 1219 |
+
position_ids,
|
| 1220 |
+
**kwargs,
|
| 1221 |
+
)
|
| 1222 |
+
|
| 1223 |
+
if past_key_values is not None:
|
| 1224 |
+
inputs_embeds = inputs_embeds[seg_mask == 1].unsqueeze(0)
|
| 1225 |
+
position_ids = position_ids[:, seg_mask == 1].unsqueeze(1)
|
| 1226 |
+
attention_mask = attention_mask[:, seg_mask == 1].unsqueeze(1)
|
| 1227 |
+
# attention_mask = attention_mask.unsqueeze(-2)[:, :, :, seg_mask == 1]
|
| 1228 |
+
|
| 1229 |
+
attention_mask = {'full_attention': attention_mask}
|
| 1230 |
+
|
| 1231 |
+
|
| 1232 |
+
# print(3)
|
| 1233 |
+
# print(2)
|
| 1234 |
+
###############
|
| 1235 |
+
outputs = self.language_model(
|
| 1236 |
+
input_ids=None,
|
| 1237 |
+
position_ids=position_ids,
|
| 1238 |
+
attention_mask=attention_mask,
|
| 1239 |
+
past_key_values=past_key_values,
|
| 1240 |
+
inputs_embeds=inputs_embeds,
|
| 1241 |
+
use_cache=use_cache,
|
| 1242 |
+
output_attentions=output_attentions,
|
| 1243 |
+
output_hidden_states=output_hidden_states,
|
| 1244 |
+
return_dict=True,
|
| 1245 |
+
cache_position=cache_position,
|
| 1246 |
+
**kwargs,
|
| 1247 |
+
)
|
| 1248 |
+
|
| 1249 |
+
output = Qwen2VLModelOutputWithPast(
|
| 1250 |
+
last_hidden_state=outputs.last_hidden_state,
|
| 1251 |
+
past_key_values=outputs.past_key_values,
|
| 1252 |
+
hidden_states=outputs.hidden_states,
|
| 1253 |
+
attentions=outputs.attentions,
|
| 1254 |
+
rope_deltas=self.rope_deltas,
|
| 1255 |
+
)
|
| 1256 |
+
return output if return_dict else output.to_tuple()
|
| 1257 |
+
|
| 1258 |
+
|
| 1259 |
+
class Qwen2VLForConditionalGeneration(Qwen2VLPreTrainedModel, GenerationMixin):
|
| 1260 |
+
_checkpoint_conversion_mapping = {
|
| 1261 |
+
"^visual": "model.visual",
|
| 1262 |
+
r"^model(?!\.(language_model|visual))": "model.language_model",
|
| 1263 |
+
}
|
| 1264 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 1265 |
+
|
| 1266 |
+
def __init__(self, config):
|
| 1267 |
+
super().__init__(config)
|
| 1268 |
+
self.model = Qwen2VLModel(config)
|
| 1269 |
+
self.lm_head = nn.Linear(config.text_config.hidden_size, config.text_config.vocab_size, bias=False)
|
| 1270 |
+
|
| 1271 |
+
self.post_init()
|
| 1272 |
+
|
| 1273 |
+
def get_input_embeddings(self):
|
| 1274 |
+
return self.model.get_input_embeddings()
|
| 1275 |
+
|
| 1276 |
+
def set_input_embeddings(self, value):
|
| 1277 |
+
self.model.set_input_embeddings(value)
|
| 1278 |
+
|
| 1279 |
+
def set_decoder(self, decoder):
|
| 1280 |
+
self.model.set_decoder(decoder)
|
| 1281 |
+
|
| 1282 |
+
def get_decoder(self):
|
| 1283 |
+
return self.model.get_decoder()
|
| 1284 |
+
|
| 1285 |
+
def get_video_features(
|
| 1286 |
+
self, pixel_values_videos: torch.FloatTensor, video_grid_thw: Optional[torch.LongTensor] = None
|
| 1287 |
+
):
|
| 1288 |
+
return self.model.get_video_features(pixel_values_videos, video_grid_thw)
|
| 1289 |
+
|
| 1290 |
+
def get_image_features(self, pixel_values: torch.FloatTensor, image_grid_thw: Optional[torch.LongTensor] = None):
|
| 1291 |
+
return self.model.get_image_features(pixel_values, image_grid_thw)
|
| 1292 |
+
|
| 1293 |
+
# Make modules available through conditional class for BC
|
| 1294 |
+
@property
|
| 1295 |
+
def language_model(self):
|
| 1296 |
+
return self.model.language_model
|
| 1297 |
+
|
| 1298 |
+
@property
|
| 1299 |
+
def visual(self):
|
| 1300 |
+
return self.model.visual
|
| 1301 |
+
|
| 1302 |
+
@can_return_tuple
|
| 1303 |
+
@auto_docstring
|
| 1304 |
+
def forward(
|
| 1305 |
+
self,
|
| 1306 |
+
input_ids: torch.LongTensor = None,
|
| 1307 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1308 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1309 |
+
past_key_values: Optional[Cache] = None,
|
| 1310 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1311 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1312 |
+
use_cache: Optional[bool] = None,
|
| 1313 |
+
output_attentions: Optional[bool] = None,
|
| 1314 |
+
output_hidden_states: Optional[bool] = None,
|
| 1315 |
+
pixel_values: Optional[torch.Tensor] = None,
|
| 1316 |
+
pixel_values_videos: Optional[torch.FloatTensor] = None,
|
| 1317 |
+
image_grid_thw: Optional[torch.LongTensor] = None,
|
| 1318 |
+
video_grid_thw: Optional[torch.LongTensor] = None,
|
| 1319 |
+
rope_deltas: Optional[torch.LongTensor] = None,
|
| 1320 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 1321 |
+
**kwargs: Unpack[TransformersKwargs],
|
| 1322 |
+
) -> Union[tuple, Qwen2VLCausalLMOutputWithPast]:
|
| 1323 |
+
|
| 1324 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1325 |
+
output_hidden_states = (
|
| 1326 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1327 |
+
)
|
| 1328 |
+
|
| 1329 |
+
outputs = self.model(
|
| 1330 |
+
input_ids=input_ids,
|
| 1331 |
+
pixel_values=pixel_values,
|
| 1332 |
+
pixel_values_videos=pixel_values_videos,
|
| 1333 |
+
image_grid_thw=image_grid_thw,
|
| 1334 |
+
video_grid_thw=video_grid_thw,
|
| 1335 |
+
position_ids=position_ids,
|
| 1336 |
+
attention_mask=attention_mask,
|
| 1337 |
+
past_key_values=past_key_values,
|
| 1338 |
+
inputs_embeds=inputs_embeds,
|
| 1339 |
+
use_cache=use_cache,
|
| 1340 |
+
output_attentions=output_attentions,
|
| 1341 |
+
output_hidden_states=output_hidden_states,
|
| 1342 |
+
return_dict=True,
|
| 1343 |
+
cache_position=cache_position,
|
| 1344 |
+
**kwargs,
|
| 1345 |
+
)
|
| 1346 |
+
|
| 1347 |
+
hidden_states = outputs[0]
|
| 1348 |
+
logits = self.lm_head(hidden_states)
|
| 1349 |
+
|
| 1350 |
+
loss = None
|
| 1351 |
+
if labels is not None:
|
| 1352 |
+
loss = self.loss_function(
|
| 1353 |
+
logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size, **kwargs
|
| 1354 |
+
)
|
| 1355 |
+
|
| 1356 |
+
return Qwen2VLCausalLMOutputWithPast(
|
| 1357 |
+
loss=loss,
|
| 1358 |
+
logits=logits,
|
| 1359 |
+
past_key_values=outputs.past_key_values,
|
| 1360 |
+
hidden_states=outputs.hidden_states,
|
| 1361 |
+
attentions=outputs.attentions,
|
| 1362 |
+
rope_deltas=outputs.rope_deltas,
|
| 1363 |
+
)
|
| 1364 |
+
|
| 1365 |
+
def prepare_inputs_for_generation(
|
| 1366 |
+
self,
|
| 1367 |
+
input_ids,
|
| 1368 |
+
past_key_values=None,
|
| 1369 |
+
attention_mask=None,
|
| 1370 |
+
inputs_embeds=None,
|
| 1371 |
+
cache_position=None,
|
| 1372 |
+
position_ids=None,
|
| 1373 |
+
use_cache=True,
|
| 1374 |
+
pixel_values=None,
|
| 1375 |
+
pixel_values_videos=None,
|
| 1376 |
+
image_grid_thw=None,
|
| 1377 |
+
video_grid_thw=None,
|
| 1378 |
+
**kwargs,
|
| 1379 |
+
):
|
| 1380 |
+
# Overwritten -- in specific circumstances we don't want to forward image inputs to the model
|
| 1381 |
+
|
| 1382 |
+
model_inputs = super().prepare_inputs_for_generation(
|
| 1383 |
+
input_ids,
|
| 1384 |
+
past_key_values=past_key_values,
|
| 1385 |
+
attention_mask=attention_mask,
|
| 1386 |
+
inputs_embeds=inputs_embeds,
|
| 1387 |
+
cache_position=cache_position,
|
| 1388 |
+
position_ids=position_ids,
|
| 1389 |
+
pixel_values=pixel_values,
|
| 1390 |
+
pixel_values_videos=pixel_values_videos,
|
| 1391 |
+
image_grid_thw=image_grid_thw,
|
| 1392 |
+
video_grid_thw=video_grid_thw,
|
| 1393 |
+
use_cache=use_cache,
|
| 1394 |
+
**kwargs,
|
| 1395 |
+
)
|
| 1396 |
+
|
| 1397 |
+
# Qwen2-VL position_ids are prepareed with rope_deltas in forward
|
| 1398 |
+
if position_ids is None:
|
| 1399 |
+
# Calculate RoPE index once per generation in the pre-fill stage only.
|
| 1400 |
+
# When compiling, we can't check tensor values thus we check only input length
|
| 1401 |
+
# It is safe to assume that `length!=1` means we're in pre-fill because compiled
|
| 1402 |
+
# models currently cannot do asssisted decoding
|
| 1403 |
+
prefill_compiled_stage = is_torchdynamo_compiling() and (
|
| 1404 |
+
(input_ids is not None and input_ids.shape[1] != 1)
|
| 1405 |
+
or (inputs_embeds is not None and inputs_embeds.shape[1] != 1)
|
| 1406 |
+
)
|
| 1407 |
+
prefill_noncompiled_stage = not is_torchdynamo_compiling() and (
|
| 1408 |
+
(cache_position is not None and cache_position[0] == 0)
|
| 1409 |
+
or (past_key_values is None or past_key_values.get_seq_length() == 0)
|
| 1410 |
+
)
|
| 1411 |
+
if (prefill_compiled_stage or prefill_noncompiled_stage) or self.model.rope_deltas is None:
|
| 1412 |
+
vision_positions, rope_deltas = self.model.get_rope_index(
|
| 1413 |
+
model_inputs.get("input_ids", None),
|
| 1414 |
+
image_grid_thw=image_grid_thw,
|
| 1415 |
+
video_grid_thw=video_grid_thw,
|
| 1416 |
+
attention_mask=attention_mask,
|
| 1417 |
+
)
|
| 1418 |
+
self.model.rope_deltas = rope_deltas
|
| 1419 |
+
# then use the prev pre-calculated rope-deltas to get the correct position ids
|
| 1420 |
+
elif "position_ids" in model_inputs:
|
| 1421 |
+
position_ids = model_inputs["position_ids"][None, ...]
|
| 1422 |
+
delta = self.model.rope_deltas
|
| 1423 |
+
delta = delta.repeat_interleave(position_ids.shape[1] // delta.shape[0], dim=0)
|
| 1424 |
+
vision_positions = position_ids + delta.expand_as(position_ids)
|
| 1425 |
+
vision_positions = vision_positions.expand(3, vision_positions.shape[1], -1)
|
| 1426 |
+
|
| 1427 |
+
# Concatenate "text + vision" positions into [4, bs, seq-len]
|
| 1428 |
+
if "position_ids" not in model_inputs:
|
| 1429 |
+
text_positions = torch.arange(input_ids, device=input_ids.device)[None, None, :]
|
| 1430 |
+
else:
|
| 1431 |
+
text_positions = model_inputs["position_ids"][None, ...]
|
| 1432 |
+
model_inputs["position_ids"] = torch.cat([text_positions, vision_positions], dim=0)
|
| 1433 |
+
|
| 1434 |
+
if model_inputs["cache_position"][0] != 0:
|
| 1435 |
+
model_inputs["pixel_values"] = None
|
| 1436 |
+
model_inputs["pixel_values_videos"] = None
|
| 1437 |
+
|
| 1438 |
+
return model_inputs
|
| 1439 |
+
|
| 1440 |
+
def _get_image_nums_and_video_nums(
|
| 1441 |
+
self,
|
| 1442 |
+
input_ids: Optional[torch.LongTensor],
|
| 1443 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 1444 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
| 1445 |
+
"""
|
| 1446 |
+
Get the number of images and videos for each sample to calculate the separation length of the sample tensor.
|
| 1447 |
+
These parameters are not passed through the processor to avoid unpredictable impacts from interface modifications.
|
| 1448 |
+
|
| 1449 |
+
Args:
|
| 1450 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 1451 |
+
Indices of input sequence tokens in the vocabulary.
|
| 1452 |
+
|
| 1453 |
+
Returns:
|
| 1454 |
+
image_nums (`torch.LongTensor` of shape `(batch_size, num_images_sample)`)
|
| 1455 |
+
video_nums (`torch.LongTensor` of shape `(batch_size, num_videos_sample)`)
|
| 1456 |
+
"""
|
| 1457 |
+
image_token_id = self.config.image_token_id
|
| 1458 |
+
video_token_id = self.config.video_token_id
|
| 1459 |
+
vision_start_token_id = self.config.vision_start_token_id
|
| 1460 |
+
|
| 1461 |
+
if inputs_embeds is not None:
|
| 1462 |
+
vision_start_mask = (
|
| 1463 |
+
inputs_embeds
|
| 1464 |
+
== self.get_input_embeddings()(
|
| 1465 |
+
torch.tensor(vision_start_token_id, dtype=torch.long, device=inputs_embeds.device)
|
| 1466 |
+
)
|
| 1467 |
+
)[..., 0]
|
| 1468 |
+
image_mask = (
|
| 1469 |
+
inputs_embeds
|
| 1470 |
+
== self.get_input_embeddings()(
|
| 1471 |
+
torch.tensor(image_token_id, dtype=torch.long, device=inputs_embeds.device)
|
| 1472 |
+
)
|
| 1473 |
+
)[..., 0]
|
| 1474 |
+
video_mask = (
|
| 1475 |
+
inputs_embeds
|
| 1476 |
+
== self.get_input_embeddings()(
|
| 1477 |
+
torch.tensor(video_token_id, dtype=torch.long, device=inputs_embeds.device)
|
| 1478 |
+
)
|
| 1479 |
+
)[..., 0]
|
| 1480 |
+
else:
|
| 1481 |
+
vision_start_mask = input_ids == vision_start_token_id
|
| 1482 |
+
image_mask = input_ids == image_token_id
|
| 1483 |
+
video_mask = input_ids == video_token_id
|
| 1484 |
+
|
| 1485 |
+
vision_first_mask = torch.roll(vision_start_mask, shifts=1, dims=1)
|
| 1486 |
+
image_nums = torch.sum(vision_first_mask & image_mask, dim=1)
|
| 1487 |
+
video_nums = torch.sum(vision_first_mask & video_mask, dim=1)
|
| 1488 |
+
|
| 1489 |
+
return image_nums, video_nums
|
| 1490 |
+
|
| 1491 |
+
def _expand_inputs_for_generation(
|
| 1492 |
+
self,
|
| 1493 |
+
expand_size: int = 1,
|
| 1494 |
+
is_encoder_decoder: bool = False,
|
| 1495 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 1496 |
+
**model_kwargs,
|
| 1497 |
+
) -> tuple[torch.LongTensor, dict[str, Any]]:
|
| 1498 |
+
# Overwritten -- Support for expanding tensors without a batch size dimension
|
| 1499 |
+
# e.g., pixel_values, image_grid_thw, pixel_values_videos, video_grid_thw, second_per_grid_t
|
| 1500 |
+
# pixel_values.shape[0] is sum(seqlen_images for samples)
|
| 1501 |
+
# image_grid_thw.shape[0] is sum(num_images for samples)
|
| 1502 |
+
|
| 1503 |
+
if expand_size == 1:
|
| 1504 |
+
return input_ids, model_kwargs
|
| 1505 |
+
|
| 1506 |
+
visual_keys = ["pixel_values", "image_grid_thw", "pixel_values_videos", "video_grid_thw", "second_per_grid_ts"]
|
| 1507 |
+
|
| 1508 |
+
def _expand_dict_for_generation_visual(dict_to_expand):
|
| 1509 |
+
image_grid_thw = model_kwargs.get("image_grid_thw", None)
|
| 1510 |
+
video_grid_thw = model_kwargs.get("video_grid_thw", None)
|
| 1511 |
+
image_nums, video_nums = self._get_image_nums_and_video_nums(
|
| 1512 |
+
input_ids, inputs_embeds=model_kwargs.get("inputs_embeds", None)
|
| 1513 |
+
)
|
| 1514 |
+
|
| 1515 |
+
def _repeat_interleave_samples(x, lengths, repeat_times):
|
| 1516 |
+
samples = torch.split(x, lengths)
|
| 1517 |
+
repeat_args = [repeat_times] + [1] * (x.dim() - 1)
|
| 1518 |
+
result = torch.cat([sample.repeat(*repeat_args) for sample in samples], dim=0)
|
| 1519 |
+
return result
|
| 1520 |
+
|
| 1521 |
+
for key in dict_to_expand:
|
| 1522 |
+
if key == "pixel_values":
|
| 1523 |
+
# split images into samples
|
| 1524 |
+
samples = torch.split(image_grid_thw, list(image_nums))
|
| 1525 |
+
# compute the sequence length of images for each sample
|
| 1526 |
+
lengths = [torch.prod(sample, dim=1).sum() for sample in samples]
|
| 1527 |
+
dict_to_expand[key] = _repeat_interleave_samples(
|
| 1528 |
+
dict_to_expand[key], lengths=lengths, repeat_times=expand_size
|
| 1529 |
+
)
|
| 1530 |
+
elif key == "image_grid_thw":
|
| 1531 |
+
# get the num of images for each sample
|
| 1532 |
+
lengths = list(image_nums)
|
| 1533 |
+
dict_to_expand[key] = _repeat_interleave_samples(
|
| 1534 |
+
dict_to_expand[key], lengths=lengths, repeat_times=expand_size
|
| 1535 |
+
)
|
| 1536 |
+
elif key == "pixel_values_videos":
|
| 1537 |
+
samples = torch.split(video_grid_thw, list(video_nums))
|
| 1538 |
+
lengths = [torch.prod(sample, dim=1).sum() for sample in samples]
|
| 1539 |
+
dict_to_expand[key] = _repeat_interleave_samples(
|
| 1540 |
+
dict_to_expand[key], lengths=lengths, repeat_times=expand_size
|
| 1541 |
+
)
|
| 1542 |
+
elif key == "video_grid_thw":
|
| 1543 |
+
lengths = list(video_nums)
|
| 1544 |
+
dict_to_expand[key] = _repeat_interleave_samples(
|
| 1545 |
+
dict_to_expand[key], lengths=lengths, repeat_times=expand_size
|
| 1546 |
+
)
|
| 1547 |
+
elif key == "second_per_grid_ts":
|
| 1548 |
+
dict_to_expand[key] = _repeat_interleave_samples(
|
| 1549 |
+
dict_to_expand[key], lengths=list(video_nums), repeat_times=expand_size
|
| 1550 |
+
)
|
| 1551 |
+
return dict_to_expand
|
| 1552 |
+
|
| 1553 |
+
def _expand_dict_for_generation(dict_to_expand):
|
| 1554 |
+
for key in dict_to_expand:
|
| 1555 |
+
if (
|
| 1556 |
+
key != "cache_position"
|
| 1557 |
+
and dict_to_expand[key] is not None
|
| 1558 |
+
and isinstance(dict_to_expand[key], torch.Tensor)
|
| 1559 |
+
and key not in visual_keys
|
| 1560 |
+
):
|
| 1561 |
+
dict_to_expand[key] = dict_to_expand[key].repeat_interleave(expand_size, dim=0)
|
| 1562 |
+
return dict_to_expand
|
| 1563 |
+
|
| 1564 |
+
model_kwargs = _expand_dict_for_generation_visual(model_kwargs)
|
| 1565 |
+
|
| 1566 |
+
if input_ids is not None:
|
| 1567 |
+
input_ids = input_ids.repeat_interleave(expand_size, dim=0)
|
| 1568 |
+
|
| 1569 |
+
model_kwargs = _expand_dict_for_generation(model_kwargs)
|
| 1570 |
+
|
| 1571 |
+
if is_encoder_decoder:
|
| 1572 |
+
if model_kwargs.get("encoder_outputs") is None:
|
| 1573 |
+
raise ValueError("If `is_encoder_decoder` is True, make sure that `encoder_outputs` is defined.")
|
| 1574 |
+
model_kwargs["encoder_outputs"] = _expand_dict_for_generation(model_kwargs["encoder_outputs"])
|
| 1575 |
+
|
| 1576 |
+
return input_ids, model_kwargs
|
| 1577 |
+
|
| 1578 |
+
|
| 1579 |
+
__all__ = ["Qwen2VLForConditionalGeneration", "Qwen2VLModel", "Qwen2VLPreTrainedModel", "Qwen2VLTextModel"]
|
model/qwen_changes.py
ADDED
|
@@ -0,0 +1,433 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from dataclasses import dataclass
|
| 2 |
+
from typing import Optional, Tuple, Callable
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
from torch import nn
|
| 6 |
+
from transformers import DynamicCache
|
| 7 |
+
from .modeling_qwen2_vl import Qwen2VLForConditionalGeneration
|
| 8 |
+
from transformers.masking_utils import create_causal_mask
|
| 9 |
+
from transformers.utils import ModelOutput
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def replace_token_pair_vectorized(
|
| 13 |
+
input_ids: torch.Tensor,
|
| 14 |
+
seg_start_token_id: int,
|
| 15 |
+
seg_holder_token_id: int,
|
| 16 |
+
vision_start_token_id: int,
|
| 17 |
+
image_token_id: int,
|
| 18 |
+
) -> torch.Tensor:
|
| 19 |
+
modified_ids = input_ids.clone()
|
| 20 |
+
|
| 21 |
+
#creating aligned views of current and next tokens
|
| 22 |
+
current_tokens = modified_ids[..., :-1]
|
| 23 |
+
next_tokens = modified_ids[..., 1:]
|
| 24 |
+
|
| 25 |
+
# parallel find all positions where (current == start) & (next == holder)
|
| 26 |
+
mask = (current_tokens == seg_start_token_id) & (next_tokens == seg_holder_token_id)
|
| 27 |
+
|
| 28 |
+
# Use the mask to perform all replacements at once, in parallel
|
| 29 |
+
modified_ids[..., :-1][mask] = vision_start_token_id
|
| 30 |
+
modified_ids[seg_holder_token_id == modified_ids] = image_token_id
|
| 31 |
+
|
| 32 |
+
return modified_ids, mask.sum()
|
| 33 |
+
|
| 34 |
+
import torch
|
| 35 |
+
|
| 36 |
+
def get_rope_index(
|
| 37 |
+
self,
|
| 38 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 39 |
+
image_grid_thw: Optional[torch.LongTensor] = None,
|
| 40 |
+
video_grid_thw: Optional[torch.LongTensor] = None,
|
| 41 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 42 |
+
seg_start_token_id: Optional[int] = None,
|
| 43 |
+
seg_holder_token_id: Optional[int] = None,
|
| 44 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
| 45 |
+
|
| 46 |
+
spatial_merge_size = self.config.vision_config.spatial_merge_size
|
| 47 |
+
image_token_id = self.config.image_token_id
|
| 48 |
+
video_token_id = self.config.video_token_id
|
| 49 |
+
vision_start_token_id = self.config.vision_start_token_id
|
| 50 |
+
|
| 51 |
+
input_ids = input_ids.clone()
|
| 52 |
+
if seg_start_token_id is not None and seg_holder_token_id is not None:
|
| 53 |
+
input_ids, num = replace_token_pair_vectorized(input_ids, seg_start_token_id, seg_holder_token_id,
|
| 54 |
+
vision_start_token_id, image_token_id)
|
| 55 |
+
mask_grid_thw = image_grid_thw[-1].clone()
|
| 56 |
+
mask_grid_thw = mask_grid_thw.unsqueeze(0).repeat([num, 1])
|
| 57 |
+
image_grid_thw = torch.cat((image_grid_thw, mask_grid_thw), dim=0)
|
| 58 |
+
|
| 59 |
+
mrope_position_deltas = []
|
| 60 |
+
if input_ids is not None and (image_grid_thw is not None or video_grid_thw is not None):
|
| 61 |
+
total_input_ids = input_ids
|
| 62 |
+
if attention_mask is None:
|
| 63 |
+
attention_mask = torch.ones_like(total_input_ids)
|
| 64 |
+
position_ids = torch.ones(
|
| 65 |
+
3, input_ids.shape[0], input_ids.shape[1], dtype=input_ids.dtype, device=input_ids.device
|
| 66 |
+
)
|
| 67 |
+
if isinstance(attention_mask, dict):
|
| 68 |
+
attention_mask = attention_mask['raw_attention']
|
| 69 |
+
image_index, video_index = 0, 0
|
| 70 |
+
for i, input_ids in enumerate(total_input_ids):
|
| 71 |
+
input_ids = input_ids[attention_mask[i].to(input_ids.device) == 1]
|
| 72 |
+
image_nums, video_nums = 0, 0
|
| 73 |
+
vision_start_indices = torch.argwhere(input_ids == vision_start_token_id).squeeze(1)
|
| 74 |
+
vision_tokens = input_ids[vision_start_indices + 1]
|
| 75 |
+
image_nums = (vision_tokens == image_token_id).sum()
|
| 76 |
+
video_nums = (vision_tokens == video_token_id).sum()
|
| 77 |
+
input_tokens = input_ids.tolist()
|
| 78 |
+
llm_pos_ids_list: list = []
|
| 79 |
+
st = 0
|
| 80 |
+
remain_images, remain_videos = image_nums, video_nums
|
| 81 |
+
for _ in range(image_nums + video_nums):
|
| 82 |
+
if image_token_id in input_tokens and remain_images > 0:
|
| 83 |
+
ed_image = input_tokens.index(image_token_id, st)
|
| 84 |
+
else:
|
| 85 |
+
ed_image = len(input_tokens) + 1
|
| 86 |
+
if video_token_id in input_tokens and remain_videos > 0:
|
| 87 |
+
ed_video = input_tokens.index(video_token_id, st)
|
| 88 |
+
else:
|
| 89 |
+
ed_video = len(input_tokens) + 1
|
| 90 |
+
if ed_image < ed_video:
|
| 91 |
+
t, h, w = (
|
| 92 |
+
image_grid_thw[image_index][0],
|
| 93 |
+
image_grid_thw[image_index][1],
|
| 94 |
+
image_grid_thw[image_index][2],
|
| 95 |
+
)
|
| 96 |
+
image_index += 1
|
| 97 |
+
remain_images -= 1
|
| 98 |
+
ed = ed_image
|
| 99 |
+
else:
|
| 100 |
+
t, h, w = (
|
| 101 |
+
video_grid_thw[video_index][0],
|
| 102 |
+
video_grid_thw[video_index][1],
|
| 103 |
+
video_grid_thw[video_index][2],
|
| 104 |
+
)
|
| 105 |
+
video_index += 1
|
| 106 |
+
remain_videos -= 1
|
| 107 |
+
ed = ed_video
|
| 108 |
+
llm_grid_t, llm_grid_h, llm_grid_w = (
|
| 109 |
+
t.item(),
|
| 110 |
+
h.item() // spatial_merge_size,
|
| 111 |
+
w.item() // spatial_merge_size,
|
| 112 |
+
)
|
| 113 |
+
text_len = ed - st
|
| 114 |
+
|
| 115 |
+
st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
|
| 116 |
+
llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx)
|
| 117 |
+
|
| 118 |
+
t_index = torch.arange(llm_grid_t).view(-1, 1).expand(-1, llm_grid_h * llm_grid_w).flatten()
|
| 119 |
+
h_index = torch.arange(llm_grid_h).view(1, -1, 1).expand(llm_grid_t, -1, llm_grid_w).flatten()
|
| 120 |
+
w_index = torch.arange(llm_grid_w).view(1, 1, -1).expand(llm_grid_t, llm_grid_h, -1).flatten()
|
| 121 |
+
llm_pos_ids_list.append(torch.stack([t_index, h_index, w_index]) + text_len + st_idx)
|
| 122 |
+
st = ed + llm_grid_t * llm_grid_h * llm_grid_w
|
| 123 |
+
|
| 124 |
+
if st < len(input_tokens):
|
| 125 |
+
st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
|
| 126 |
+
text_len = len(input_tokens) - st
|
| 127 |
+
llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx)
|
| 128 |
+
|
| 129 |
+
llm_positions = torch.cat(llm_pos_ids_list, dim=1).reshape(3, -1)
|
| 130 |
+
position_ids[..., i, attention_mask[i] == 1] = llm_positions.to(position_ids.device)
|
| 131 |
+
mrope_position_deltas.append(llm_positions.max() + 1 - len(total_input_ids[i]))
|
| 132 |
+
mrope_position_deltas = torch.tensor(mrope_position_deltas, device=input_ids.device).unsqueeze(1)
|
| 133 |
+
return position_ids, mrope_position_deltas
|
| 134 |
+
else:
|
| 135 |
+
if attention_mask is not None:
|
| 136 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
| 137 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
| 138 |
+
position_ids = position_ids.unsqueeze(0).expand(3, -1, -1).to(attention_mask.device)
|
| 139 |
+
max_position_ids = position_ids.max(0, keepdim=False)[0].max(-1, keepdim=True)[0]
|
| 140 |
+
mrope_position_deltas = max_position_ids + 1 - attention_mask.shape[-1]
|
| 141 |
+
else:
|
| 142 |
+
position_ids = (
|
| 143 |
+
torch.arange(input_ids.shape[1], device=input_ids.device)
|
| 144 |
+
.view(1, 1, -1)
|
| 145 |
+
.expand(3, input_ids.shape[0], -1)
|
| 146 |
+
)
|
| 147 |
+
mrope_position_deltas = torch.zeros(
|
| 148 |
+
[input_ids.shape[0], 1],
|
| 149 |
+
device=input_ids.device,
|
| 150 |
+
dtype=input_ids.dtype,
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
return position_ids, mrope_position_deltas
|
| 154 |
+
|
| 155 |
+
def get_rope_index_2_5(
|
| 156 |
+
self,
|
| 157 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 158 |
+
image_grid_thw: Optional[torch.LongTensor] = None,
|
| 159 |
+
video_grid_thw: Optional[torch.LongTensor] = None,
|
| 160 |
+
second_per_grid_ts: Optional[torch.Tensor] = None,
|
| 161 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 162 |
+
seg_start_token_id: Optional[int] = None,
|
| 163 |
+
seg_holder_token_id: Optional[int] = None,
|
| 164 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
| 165 |
+
|
| 166 |
+
spatial_merge_size = self.config.vision_config.spatial_merge_size
|
| 167 |
+
image_token_id = self.config.image_token_id
|
| 168 |
+
video_token_id = self.config.video_token_id
|
| 169 |
+
vision_start_token_id = self.config.vision_start_token_id
|
| 170 |
+
input_ids = input_ids.clone()
|
| 171 |
+
if seg_start_token_id is not None and seg_holder_token_id is not None:
|
| 172 |
+
input_ids, num = replace_token_pair_vectorized(input_ids, seg_start_token_id, seg_holder_token_id,
|
| 173 |
+
vision_start_token_id, image_token_id)
|
| 174 |
+
mask_grid_thw = image_grid_thw[-1].clone()
|
| 175 |
+
mask_grid_thw = mask_grid_thw.unsqueeze(0).repeat([num, 1])
|
| 176 |
+
image_grid_thw = torch.cat((image_grid_thw, mask_grid_thw), dim=0)
|
| 177 |
+
|
| 178 |
+
mrope_position_deltas = []
|
| 179 |
+
if input_ids is not None and (image_grid_thw is not None or video_grid_thw is not None):
|
| 180 |
+
total_input_ids = input_ids
|
| 181 |
+
if attention_mask is None:
|
| 182 |
+
attention_mask = torch.ones_like(total_input_ids)
|
| 183 |
+
position_ids = torch.ones(
|
| 184 |
+
3,
|
| 185 |
+
input_ids.shape[0],
|
| 186 |
+
input_ids.shape[1],
|
| 187 |
+
dtype=input_ids.dtype,
|
| 188 |
+
device=input_ids.device,
|
| 189 |
+
)
|
| 190 |
+
image_index, video_index = 0, 0
|
| 191 |
+
attention_mask = attention_mask.to(total_input_ids.device)
|
| 192 |
+
for i, input_ids in enumerate(total_input_ids):
|
| 193 |
+
input_ids = input_ids[attention_mask[i] == 1]
|
| 194 |
+
image_nums, video_nums = 0, 0
|
| 195 |
+
vision_start_indices = torch.argwhere(input_ids == vision_start_token_id).squeeze(1)
|
| 196 |
+
vision_tokens = input_ids[vision_start_indices + 1]
|
| 197 |
+
image_nums = (vision_tokens == image_token_id).sum()
|
| 198 |
+
video_nums = (vision_tokens == video_token_id).sum()
|
| 199 |
+
input_tokens = input_ids.tolist()
|
| 200 |
+
llm_pos_ids_list: list = []
|
| 201 |
+
st = 0
|
| 202 |
+
remain_images, remain_videos = image_nums, video_nums
|
| 203 |
+
for _ in range(image_nums + video_nums):
|
| 204 |
+
if image_token_id in input_tokens and remain_images > 0:
|
| 205 |
+
ed_image = input_tokens.index(image_token_id, st)
|
| 206 |
+
else:
|
| 207 |
+
ed_image = len(input_tokens) + 1
|
| 208 |
+
if video_token_id in input_tokens and remain_videos > 0:
|
| 209 |
+
ed_video = input_tokens.index(video_token_id, st)
|
| 210 |
+
else:
|
| 211 |
+
ed_video = len(input_tokens) + 1
|
| 212 |
+
if ed_image < ed_video:
|
| 213 |
+
t, h, w = (
|
| 214 |
+
image_grid_thw[image_index][0],
|
| 215 |
+
image_grid_thw[image_index][1],
|
| 216 |
+
image_grid_thw[image_index][2],
|
| 217 |
+
)
|
| 218 |
+
second_per_grid_t = 0
|
| 219 |
+
image_index += 1
|
| 220 |
+
remain_images -= 1
|
| 221 |
+
ed = ed_image
|
| 222 |
+
|
| 223 |
+
else:
|
| 224 |
+
t, h, w = (
|
| 225 |
+
video_grid_thw[video_index][0],
|
| 226 |
+
video_grid_thw[video_index][1],
|
| 227 |
+
video_grid_thw[video_index][2],
|
| 228 |
+
)
|
| 229 |
+
if second_per_grid_ts is not None:
|
| 230 |
+
second_per_grid_t = second_per_grid_ts[video_index]
|
| 231 |
+
else:
|
| 232 |
+
second_per_grid_t = 1.0
|
| 233 |
+
video_index += 1
|
| 234 |
+
remain_videos -= 1
|
| 235 |
+
ed = ed_video
|
| 236 |
+
llm_grid_t, llm_grid_h, llm_grid_w = (
|
| 237 |
+
t.item(),
|
| 238 |
+
h.item() // spatial_merge_size,
|
| 239 |
+
w.item() // spatial_merge_size,
|
| 240 |
+
)
|
| 241 |
+
text_len = ed - st
|
| 242 |
+
|
| 243 |
+
st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
|
| 244 |
+
llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx)
|
| 245 |
+
|
| 246 |
+
range_tensor = torch.arange(llm_grid_t).view(-1, 1)
|
| 247 |
+
expanded_range = range_tensor.expand(-1, llm_grid_h * llm_grid_w)
|
| 248 |
+
|
| 249 |
+
## normalize type, send to device.
|
| 250 |
+
second_per_grid_t = torch.as_tensor(
|
| 251 |
+
second_per_grid_t, dtype=range_tensor.dtype, device=range_tensor.device
|
| 252 |
+
)
|
| 253 |
+
|
| 254 |
+
time_tensor = expanded_range * second_per_grid_t * self.config.vision_config.tokens_per_second
|
| 255 |
+
|
| 256 |
+
time_tensor_long = time_tensor.long()
|
| 257 |
+
t_index = time_tensor_long.flatten()
|
| 258 |
+
|
| 259 |
+
h_index = torch.arange(llm_grid_h).view(1, -1, 1).expand(llm_grid_t, -1, llm_grid_w).flatten()
|
| 260 |
+
w_index = torch.arange(llm_grid_w).view(1, 1, -1).expand(llm_grid_t, llm_grid_h, -1).flatten()
|
| 261 |
+
llm_pos_ids_list.append(torch.stack([t_index, h_index, w_index]) + text_len + st_idx)
|
| 262 |
+
st = ed + llm_grid_t * llm_grid_h * llm_grid_w
|
| 263 |
+
|
| 264 |
+
if st < len(input_tokens):
|
| 265 |
+
st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
|
| 266 |
+
text_len = len(input_tokens) - st
|
| 267 |
+
llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx)
|
| 268 |
+
|
| 269 |
+
llm_positions = torch.cat(llm_pos_ids_list, dim=1).reshape(3, -1)
|
| 270 |
+
position_ids[..., i, attention_mask[i] == 1] = llm_positions.to(position_ids.device)
|
| 271 |
+
mrope_position_deltas.append(llm_positions.max() + 1 - len(total_input_ids[i]))
|
| 272 |
+
mrope_position_deltas = torch.tensor(mrope_position_deltas, device=input_ids.device).unsqueeze(1)
|
| 273 |
+
return position_ids, mrope_position_deltas
|
| 274 |
+
else:
|
| 275 |
+
if attention_mask is not None:
|
| 276 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
| 277 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
| 278 |
+
position_ids = position_ids.unsqueeze(0).expand(3, -1, -1).to(attention_mask.device)
|
| 279 |
+
max_position_ids = position_ids.max(0, keepdim=False)[0].max(-1, keepdim=True)[0]
|
| 280 |
+
mrope_position_deltas = max_position_ids + 1 - attention_mask.shape[-1]
|
| 281 |
+
else:
|
| 282 |
+
position_ids = (
|
| 283 |
+
torch.arange(input_ids.shape[1], device=input_ids.device)
|
| 284 |
+
.view(1, 1, -1)
|
| 285 |
+
.expand(3, input_ids.shape[0], -1)
|
| 286 |
+
)
|
| 287 |
+
mrope_position_deltas = torch.zeros(
|
| 288 |
+
[input_ids.shape[0], 1],
|
| 289 |
+
device=input_ids.device,
|
| 290 |
+
dtype=input_ids.dtype,
|
| 291 |
+
)
|
| 292 |
+
|
| 293 |
+
return position_ids, mrope_position_deltas
|
| 294 |
+
|
| 295 |
+
@dataclass
|
| 296 |
+
class CustomModelOutput(ModelOutput):
|
| 297 |
+
loss: Optional[torch.FloatTensor] = None
|
| 298 |
+
logits: torch.FloatTensor = None
|
| 299 |
+
bi_logits: Optional[torch.FloatTensor] = None
|
| 300 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
| 301 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
| 302 |
+
|
| 303 |
+
|
| 304 |
+
import torch
|
| 305 |
+
|
| 306 |
+
|
| 307 |
+
def create_bidirectional_lookup_function(seg_mask_tensor: torch.Tensor) -> Callable:
|
| 308 |
+
|
| 309 |
+
def lookup_function(batch_idx, head_idx, q_idx, kv_idx) -> bool:
|
| 310 |
+
is_query_in_seg = seg_mask_tensor[batch_idx, q_idx]
|
| 311 |
+
|
| 312 |
+
return is_query_in_seg
|
| 313 |
+
|
| 314 |
+
return lookup_function
|
| 315 |
+
|
| 316 |
+
def _create_hybrid_mask_and_dependencies(
|
| 317 |
+
self,
|
| 318 |
+
seg_mask: torch.Tensor,
|
| 319 |
+
inputs_embeds: torch.Tensor,
|
| 320 |
+
attention_mask: torch.Tensor,
|
| 321 |
+
position_ids: torch.Tensor,
|
| 322 |
+
**kwargs,
|
| 323 |
+
):
|
| 324 |
+
|
| 325 |
+
|
| 326 |
+
bidirectional_mask_fn = create_bidirectional_lookup_function(seg_mask)
|
| 327 |
+
|
| 328 |
+
use_cache = kwargs.get('use_cache', None)
|
| 329 |
+
if self.is_gradient_checkpointing and self.training:
|
| 330 |
+
if use_cache:
|
| 331 |
+
use_cache = False
|
| 332 |
+
|
| 333 |
+
past_key_values = kwargs.get('past_key_values', None)
|
| 334 |
+
if use_cache and past_key_values is None and not torch.jit.is_tracing():
|
| 335 |
+
past_key_values = DynamicCache(config=self.config)
|
| 336 |
+
|
| 337 |
+
cache_position = kwargs.get('cache_position', None)
|
| 338 |
+
if cache_position is None:
|
| 339 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 340 |
+
cache_position = torch.arange(
|
| 341 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
| 342 |
+
)
|
| 343 |
+
|
| 344 |
+
if position_ids is None:
|
| 345 |
+
local_position_ids = cache_position.view(1, 1, -1).expand(3, inputs_embeds.shape[0], -1)
|
| 346 |
+
elif position_ids.ndim == 2:
|
| 347 |
+
local_position_ids = position_ids[None, ...].expand(3, position_ids.shape[0], -1)
|
| 348 |
+
else:
|
| 349 |
+
local_position_ids = position_ids
|
| 350 |
+
|
| 351 |
+
if local_position_ids.ndim == 3 and local_position_ids.shape[0] == 4:
|
| 352 |
+
text_position_ids = local_position_ids[0]
|
| 353 |
+
final_position_ids = local_position_ids[1:]
|
| 354 |
+
else:
|
| 355 |
+
text_position_ids = local_position_ids[0]
|
| 356 |
+
final_position_ids = position_ids
|
| 357 |
+
|
| 358 |
+
mask_kwargs = {
|
| 359 |
+
"config": self.config,
|
| 360 |
+
"input_embeds": inputs_embeds,
|
| 361 |
+
"attention_mask": attention_mask,
|
| 362 |
+
"cache_position": cache_position,
|
| 363 |
+
"past_key_values": past_key_values,
|
| 364 |
+
"position_ids": text_position_ids,
|
| 365 |
+
"or_mask_function": bidirectional_mask_fn,
|
| 366 |
+
}
|
| 367 |
+
hybrid_attention_mask = create_causal_mask(**mask_kwargs)
|
| 368 |
+
|
| 369 |
+
return hybrid_attention_mask, final_position_ids, past_key_values, use_cache, cache_position
|
| 370 |
+
|
| 371 |
+
class SegQwenVL(Qwen2VLForConditionalGeneration):
|
| 372 |
+
def __init__(self, config):
|
| 373 |
+
super().__init__(config)
|
| 374 |
+
self.classifier = nn.Linear(config.hidden_size, 1)
|
| 375 |
+
self.model._create_hybrid_mask_and_dependencies = _create_hybrid_mask_and_dependencies.__get__(self)
|
| 376 |
+
self.model.get_rope_index = get_rope_index.__get__(self)
|
| 377 |
+
|
| 378 |
+
def forward(self, input_ids: torch.LongTensor = None, attention_mask: torch.FloatTensor = None, pixel_values: torch.FloatTensor = None,
|
| 379 |
+
position_ids=None, labels: torch.LongTensor = None, do_classification: bool=False, output_hidden_states=False, **kwargs,):
|
| 380 |
+
|
| 381 |
+
if do_classification:
|
| 382 |
+
inputs_embeds = self.model.get_input_embeddings()(input_ids)
|
| 383 |
+
image_embeds = self.model.get_image_features(pixel_values, kwargs['image_grid_thw'])
|
| 384 |
+
image_embeds = torch.cat(image_embeds, dim=0).to(inputs_embeds.device, inputs_embeds.dtype)
|
| 385 |
+
image_mask, _ = self.model.get_placeholder_mask(
|
| 386 |
+
input_ids, inputs_embeds=inputs_embeds, image_features=image_embeds
|
| 387 |
+
)
|
| 388 |
+
inputs_embeds = inputs_embeds.masked_scatter(image_mask, image_embeds)
|
| 389 |
+
seg_mask = (input_ids == self.mask_token_id)
|
| 390 |
+
|
| 391 |
+
inputs_embeds[seg_mask] = inputs_embeds[seg_mask] + image_embeds[-seg_mask.sum():]
|
| 392 |
+
|
| 393 |
+
outputs = self.model(
|
| 394 |
+
input_ids=input_ids,
|
| 395 |
+
inputs_embeds=inputs_embeds,
|
| 396 |
+
attention_mask=attention_mask,
|
| 397 |
+
pixel_values=None,
|
| 398 |
+
output_hidden_states=True,
|
| 399 |
+
position_ids=position_ids,
|
| 400 |
+
seg_mask=seg_mask,
|
| 401 |
+
**kwargs,
|
| 402 |
+
)
|
| 403 |
+
last_hidden_state = outputs.hidden_states[-1]
|
| 404 |
+
logits = self.classifier(last_hidden_state)
|
| 405 |
+
|
| 406 |
+
return CustomModelOutput(
|
| 407 |
+
bi_logits=logits,
|
| 408 |
+
# hidden_states=outputs.hidden_states,
|
| 409 |
+
attentions=outputs.attentions,
|
| 410 |
+
)
|
| 411 |
+
|
| 412 |
+
else:
|
| 413 |
+
if labels is not None:
|
| 414 |
+
output_hidden_states = True
|
| 415 |
+
|
| 416 |
+
original_output = super().forward(
|
| 417 |
+
input_ids=input_ids,
|
| 418 |
+
attention_mask=attention_mask,
|
| 419 |
+
pixel_values=pixel_values,
|
| 420 |
+
labels=labels,
|
| 421 |
+
output_hidden_states=output_hidden_states,
|
| 422 |
+
position_ids=position_ids,
|
| 423 |
+
**kwargs,
|
| 424 |
+
)
|
| 425 |
+
if labels is not None:
|
| 426 |
+
last_hidden_state = original_output.hidden_states[-1]
|
| 427 |
+
dummy_logits = self.classifier(last_hidden_state)
|
| 428 |
+
if hasattr(original_output, 'loss') and original_output.loss is not None:
|
| 429 |
+
dummy_loss = dummy_logits[0, 0].sum() * 0.0
|
| 430 |
+
original_output.loss += dummy_loss
|
| 431 |
+
|
| 432 |
+
return original_output
|
| 433 |
+
|
model/segment_anything/__init__.py
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
from .build_sam import (
|
| 3 |
+
build_sam,
|
| 4 |
+
build_sam_vit_h,
|
| 5 |
+
build_sam_vit_l,
|
| 6 |
+
build_sam_vit_b,
|
| 7 |
+
sam_model_registry,
|
| 8 |
+
)
|
| 9 |
+
from .predictor import SamPredictor
|
| 10 |
+
from .automatic_mask_generator import SamAutomaticMaskGenerator
|
model/segment_anything/automatic_mask_generator.py
ADDED
|
@@ -0,0 +1,296 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
from torchvision.ops.boxes import batched_nms, box_area # type: ignore
|
| 6 |
+
|
| 7 |
+
from typing import Any, Dict, List, Optional, Tuple
|
| 8 |
+
|
| 9 |
+
from .modeling import Sam
|
| 10 |
+
from .predictor import SamPredictor
|
| 11 |
+
from .utils.amg import (
|
| 12 |
+
MaskData,
|
| 13 |
+
area_from_rle,
|
| 14 |
+
batch_iterator,
|
| 15 |
+
batched_mask_to_box,
|
| 16 |
+
box_xyxy_to_xywh,
|
| 17 |
+
build_all_layer_point_grids,
|
| 18 |
+
calculate_stability_score,
|
| 19 |
+
coco_encode_rle,
|
| 20 |
+
generate_crop_boxes,
|
| 21 |
+
is_box_near_crop_edge,
|
| 22 |
+
mask_to_rle_pytorch,
|
| 23 |
+
remove_small_regions,
|
| 24 |
+
rle_to_mask,
|
| 25 |
+
uncrop_boxes_xyxy,
|
| 26 |
+
uncrop_masks,
|
| 27 |
+
uncrop_points,
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
class SamAutomaticMaskGenerator:
|
| 32 |
+
def __init__(
|
| 33 |
+
self,
|
| 34 |
+
model: Sam,
|
| 35 |
+
points_per_side: Optional[int] = 32,
|
| 36 |
+
points_per_batch: int = 64,
|
| 37 |
+
pred_iou_thresh: float = 0.88,
|
| 38 |
+
stability_score_thresh: float = 0.95,
|
| 39 |
+
stability_score_offset: float = 1.0,
|
| 40 |
+
box_nms_thresh: float = 0.7,
|
| 41 |
+
crop_n_layers: int = 0,
|
| 42 |
+
crop_nms_thresh: float = 0.7,
|
| 43 |
+
crop_overlap_ratio: float = 512 / 1500,
|
| 44 |
+
crop_n_points_downscale_factor: int = 1,
|
| 45 |
+
point_grids: Optional[List[np.ndarray]] = None,
|
| 46 |
+
min_mask_region_area: int = 0,
|
| 47 |
+
output_mode: str = "binary_mask",
|
| 48 |
+
) -> None:
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
assert (points_per_side is None) != (
|
| 52 |
+
point_grids is None
|
| 53 |
+
), "Exactly one of points_per_side or point_grid must be provided."
|
| 54 |
+
if points_per_side is not None:
|
| 55 |
+
self.point_grids = build_all_layer_point_grids(
|
| 56 |
+
points_per_side,
|
| 57 |
+
crop_n_layers,
|
| 58 |
+
crop_n_points_downscale_factor,
|
| 59 |
+
)
|
| 60 |
+
elif point_grids is not None:
|
| 61 |
+
self.point_grids = point_grids
|
| 62 |
+
else:
|
| 63 |
+
raise ValueError("Can't have both points_per_side and point_grid be None.")
|
| 64 |
+
|
| 65 |
+
assert output_mode in [
|
| 66 |
+
"binary_mask",
|
| 67 |
+
"uncompressed_rle",
|
| 68 |
+
"coco_rle",
|
| 69 |
+
], f"Unknown output_mode {output_mode}."
|
| 70 |
+
if output_mode == "coco_rle":
|
| 71 |
+
from pycocotools import mask as mask_utils # type: ignore # noqa: F401
|
| 72 |
+
|
| 73 |
+
if min_mask_region_area > 0:
|
| 74 |
+
import cv2 # type: ignore # noqa: F401
|
| 75 |
+
|
| 76 |
+
self.predictor = SamPredictor(model)
|
| 77 |
+
self.points_per_batch = points_per_batch
|
| 78 |
+
self.pred_iou_thresh = pred_iou_thresh
|
| 79 |
+
self.stability_score_thresh = stability_score_thresh
|
| 80 |
+
self.stability_score_offset = stability_score_offset
|
| 81 |
+
self.box_nms_thresh = box_nms_thresh
|
| 82 |
+
self.crop_n_layers = crop_n_layers
|
| 83 |
+
self.crop_nms_thresh = crop_nms_thresh
|
| 84 |
+
self.crop_overlap_ratio = crop_overlap_ratio
|
| 85 |
+
self.crop_n_points_downscale_factor = crop_n_points_downscale_factor
|
| 86 |
+
self.min_mask_region_area = min_mask_region_area
|
| 87 |
+
self.output_mode = output_mode
|
| 88 |
+
|
| 89 |
+
@torch.no_grad()
|
| 90 |
+
def generate(self, image: np.ndarray) -> List[Dict[str, Any]]:
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
# Generate masks
|
| 94 |
+
mask_data = self._generate_masks(image)
|
| 95 |
+
|
| 96 |
+
# Filter small disconnected regions and holes in masks
|
| 97 |
+
if self.min_mask_region_area > 0:
|
| 98 |
+
mask_data = self.postprocess_small_regions(
|
| 99 |
+
mask_data,
|
| 100 |
+
self.min_mask_region_area,
|
| 101 |
+
max(self.box_nms_thresh, self.crop_nms_thresh),
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
# Encode masks
|
| 105 |
+
if self.output_mode == "coco_rle":
|
| 106 |
+
mask_data["segmentations"] = [coco_encode_rle(rle) for rle in mask_data["rles"]]
|
| 107 |
+
elif self.output_mode == "binary_mask":
|
| 108 |
+
mask_data["segmentations"] = [rle_to_mask(rle) for rle in mask_data["rles"]]
|
| 109 |
+
else:
|
| 110 |
+
mask_data["segmentations"] = mask_data["rles"]
|
| 111 |
+
|
| 112 |
+
# Write mask records
|
| 113 |
+
curr_anns = []
|
| 114 |
+
for idx in range(len(mask_data["segmentations"])):
|
| 115 |
+
ann = {
|
| 116 |
+
"segmentation": mask_data["segmentations"][idx],
|
| 117 |
+
"area": area_from_rle(mask_data["rles"][idx]),
|
| 118 |
+
"bbox": box_xyxy_to_xywh(mask_data["boxes"][idx]).tolist(),
|
| 119 |
+
"predicted_iou": mask_data["iou_preds"][idx].item(),
|
| 120 |
+
"point_coords": [mask_data["points"][idx].tolist()],
|
| 121 |
+
"stability_score": mask_data["stability_score"][idx].item(),
|
| 122 |
+
"crop_box": box_xyxy_to_xywh(mask_data["crop_boxes"][idx]).tolist(),
|
| 123 |
+
}
|
| 124 |
+
curr_anns.append(ann)
|
| 125 |
+
|
| 126 |
+
return curr_anns
|
| 127 |
+
|
| 128 |
+
def _generate_masks(self, image: np.ndarray) -> MaskData:
|
| 129 |
+
orig_size = image.shape[:2]
|
| 130 |
+
crop_boxes, layer_idxs = generate_crop_boxes(
|
| 131 |
+
orig_size, self.crop_n_layers, self.crop_overlap_ratio
|
| 132 |
+
)
|
| 133 |
+
|
| 134 |
+
# Iterate over image crops
|
| 135 |
+
data = MaskData()
|
| 136 |
+
for crop_box, layer_idx in zip(crop_boxes, layer_idxs):
|
| 137 |
+
crop_data = self._process_crop(image, crop_box, layer_idx, orig_size)
|
| 138 |
+
data.cat(crop_data)
|
| 139 |
+
|
| 140 |
+
# Remove duplicate masks between crops
|
| 141 |
+
if len(crop_boxes) > 1:
|
| 142 |
+
# Prefer masks from smaller crops
|
| 143 |
+
scores = 1 / box_area(data["crop_boxes"])
|
| 144 |
+
scores = scores.to(data["boxes"].device)
|
| 145 |
+
keep_by_nms = batched_nms(
|
| 146 |
+
data["boxes"].float(),
|
| 147 |
+
scores,
|
| 148 |
+
torch.zeros_like(data["boxes"][:, 0]), # categories
|
| 149 |
+
iou_threshold=self.crop_nms_thresh,
|
| 150 |
+
)
|
| 151 |
+
data.filter(keep_by_nms)
|
| 152 |
+
|
| 153 |
+
data.to_numpy()
|
| 154 |
+
return data
|
| 155 |
+
|
| 156 |
+
def _process_crop(
|
| 157 |
+
self,
|
| 158 |
+
image: np.ndarray,
|
| 159 |
+
crop_box: List[int],
|
| 160 |
+
crop_layer_idx: int,
|
| 161 |
+
orig_size: Tuple[int, ...],
|
| 162 |
+
) -> MaskData:
|
| 163 |
+
# Crop the image and calculate embeddings
|
| 164 |
+
x0, y0, x1, y1 = crop_box
|
| 165 |
+
cropped_im = image[y0:y1, x0:x1, :]
|
| 166 |
+
cropped_im_size = cropped_im.shape[:2]
|
| 167 |
+
self.predictor.set_image(cropped_im)
|
| 168 |
+
|
| 169 |
+
# Get points for this crop
|
| 170 |
+
points_scale = np.array(cropped_im_size)[None, ::-1]
|
| 171 |
+
points_for_image = self.point_grids[crop_layer_idx] * points_scale
|
| 172 |
+
|
| 173 |
+
# Generate masks for this crop in batches
|
| 174 |
+
data = MaskData()
|
| 175 |
+
for (points,) in batch_iterator(self.points_per_batch, points_for_image):
|
| 176 |
+
batch_data = self._process_batch(points, cropped_im_size, crop_box, orig_size)
|
| 177 |
+
data.cat(batch_data)
|
| 178 |
+
del batch_data
|
| 179 |
+
self.predictor.reset_image()
|
| 180 |
+
|
| 181 |
+
# Remove duplicates within this crop.
|
| 182 |
+
keep_by_nms = batched_nms(
|
| 183 |
+
data["boxes"].float(),
|
| 184 |
+
data["iou_preds"],
|
| 185 |
+
torch.zeros_like(data["boxes"][:, 0]), # categories
|
| 186 |
+
iou_threshold=self.box_nms_thresh,
|
| 187 |
+
)
|
| 188 |
+
data.filter(keep_by_nms)
|
| 189 |
+
|
| 190 |
+
# Return to the original image frame
|
| 191 |
+
data["boxes"] = uncrop_boxes_xyxy(data["boxes"], crop_box)
|
| 192 |
+
data["points"] = uncrop_points(data["points"], crop_box)
|
| 193 |
+
data["crop_boxes"] = torch.tensor([crop_box for _ in range(len(data["rles"]))])
|
| 194 |
+
|
| 195 |
+
return data
|
| 196 |
+
|
| 197 |
+
def _process_batch(
|
| 198 |
+
self,
|
| 199 |
+
points: np.ndarray,
|
| 200 |
+
im_size: Tuple[int, ...],
|
| 201 |
+
crop_box: List[int],
|
| 202 |
+
orig_size: Tuple[int, ...],
|
| 203 |
+
) -> MaskData:
|
| 204 |
+
orig_h, orig_w = orig_size
|
| 205 |
+
|
| 206 |
+
# Run model on this batch
|
| 207 |
+
transformed_points = self.predictor.transform.apply_coords(points, im_size)
|
| 208 |
+
in_points = torch.as_tensor(transformed_points, device=self.predictor.device)
|
| 209 |
+
in_labels = torch.ones(in_points.shape[0], dtype=torch.int, device=in_points.device)
|
| 210 |
+
masks, iou_preds, _ = self.predictor.predict_torch(
|
| 211 |
+
in_points[:, None, :],
|
| 212 |
+
in_labels[:, None],
|
| 213 |
+
multimask_output=True,
|
| 214 |
+
return_logits=True,
|
| 215 |
+
)
|
| 216 |
+
|
| 217 |
+
# Serialize predictions and store in MaskData
|
| 218 |
+
data = MaskData(
|
| 219 |
+
masks=masks.flatten(0, 1),
|
| 220 |
+
iou_preds=iou_preds.flatten(0, 1),
|
| 221 |
+
points=torch.as_tensor(points.repeat(masks.shape[1], axis=0)),
|
| 222 |
+
)
|
| 223 |
+
del masks
|
| 224 |
+
|
| 225 |
+
# Filter by predicted IoU
|
| 226 |
+
if self.pred_iou_thresh > 0.0:
|
| 227 |
+
keep_mask = data["iou_preds"] > self.pred_iou_thresh
|
| 228 |
+
data.filter(keep_mask)
|
| 229 |
+
|
| 230 |
+
# Calculate stability score
|
| 231 |
+
data["stability_score"] = calculate_stability_score(
|
| 232 |
+
data["masks"], self.predictor.model.mask_threshold, self.stability_score_offset
|
| 233 |
+
)
|
| 234 |
+
if self.stability_score_thresh > 0.0:
|
| 235 |
+
keep_mask = data["stability_score"] >= self.stability_score_thresh
|
| 236 |
+
data.filter(keep_mask)
|
| 237 |
+
|
| 238 |
+
# Threshold masks and calculate boxes
|
| 239 |
+
data["masks"] = data["masks"] > self.predictor.model.mask_threshold
|
| 240 |
+
data["boxes"] = batched_mask_to_box(data["masks"])
|
| 241 |
+
|
| 242 |
+
# Filter boxes that touch crop boundaries
|
| 243 |
+
keep_mask = ~is_box_near_crop_edge(data["boxes"], crop_box, [0, 0, orig_w, orig_h])
|
| 244 |
+
if not torch.all(keep_mask):
|
| 245 |
+
data.filter(keep_mask)
|
| 246 |
+
|
| 247 |
+
# Compress to RLE
|
| 248 |
+
data["masks"] = uncrop_masks(data["masks"], crop_box, orig_h, orig_w)
|
| 249 |
+
data["rles"] = mask_to_rle_pytorch(data["masks"])
|
| 250 |
+
del data["masks"]
|
| 251 |
+
|
| 252 |
+
return data
|
| 253 |
+
|
| 254 |
+
@staticmethod
|
| 255 |
+
def postprocess_small_regions(
|
| 256 |
+
mask_data: MaskData, min_area: int, nms_thresh: float
|
| 257 |
+
) -> MaskData:
|
| 258 |
+
|
| 259 |
+
if len(mask_data["rles"]) == 0:
|
| 260 |
+
return mask_data
|
| 261 |
+
|
| 262 |
+
# Filter small disconnected regions and holes
|
| 263 |
+
new_masks = []
|
| 264 |
+
scores = []
|
| 265 |
+
for rle in mask_data["rles"]:
|
| 266 |
+
mask = rle_to_mask(rle)
|
| 267 |
+
|
| 268 |
+
mask, changed = remove_small_regions(mask, min_area, mode="holes")
|
| 269 |
+
unchanged = not changed
|
| 270 |
+
mask, changed = remove_small_regions(mask, min_area, mode="islands")
|
| 271 |
+
unchanged = unchanged and not changed
|
| 272 |
+
|
| 273 |
+
new_masks.append(torch.as_tensor(mask).unsqueeze(0))
|
| 274 |
+
# Give score=0 to changed masks and score=1 to unchanged masks
|
| 275 |
+
# so NMS will prefer ones that didn't need postprocessing
|
| 276 |
+
scores.append(float(unchanged))
|
| 277 |
+
|
| 278 |
+
# Recalculate boxes and remove any new duplicates
|
| 279 |
+
masks = torch.cat(new_masks, dim=0)
|
| 280 |
+
boxes = batched_mask_to_box(masks)
|
| 281 |
+
keep_by_nms = batched_nms(
|
| 282 |
+
boxes.float(),
|
| 283 |
+
torch.as_tensor(scores),
|
| 284 |
+
torch.zeros_like(boxes[:, 0]), # categories
|
| 285 |
+
iou_threshold=nms_thresh,
|
| 286 |
+
)
|
| 287 |
+
|
| 288 |
+
# Only recalculate RLEs for masks that have changed
|
| 289 |
+
for i_mask in keep_by_nms:
|
| 290 |
+
if scores[i_mask] == 0.0:
|
| 291 |
+
mask_torch = masks[i_mask].unsqueeze(0)
|
| 292 |
+
mask_data["rles"][i_mask] = mask_to_rle_pytorch(mask_torch)[0]
|
| 293 |
+
mask_data["boxes"][i_mask] = boxes[i_mask] # update res directly
|
| 294 |
+
mask_data.filter(keep_by_nms)
|
| 295 |
+
|
| 296 |
+
return mask_data
|
model/segment_anything/build_sam.py
ADDED
|
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
| 2 |
+
# All rights reserved.
|
| 3 |
+
|
| 4 |
+
# This source code is licensed under the license found in the
|
| 5 |
+
# LICENSE file in the root directory of this source tree.
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
|
| 9 |
+
from functools import partial
|
| 10 |
+
|
| 11 |
+
from .modeling import ImageEncoderViT, MaskDecoder, PromptEncoder, Sam, TwoWayTransformer
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def build_sam_vit_h(checkpoint=None):
|
| 15 |
+
return _build_sam(
|
| 16 |
+
encoder_embed_dim=1280,
|
| 17 |
+
encoder_depth=32,
|
| 18 |
+
encoder_num_heads=16,
|
| 19 |
+
encoder_global_attn_indexes=[7, 15, 23, 31],
|
| 20 |
+
checkpoint=checkpoint,
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
build_sam = build_sam_vit_h
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def build_sam_vit_l(checkpoint=None):
|
| 28 |
+
return _build_sam(
|
| 29 |
+
encoder_embed_dim=1024,
|
| 30 |
+
encoder_depth=24,
|
| 31 |
+
encoder_num_heads=16,
|
| 32 |
+
encoder_global_attn_indexes=[5, 11, 17, 23],
|
| 33 |
+
checkpoint=checkpoint,
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def build_sam_vit_b(checkpoint=None):
|
| 38 |
+
return _build_sam(
|
| 39 |
+
encoder_embed_dim=768,
|
| 40 |
+
encoder_depth=12,
|
| 41 |
+
encoder_num_heads=12,
|
| 42 |
+
encoder_global_attn_indexes=[2, 5, 8, 11],
|
| 43 |
+
checkpoint=checkpoint,
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
sam_model_registry = {
|
| 48 |
+
"default": build_sam_vit_h,
|
| 49 |
+
"vit_h": build_sam_vit_h,
|
| 50 |
+
"vit_l": build_sam_vit_l,
|
| 51 |
+
"vit_b": build_sam_vit_b,
|
| 52 |
+
}
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def _build_sam(
|
| 56 |
+
encoder_embed_dim,
|
| 57 |
+
encoder_depth,
|
| 58 |
+
encoder_num_heads,
|
| 59 |
+
encoder_global_attn_indexes,
|
| 60 |
+
checkpoint=None,
|
| 61 |
+
):
|
| 62 |
+
prompt_embed_dim = 256
|
| 63 |
+
image_size = 1024
|
| 64 |
+
vit_patch_size = 16
|
| 65 |
+
image_embedding_size = image_size // vit_patch_size
|
| 66 |
+
sam = Sam(
|
| 67 |
+
image_encoder=ImageEncoderViT(
|
| 68 |
+
depth=encoder_depth,
|
| 69 |
+
embed_dim=encoder_embed_dim,
|
| 70 |
+
img_size=image_size,
|
| 71 |
+
mlp_ratio=4,
|
| 72 |
+
norm_layer=partial(torch.nn.LayerNorm, eps=1e-6),
|
| 73 |
+
num_heads=encoder_num_heads,
|
| 74 |
+
patch_size=vit_patch_size,
|
| 75 |
+
qkv_bias=True,
|
| 76 |
+
use_rel_pos=True,
|
| 77 |
+
global_attn_indexes=encoder_global_attn_indexes,
|
| 78 |
+
window_size=14,
|
| 79 |
+
out_chans=prompt_embed_dim,
|
| 80 |
+
),
|
| 81 |
+
prompt_encoder=PromptEncoder(
|
| 82 |
+
embed_dim=prompt_embed_dim,
|
| 83 |
+
image_embedding_size=(image_embedding_size, image_embedding_size),
|
| 84 |
+
input_image_size=(image_size, image_size),
|
| 85 |
+
mask_in_chans=16,
|
| 86 |
+
),
|
| 87 |
+
mask_decoder=MaskDecoder(
|
| 88 |
+
num_multimask_outputs=3,
|
| 89 |
+
transformer=TwoWayTransformer(
|
| 90 |
+
depth=2,
|
| 91 |
+
embedding_dim=prompt_embed_dim,
|
| 92 |
+
mlp_dim=2048,
|
| 93 |
+
num_heads=8,
|
| 94 |
+
),
|
| 95 |
+
transformer_dim=prompt_embed_dim,
|
| 96 |
+
iou_head_depth=3,
|
| 97 |
+
iou_head_hidden_dim=256,
|
| 98 |
+
),
|
| 99 |
+
pixel_mean=[123.675, 116.28, 103.53],
|
| 100 |
+
pixel_std=[58.395, 57.12, 57.375],
|
| 101 |
+
)
|
| 102 |
+
from huggingface_hub import hf_hub_download
|
| 103 |
+
import os
|
| 104 |
+
if checkpoint is None or not os.path.exists(checkpoint):
|
| 105 |
+
# If the checkpoint is not provided or does not exist locally, download it from Hugging Face
|
| 106 |
+
print(f"Model file not found locally: {checkpoint}, downloading from Hugging Face...")
|
| 107 |
+
|
| 108 |
+
try:
|
| 109 |
+
checkpoint = hf_hub_download(
|
| 110 |
+
repo_id="HCMUE-Research/SAM-vit-h",
|
| 111 |
+
filename="sam_vit_h_4b8939.pth"
|
| 112 |
+
)
|
| 113 |
+
print(f": {checkpoint}")
|
| 114 |
+
except Exception as e:
|
| 115 |
+
raise RuntimeError(f"Model download failed, please check your network or download manually: {e}")
|
| 116 |
+
|
| 117 |
+
with open(checkpoint, "rb") as f:
|
| 118 |
+
state_dict = torch.load(f)
|
| 119 |
+
sam.load_state_dict(state_dict)
|
| 120 |
+
return sam
|
model/segment_anything/modeling/__init__.py
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .sam import Sam
|
| 2 |
+
from .image_encoder import ImageEncoderViT
|
| 3 |
+
from .mask_decoder import MaskDecoder
|
| 4 |
+
from .prompt_encoder import PromptEncoder
|
| 5 |
+
from .transformer import TwoWayTransformer
|
model/segment_anything/modeling/common.py
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
|
| 4 |
+
from typing import Type
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class MLPBlock(nn.Module):
|
| 8 |
+
def __init__(
|
| 9 |
+
self,
|
| 10 |
+
embedding_dim: int,
|
| 11 |
+
mlp_dim: int,
|
| 12 |
+
act: Type[nn.Module] = nn.GELU,
|
| 13 |
+
) -> None:
|
| 14 |
+
super().__init__()
|
| 15 |
+
self.lin1 = nn.Linear(embedding_dim, mlp_dim)
|
| 16 |
+
self.lin2 = nn.Linear(mlp_dim, embedding_dim)
|
| 17 |
+
self.act = act()
|
| 18 |
+
|
| 19 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 20 |
+
return self.lin2(self.act(self.lin1(x)))
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
class LayerNorm2d(nn.Module):
|
| 24 |
+
def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
|
| 25 |
+
super().__init__()
|
| 26 |
+
self.weight = nn.Parameter(torch.ones(num_channels))
|
| 27 |
+
self.bias = nn.Parameter(torch.zeros(num_channels))
|
| 28 |
+
self.eps = eps
|
| 29 |
+
|
| 30 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 31 |
+
u = x.mean(1, keepdim=True)
|
| 32 |
+
s = (x - u).pow(2).mean(1, keepdim=True)
|
| 33 |
+
x = (x - u) / torch.sqrt(s + self.eps)
|
| 34 |
+
x = self.weight[:, None, None] * x + self.bias[:, None, None]
|
| 35 |
+
return x
|
model/segment_anything/modeling/image_encoder.py
ADDED
|
@@ -0,0 +1,287 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
|
| 6 |
+
from typing import Optional, Tuple, Type
|
| 7 |
+
|
| 8 |
+
from .common import LayerNorm2d, MLPBlock
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class ImageEncoderViT(nn.Module):
|
| 12 |
+
def __init__(
|
| 13 |
+
self,
|
| 14 |
+
img_size: int = 1024,
|
| 15 |
+
patch_size: int = 16,
|
| 16 |
+
in_chans: int = 3,
|
| 17 |
+
embed_dim: int = 768,
|
| 18 |
+
depth: int = 12,
|
| 19 |
+
num_heads: int = 12,
|
| 20 |
+
mlp_ratio: float = 4.0,
|
| 21 |
+
out_chans: int = 256,
|
| 22 |
+
qkv_bias: bool = True,
|
| 23 |
+
norm_layer: Type[nn.Module] = nn.LayerNorm,
|
| 24 |
+
act_layer: Type[nn.Module] = nn.GELU,
|
| 25 |
+
use_abs_pos: bool = True,
|
| 26 |
+
use_rel_pos: bool = False,
|
| 27 |
+
rel_pos_zero_init: bool = True,
|
| 28 |
+
window_size: int = 0,
|
| 29 |
+
global_attn_indexes: Tuple[int, ...] = (),
|
| 30 |
+
) -> None:
|
| 31 |
+
super().__init__()
|
| 32 |
+
self.img_size = img_size
|
| 33 |
+
|
| 34 |
+
self.patch_embed = PatchEmbed(
|
| 35 |
+
kernel_size=(patch_size, patch_size),
|
| 36 |
+
stride=(patch_size, patch_size),
|
| 37 |
+
in_chans=in_chans,
|
| 38 |
+
embed_dim=embed_dim,
|
| 39 |
+
)
|
| 40 |
+
|
| 41 |
+
self.pos_embed: Optional[nn.Parameter] = None
|
| 42 |
+
if use_abs_pos:
|
| 43 |
+
# Initialize absolute positional embedding with pretrain image size.
|
| 44 |
+
self.pos_embed = nn.Parameter(
|
| 45 |
+
torch.zeros(1, img_size // patch_size, img_size // patch_size, embed_dim)
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
self.blocks = nn.ModuleList()
|
| 49 |
+
for i in range(depth):
|
| 50 |
+
block = Block(
|
| 51 |
+
dim=embed_dim,
|
| 52 |
+
num_heads=num_heads,
|
| 53 |
+
mlp_ratio=mlp_ratio,
|
| 54 |
+
qkv_bias=qkv_bias,
|
| 55 |
+
norm_layer=norm_layer,
|
| 56 |
+
act_layer=act_layer,
|
| 57 |
+
use_rel_pos=use_rel_pos,
|
| 58 |
+
rel_pos_zero_init=rel_pos_zero_init,
|
| 59 |
+
window_size=window_size if i not in global_attn_indexes else 0,
|
| 60 |
+
input_size=(img_size // patch_size, img_size // patch_size),
|
| 61 |
+
)
|
| 62 |
+
self.blocks.append(block)
|
| 63 |
+
|
| 64 |
+
self.neck = nn.Sequential(
|
| 65 |
+
nn.Conv2d(
|
| 66 |
+
embed_dim,
|
| 67 |
+
out_chans,
|
| 68 |
+
kernel_size=1,
|
| 69 |
+
bias=False,
|
| 70 |
+
),
|
| 71 |
+
LayerNorm2d(out_chans),
|
| 72 |
+
nn.Conv2d(
|
| 73 |
+
out_chans,
|
| 74 |
+
out_chans,
|
| 75 |
+
kernel_size=3,
|
| 76 |
+
padding=1,
|
| 77 |
+
bias=False,
|
| 78 |
+
),
|
| 79 |
+
LayerNorm2d(out_chans),
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 83 |
+
x = self.patch_embed(x)
|
| 84 |
+
if self.pos_embed is not None:
|
| 85 |
+
x = x + self.pos_embed
|
| 86 |
+
|
| 87 |
+
for blk in self.blocks:
|
| 88 |
+
x = blk(x)
|
| 89 |
+
|
| 90 |
+
x = self.neck(x.permute(0, 3, 1, 2))
|
| 91 |
+
|
| 92 |
+
return x
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
class Block(nn.Module):
|
| 96 |
+
|
| 97 |
+
def __init__(
|
| 98 |
+
self,
|
| 99 |
+
dim: int,
|
| 100 |
+
num_heads: int,
|
| 101 |
+
mlp_ratio: float = 4.0,
|
| 102 |
+
qkv_bias: bool = True,
|
| 103 |
+
norm_layer: Type[nn.Module] = nn.LayerNorm,
|
| 104 |
+
act_layer: Type[nn.Module] = nn.GELU,
|
| 105 |
+
use_rel_pos: bool = False,
|
| 106 |
+
rel_pos_zero_init: bool = True,
|
| 107 |
+
window_size: int = 0,
|
| 108 |
+
input_size: Optional[Tuple[int, int]] = None,
|
| 109 |
+
) -> None:
|
| 110 |
+
super().__init__()
|
| 111 |
+
self.norm1 = norm_layer(dim)
|
| 112 |
+
self.attn = Attention(
|
| 113 |
+
dim,
|
| 114 |
+
num_heads=num_heads,
|
| 115 |
+
qkv_bias=qkv_bias,
|
| 116 |
+
use_rel_pos=use_rel_pos,
|
| 117 |
+
rel_pos_zero_init=rel_pos_zero_init,
|
| 118 |
+
input_size=input_size if window_size == 0 else (window_size, window_size),
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
self.norm2 = norm_layer(dim)
|
| 122 |
+
self.mlp = MLPBlock(embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer)
|
| 123 |
+
|
| 124 |
+
self.window_size = window_size
|
| 125 |
+
|
| 126 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 127 |
+
shortcut = x
|
| 128 |
+
x = self.norm1(x)
|
| 129 |
+
# Window partition
|
| 130 |
+
if self.window_size > 0:
|
| 131 |
+
H, W = x.shape[1], x.shape[2]
|
| 132 |
+
x, pad_hw = window_partition(x, self.window_size)
|
| 133 |
+
|
| 134 |
+
x = self.attn(x)
|
| 135 |
+
# Reverse window partition
|
| 136 |
+
if self.window_size > 0:
|
| 137 |
+
x = window_unpartition(x, self.window_size, pad_hw, (H, W))
|
| 138 |
+
|
| 139 |
+
x = shortcut + x
|
| 140 |
+
x = x + self.mlp(self.norm2(x))
|
| 141 |
+
|
| 142 |
+
return x
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
class Attention(nn.Module):
|
| 146 |
+
|
| 147 |
+
def __init__(
|
| 148 |
+
self,
|
| 149 |
+
dim: int,
|
| 150 |
+
num_heads: int = 8,
|
| 151 |
+
qkv_bias: bool = True,
|
| 152 |
+
use_rel_pos: bool = False,
|
| 153 |
+
rel_pos_zero_init: bool = True,
|
| 154 |
+
input_size: Optional[Tuple[int, int]] = None,
|
| 155 |
+
) -> None:
|
| 156 |
+
super().__init__()
|
| 157 |
+
self.num_heads = num_heads
|
| 158 |
+
head_dim = dim // num_heads
|
| 159 |
+
self.scale = head_dim**-0.5
|
| 160 |
+
|
| 161 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
| 162 |
+
self.proj = nn.Linear(dim, dim)
|
| 163 |
+
|
| 164 |
+
self.use_rel_pos = use_rel_pos
|
| 165 |
+
if self.use_rel_pos:
|
| 166 |
+
assert (
|
| 167 |
+
input_size is not None
|
| 168 |
+
), "Input size must be provided if using relative positional encoding."
|
| 169 |
+
# initialize relative positional embeddings
|
| 170 |
+
self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
|
| 171 |
+
self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))
|
| 172 |
+
|
| 173 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 174 |
+
B, H, W, _ = x.shape
|
| 175 |
+
# qkv with shape (3, B, nHead, H * W, C)
|
| 176 |
+
qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
| 177 |
+
# q, k, v with shape (B * nHead, H * W, C)
|
| 178 |
+
q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0)
|
| 179 |
+
|
| 180 |
+
attn = (q * self.scale) @ k.transpose(-2, -1)
|
| 181 |
+
|
| 182 |
+
if self.use_rel_pos:
|
| 183 |
+
attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W))
|
| 184 |
+
|
| 185 |
+
attn = attn.softmax(dim=-1)
|
| 186 |
+
x = (attn @ v).view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1)
|
| 187 |
+
x = self.proj(x)
|
| 188 |
+
|
| 189 |
+
return x
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
def window_partition(x: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]:
|
| 193 |
+
B, H, W, C = x.shape
|
| 194 |
+
|
| 195 |
+
pad_h = (window_size - H % window_size) % window_size
|
| 196 |
+
pad_w = (window_size - W % window_size) % window_size
|
| 197 |
+
if pad_h > 0 or pad_w > 0:
|
| 198 |
+
x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
|
| 199 |
+
Hp, Wp = H + pad_h, W + pad_w
|
| 200 |
+
|
| 201 |
+
x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
|
| 202 |
+
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
| 203 |
+
return windows, (Hp, Wp)
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
def window_unpartition(
|
| 207 |
+
windows: torch.Tensor, window_size: int, pad_hw: Tuple[int, int], hw: Tuple[int, int]
|
| 208 |
+
) -> torch.Tensor:
|
| 209 |
+
Hp, Wp = pad_hw
|
| 210 |
+
H, W = hw
|
| 211 |
+
B = windows.shape[0] // (Hp * Wp // window_size // window_size)
|
| 212 |
+
x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1)
|
| 213 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)
|
| 214 |
+
|
| 215 |
+
if Hp > H or Wp > W:
|
| 216 |
+
x = x[:, :H, :W, :].contiguous()
|
| 217 |
+
return x
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor:
|
| 221 |
+
max_rel_dist = int(2 * max(q_size, k_size) - 1)
|
| 222 |
+
# Interpolate rel pos if needed.
|
| 223 |
+
if rel_pos.shape[0] != max_rel_dist:
|
| 224 |
+
# Interpolate rel pos.
|
| 225 |
+
rel_pos_resized = F.interpolate(
|
| 226 |
+
rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
|
| 227 |
+
size=max_rel_dist,
|
| 228 |
+
mode="linear",
|
| 229 |
+
)
|
| 230 |
+
rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
|
| 231 |
+
else:
|
| 232 |
+
rel_pos_resized = rel_pos
|
| 233 |
+
|
| 234 |
+
# Scale the coords with short length if shapes for q and k are different.
|
| 235 |
+
q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0)
|
| 236 |
+
k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0)
|
| 237 |
+
relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
|
| 238 |
+
|
| 239 |
+
return rel_pos_resized[relative_coords.long()]
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
def add_decomposed_rel_pos(
|
| 243 |
+
attn: torch.Tensor,
|
| 244 |
+
q: torch.Tensor,
|
| 245 |
+
rel_pos_h: torch.Tensor,
|
| 246 |
+
rel_pos_w: torch.Tensor,
|
| 247 |
+
q_size: Tuple[int, int],
|
| 248 |
+
k_size: Tuple[int, int],
|
| 249 |
+
) -> torch.Tensor:
|
| 250 |
+
q_h, q_w = q_size
|
| 251 |
+
k_h, k_w = k_size
|
| 252 |
+
Rh = get_rel_pos(q_h, k_h, rel_pos_h)
|
| 253 |
+
Rw = get_rel_pos(q_w, k_w, rel_pos_w)
|
| 254 |
+
|
| 255 |
+
B, _, dim = q.shape
|
| 256 |
+
r_q = q.reshape(B, q_h, q_w, dim)
|
| 257 |
+
rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh)
|
| 258 |
+
rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw)
|
| 259 |
+
|
| 260 |
+
attn = (
|
| 261 |
+
attn.view(B, q_h, q_w, k_h, k_w) + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :]
|
| 262 |
+
).view(B, q_h * q_w, k_h * k_w)
|
| 263 |
+
|
| 264 |
+
return attn
|
| 265 |
+
|
| 266 |
+
|
| 267 |
+
class PatchEmbed(nn.Module):
|
| 268 |
+
|
| 269 |
+
def __init__(
|
| 270 |
+
self,
|
| 271 |
+
kernel_size: Tuple[int, int] = (16, 16),
|
| 272 |
+
stride: Tuple[int, int] = (16, 16),
|
| 273 |
+
padding: Tuple[int, int] = (0, 0),
|
| 274 |
+
in_chans: int = 3,
|
| 275 |
+
embed_dim: int = 768,
|
| 276 |
+
) -> None:
|
| 277 |
+
super().__init__()
|
| 278 |
+
|
| 279 |
+
self.proj = nn.Conv2d(
|
| 280 |
+
in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding
|
| 281 |
+
)
|
| 282 |
+
|
| 283 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 284 |
+
x = self.proj(x)
|
| 285 |
+
# B C H W -> B H W C
|
| 286 |
+
x = x.permute(0, 2, 3, 1)
|
| 287 |
+
return x
|
model/segment_anything/modeling/mask_decoder.py
ADDED
|
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn
|
| 3 |
+
from torch.nn import functional as F
|
| 4 |
+
|
| 5 |
+
from typing import List, Tuple, Type
|
| 6 |
+
|
| 7 |
+
from .common import LayerNorm2d
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class MaskDecoder(nn.Module):
|
| 11 |
+
def __init__(
|
| 12 |
+
self,
|
| 13 |
+
*,
|
| 14 |
+
transformer_dim: int,
|
| 15 |
+
transformer: nn.Module,
|
| 16 |
+
num_multimask_outputs: int = 3,
|
| 17 |
+
activation: Type[nn.Module] = nn.GELU,
|
| 18 |
+
iou_head_depth: int = 3,
|
| 19 |
+
iou_head_hidden_dim: int = 256,
|
| 20 |
+
) -> None:
|
| 21 |
+
super().__init__()
|
| 22 |
+
self.transformer_dim = transformer_dim
|
| 23 |
+
self.transformer = transformer
|
| 24 |
+
|
| 25 |
+
self.num_multimask_outputs = num_multimask_outputs
|
| 26 |
+
|
| 27 |
+
self.iou_token = nn.Embedding(1, transformer_dim)
|
| 28 |
+
self.num_mask_tokens = num_multimask_outputs + 1
|
| 29 |
+
self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)
|
| 30 |
+
|
| 31 |
+
self.output_upscaling = nn.Sequential(
|
| 32 |
+
nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
|
| 33 |
+
LayerNorm2d(transformer_dim // 4),
|
| 34 |
+
activation(),
|
| 35 |
+
nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
|
| 36 |
+
activation(),
|
| 37 |
+
)
|
| 38 |
+
self.output_hypernetworks_mlps = nn.ModuleList(
|
| 39 |
+
[
|
| 40 |
+
MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3)
|
| 41 |
+
for i in range(self.num_mask_tokens)
|
| 42 |
+
]
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
self.iou_prediction_head = MLP(
|
| 46 |
+
transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
def forward(
|
| 50 |
+
self,
|
| 51 |
+
image_embeddings: torch.Tensor,
|
| 52 |
+
image_pe: torch.Tensor,
|
| 53 |
+
sparse_prompt_embeddings: torch.Tensor,
|
| 54 |
+
dense_prompt_embeddings: torch.Tensor,
|
| 55 |
+
multimask_output: bool,
|
| 56 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 57 |
+
masks, iou_pred = self.predict_masks(
|
| 58 |
+
image_embeddings=image_embeddings,
|
| 59 |
+
image_pe=image_pe,
|
| 60 |
+
sparse_prompt_embeddings=sparse_prompt_embeddings,
|
| 61 |
+
dense_prompt_embeddings=dense_prompt_embeddings,
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
# Select the correct mask or masks for output
|
| 65 |
+
if multimask_output:
|
| 66 |
+
mask_slice = slice(1, None)
|
| 67 |
+
else:
|
| 68 |
+
mask_slice = slice(0, 1)
|
| 69 |
+
masks = masks[:, mask_slice, :, :]
|
| 70 |
+
iou_pred = iou_pred[:, mask_slice]
|
| 71 |
+
|
| 72 |
+
# Prepare output
|
| 73 |
+
return masks, iou_pred
|
| 74 |
+
|
| 75 |
+
def predict_masks(
|
| 76 |
+
self,
|
| 77 |
+
image_embeddings: torch.Tensor,
|
| 78 |
+
image_pe: torch.Tensor,
|
| 79 |
+
sparse_prompt_embeddings: torch.Tensor,
|
| 80 |
+
dense_prompt_embeddings: torch.Tensor,
|
| 81 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 82 |
+
"""Predicts masks. See 'forward' for more details."""
|
| 83 |
+
# Concatenate output tokens
|
| 84 |
+
output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0)
|
| 85 |
+
output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1)
|
| 86 |
+
tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
|
| 87 |
+
|
| 88 |
+
# Expand per-image data in batch direction to be per-mask
|
| 89 |
+
src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
|
| 90 |
+
src = src + dense_prompt_embeddings
|
| 91 |
+
pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
|
| 92 |
+
b, c, h, w = src.shape
|
| 93 |
+
|
| 94 |
+
# Run the transformer
|
| 95 |
+
hs, src = self.transformer(src, pos_src, tokens)
|
| 96 |
+
iou_token_out = hs[:, 0, :]
|
| 97 |
+
mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :]
|
| 98 |
+
|
| 99 |
+
# Upscale mask embeddings and predict masks using the mask tokens
|
| 100 |
+
src = src.transpose(1, 2).view(b, c, h, w)
|
| 101 |
+
upscaled_embedding = self.output_upscaling(src)
|
| 102 |
+
hyper_in_list: List[torch.Tensor] = []
|
| 103 |
+
for i in range(self.num_mask_tokens):
|
| 104 |
+
hyper_in_list.append(self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]))
|
| 105 |
+
hyper_in = torch.stack(hyper_in_list, dim=1)
|
| 106 |
+
b, c, h, w = upscaled_embedding.shape
|
| 107 |
+
masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)
|
| 108 |
+
|
| 109 |
+
# Generate mask quality predictions
|
| 110 |
+
iou_pred = self.iou_prediction_head(iou_token_out)
|
| 111 |
+
|
| 112 |
+
return masks, iou_pred
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
class MLP(nn.Module):
|
| 116 |
+
def __init__(
|
| 117 |
+
self,
|
| 118 |
+
input_dim: int,
|
| 119 |
+
hidden_dim: int,
|
| 120 |
+
output_dim: int,
|
| 121 |
+
num_layers: int,
|
| 122 |
+
sigmoid_output: bool = False,
|
| 123 |
+
) -> None:
|
| 124 |
+
super().__init__()
|
| 125 |
+
self.num_layers = num_layers
|
| 126 |
+
h = [hidden_dim] * (num_layers - 1)
|
| 127 |
+
self.layers = nn.ModuleList(
|
| 128 |
+
nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])
|
| 129 |
+
)
|
| 130 |
+
self.sigmoid_output = sigmoid_output
|
| 131 |
+
|
| 132 |
+
def forward(self, x):
|
| 133 |
+
for i, layer in enumerate(self.layers):
|
| 134 |
+
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
|
| 135 |
+
if self.sigmoid_output:
|
| 136 |
+
x = F.sigmoid(x)
|
| 137 |
+
return x
|
model/segment_anything/modeling/prompt_encoder.py
ADDED
|
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
+
from torch import nn
|
| 5 |
+
|
| 6 |
+
from typing import Any, Optional, Tuple, Type
|
| 7 |
+
|
| 8 |
+
from .common import LayerNorm2d
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class PromptEncoder(nn.Module):
|
| 12 |
+
def __init__(
|
| 13 |
+
self,
|
| 14 |
+
embed_dim: int,
|
| 15 |
+
image_embedding_size: Tuple[int, int],
|
| 16 |
+
input_image_size: Tuple[int, int],
|
| 17 |
+
mask_in_chans: int,
|
| 18 |
+
activation: Type[nn.Module] = nn.GELU,
|
| 19 |
+
) -> None:
|
| 20 |
+
super().__init__()
|
| 21 |
+
self.embed_dim = embed_dim
|
| 22 |
+
self.input_image_size = input_image_size
|
| 23 |
+
self.image_embedding_size = image_embedding_size
|
| 24 |
+
self.pe_layer = PositionEmbeddingRandom(embed_dim // 2)
|
| 25 |
+
|
| 26 |
+
self.num_point_embeddings: int = 4 # pos/neg point + 2 box corners
|
| 27 |
+
point_embeddings = [nn.Embedding(1, embed_dim) for i in range(self.num_point_embeddings)]
|
| 28 |
+
self.point_embeddings = nn.ModuleList(point_embeddings)
|
| 29 |
+
self.not_a_point_embed = nn.Embedding(1, embed_dim)
|
| 30 |
+
|
| 31 |
+
self.mask_input_size = (4 * image_embedding_size[0], 4 * image_embedding_size[1])
|
| 32 |
+
self.mask_downscaling = nn.Sequential(
|
| 33 |
+
nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2),
|
| 34 |
+
LayerNorm2d(mask_in_chans // 4),
|
| 35 |
+
activation(),
|
| 36 |
+
nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2),
|
| 37 |
+
LayerNorm2d(mask_in_chans),
|
| 38 |
+
activation(),
|
| 39 |
+
nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1),
|
| 40 |
+
)
|
| 41 |
+
self.no_mask_embed = nn.Embedding(1, embed_dim)
|
| 42 |
+
|
| 43 |
+
def get_dense_pe(self) -> torch.Tensor:
|
| 44 |
+
return self.pe_layer(self.image_embedding_size).unsqueeze(0)
|
| 45 |
+
|
| 46 |
+
def _embed_points(
|
| 47 |
+
self,
|
| 48 |
+
points: torch.Tensor,
|
| 49 |
+
labels: torch.Tensor,
|
| 50 |
+
pad: bool,
|
| 51 |
+
) -> torch.Tensor:
|
| 52 |
+
points = points + 0.5 # Shift to center of pixel
|
| 53 |
+
if pad:
|
| 54 |
+
padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device)
|
| 55 |
+
padding_label = -torch.ones((labels.shape[0], 1), device=labels.device)
|
| 56 |
+
points = torch.cat([points, padding_point], dim=1)
|
| 57 |
+
labels = torch.cat([labels, padding_label], dim=1)
|
| 58 |
+
point_embedding = self.pe_layer.forward_with_coords(points, self.input_image_size)
|
| 59 |
+
point_embedding[labels == -1] = 0.0
|
| 60 |
+
point_embedding[labels == -1] += self.not_a_point_embed.weight
|
| 61 |
+
point_embedding[labels == 0] += self.point_embeddings[0].weight
|
| 62 |
+
point_embedding[labels == 1] += self.point_embeddings[1].weight
|
| 63 |
+
return point_embedding
|
| 64 |
+
|
| 65 |
+
def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor:
|
| 66 |
+
"""Embeds box prompts."""
|
| 67 |
+
boxes = boxes + 0.5 # Shift to center of pixel
|
| 68 |
+
coords = boxes.reshape(-1, 2, 2)
|
| 69 |
+
corner_embedding = self.pe_layer.forward_with_coords(coords, self.input_image_size)
|
| 70 |
+
corner_embedding[:, 0, :] += self.point_embeddings[2].weight
|
| 71 |
+
corner_embedding[:, 1, :] += self.point_embeddings[3].weight
|
| 72 |
+
return corner_embedding
|
| 73 |
+
|
| 74 |
+
def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor:
|
| 75 |
+
"""Embeds mask inputs."""
|
| 76 |
+
mask_embedding = self.mask_downscaling(masks)
|
| 77 |
+
return mask_embedding
|
| 78 |
+
|
| 79 |
+
def _get_batch_size(
|
| 80 |
+
self,
|
| 81 |
+
points: Optional[Tuple[torch.Tensor, torch.Tensor]],
|
| 82 |
+
boxes: Optional[torch.Tensor],
|
| 83 |
+
masks: Optional[torch.Tensor],
|
| 84 |
+
) -> int:
|
| 85 |
+
"""
|
| 86 |
+
Gets the batch size of the output given the batch size of the input prompts.
|
| 87 |
+
"""
|
| 88 |
+
if points is not None:
|
| 89 |
+
return points[0].shape[0]
|
| 90 |
+
elif boxes is not None:
|
| 91 |
+
return boxes.shape[0]
|
| 92 |
+
elif masks is not None:
|
| 93 |
+
return masks.shape[0]
|
| 94 |
+
else:
|
| 95 |
+
return 1
|
| 96 |
+
|
| 97 |
+
def _get_device(self) -> torch.device:
|
| 98 |
+
return self.point_embeddings[0].weight.device
|
| 99 |
+
|
| 100 |
+
def forward(
|
| 101 |
+
self,
|
| 102 |
+
points: Optional[Tuple[torch.Tensor, torch.Tensor]],
|
| 103 |
+
boxes: Optional[torch.Tensor],
|
| 104 |
+
masks: Optional[torch.Tensor],
|
| 105 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 106 |
+
bs = self._get_batch_size(points, boxes, masks)
|
| 107 |
+
sparse_embeddings = torch.empty((bs, 0, self.embed_dim), device=self._get_device())
|
| 108 |
+
if points is not None:
|
| 109 |
+
coords, labels = points
|
| 110 |
+
point_embeddings = self._embed_points(coords, labels, pad=(boxes is None))
|
| 111 |
+
sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1)
|
| 112 |
+
if boxes is not None:
|
| 113 |
+
box_embeddings = self._embed_boxes(boxes)
|
| 114 |
+
sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1)
|
| 115 |
+
|
| 116 |
+
if masks is not None:
|
| 117 |
+
dense_embeddings = self._embed_masks(masks)
|
| 118 |
+
else:
|
| 119 |
+
dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand(
|
| 120 |
+
bs, -1, self.image_embedding_size[0], self.image_embedding_size[1]
|
| 121 |
+
)
|
| 122 |
+
|
| 123 |
+
return sparse_embeddings, dense_embeddings
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
class PositionEmbeddingRandom(nn.Module):
|
| 127 |
+
"""
|
| 128 |
+
Positional encoding using random spatial frequencies.
|
| 129 |
+
"""
|
| 130 |
+
|
| 131 |
+
def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None:
|
| 132 |
+
super().__init__()
|
| 133 |
+
if scale is None or scale <= 0.0:
|
| 134 |
+
scale = 1.0
|
| 135 |
+
self.register_buffer(
|
| 136 |
+
"positional_encoding_gaussian_matrix",
|
| 137 |
+
scale * torch.randn((2, num_pos_feats)),
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor:
|
| 141 |
+
"""Positionally encode points that are normalized to [0,1]."""
|
| 142 |
+
# assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
|
| 143 |
+
coords = 2 * coords - 1
|
| 144 |
+
coords = coords @ self.positional_encoding_gaussian_matrix
|
| 145 |
+
coords = 2 * np.pi * coords
|
| 146 |
+
# outputs d_1 x ... x d_n x C shape
|
| 147 |
+
return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1)
|
| 148 |
+
|
| 149 |
+
def forward(self, size: Tuple[int, int]) -> torch.Tensor:
|
| 150 |
+
"""Generate positional encoding for a grid of the specified size."""
|
| 151 |
+
h, w = size
|
| 152 |
+
device: Any = self.positional_encoding_gaussian_matrix.device
|
| 153 |
+
grid = torch.ones((h, w), device=device, dtype=torch.float32)
|
| 154 |
+
y_embed = grid.cumsum(dim=0) - 0.5
|
| 155 |
+
x_embed = grid.cumsum(dim=1) - 0.5
|
| 156 |
+
y_embed = y_embed / h
|
| 157 |
+
x_embed = x_embed / w
|
| 158 |
+
|
| 159 |
+
pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1))
|
| 160 |
+
return pe.permute(2, 0, 1) # C x H x W
|
| 161 |
+
|
| 162 |
+
def forward_with_coords(
|
| 163 |
+
self, coords_input: torch.Tensor, image_size: Tuple[int, int]
|
| 164 |
+
) -> torch.Tensor:
|
| 165 |
+
"""Positionally encode points that are not normalized to [0,1]."""
|
| 166 |
+
coords = coords_input.clone()
|
| 167 |
+
coords[:, :, 0] = coords[:, :, 0] / image_size[1]
|
| 168 |
+
coords[:, :, 1] = coords[:, :, 1] / image_size[0]
|
| 169 |
+
return self._pe_encoding(coords.to(torch.float)) # B x N x C
|
model/segment_anything/modeling/sam.py
ADDED
|
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn
|
| 3 |
+
from torch.nn import functional as F
|
| 4 |
+
|
| 5 |
+
from typing import Any, Dict, List, Tuple
|
| 6 |
+
|
| 7 |
+
from .image_encoder import ImageEncoderViT
|
| 8 |
+
from .mask_decoder import MaskDecoder
|
| 9 |
+
from .prompt_encoder import PromptEncoder
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class Sam(nn.Module):
|
| 13 |
+
mask_threshold: float = 0.0
|
| 14 |
+
image_format: str = "RGB"
|
| 15 |
+
|
| 16 |
+
def __init__(
|
| 17 |
+
self,
|
| 18 |
+
image_encoder: ImageEncoderViT,
|
| 19 |
+
prompt_encoder: PromptEncoder,
|
| 20 |
+
mask_decoder: MaskDecoder,
|
| 21 |
+
pixel_mean: List[float] = [123.675, 116.28, 103.53],
|
| 22 |
+
pixel_std: List[float] = [58.395, 57.12, 57.375],
|
| 23 |
+
) -> None:
|
| 24 |
+
super().__init__()
|
| 25 |
+
self.image_encoder = image_encoder
|
| 26 |
+
self.prompt_encoder = prompt_encoder
|
| 27 |
+
self.mask_decoder = mask_decoder
|
| 28 |
+
self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False)
|
| 29 |
+
self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False)
|
| 30 |
+
|
| 31 |
+
@property
|
| 32 |
+
def device(self) -> Any:
|
| 33 |
+
return self.pixel_mean.device
|
| 34 |
+
|
| 35 |
+
@torch.no_grad()
|
| 36 |
+
def forward(
|
| 37 |
+
self,
|
| 38 |
+
batched_input: List[Dict[str, Any]],
|
| 39 |
+
multimask_output: bool,
|
| 40 |
+
) -> List[Dict[str, torch.Tensor]]:
|
| 41 |
+
input_images = torch.stack([self.preprocess(x["image"]) for x in batched_input], dim=0)
|
| 42 |
+
image_embeddings = self.image_encoder(input_images)
|
| 43 |
+
|
| 44 |
+
outputs = []
|
| 45 |
+
for image_record, curr_embedding in zip(batched_input, image_embeddings):
|
| 46 |
+
if "point_coords" in image_record:
|
| 47 |
+
points = (image_record["point_coords"], image_record["point_labels"])
|
| 48 |
+
else:
|
| 49 |
+
points = None
|
| 50 |
+
sparse_embeddings, dense_embeddings = self.prompt_encoder(
|
| 51 |
+
points=points,
|
| 52 |
+
boxes=image_record.get("boxes", None),
|
| 53 |
+
masks=image_record.get("mask_inputs", None),
|
| 54 |
+
)
|
| 55 |
+
low_res_masks, iou_predictions = self.mask_decoder(
|
| 56 |
+
image_embeddings=curr_embedding.unsqueeze(0),
|
| 57 |
+
image_pe=self.prompt_encoder.get_dense_pe(),
|
| 58 |
+
sparse_prompt_embeddings=sparse_embeddings,
|
| 59 |
+
dense_prompt_embeddings=dense_embeddings,
|
| 60 |
+
multimask_output=multimask_output,
|
| 61 |
+
)
|
| 62 |
+
masks = self.postprocess_masks(
|
| 63 |
+
low_res_masks,
|
| 64 |
+
input_size=image_record["image"].shape[-2:],
|
| 65 |
+
original_size=image_record["original_size"],
|
| 66 |
+
)
|
| 67 |
+
masks = masks > self.mask_threshold
|
| 68 |
+
outputs.append(
|
| 69 |
+
{
|
| 70 |
+
"masks": masks,
|
| 71 |
+
"iou_predictions": iou_predictions,
|
| 72 |
+
"low_res_logits": low_res_masks,
|
| 73 |
+
}
|
| 74 |
+
)
|
| 75 |
+
return outputs
|
| 76 |
+
|
| 77 |
+
def postprocess_masks(
|
| 78 |
+
self,
|
| 79 |
+
masks: torch.Tensor,
|
| 80 |
+
input_size: Tuple[int, ...],
|
| 81 |
+
original_size: Tuple[int, ...],
|
| 82 |
+
) -> torch.Tensor:
|
| 83 |
+
masks = F.interpolate(
|
| 84 |
+
masks,
|
| 85 |
+
(self.image_encoder.img_size, self.image_encoder.img_size),
|
| 86 |
+
mode="bilinear",
|
| 87 |
+
align_corners=False,
|
| 88 |
+
)
|
| 89 |
+
masks = masks[..., : input_size[0], : input_size[1]]
|
| 90 |
+
masks = F.interpolate(masks, original_size, mode="bilinear", align_corners=False)
|
| 91 |
+
return masks
|
| 92 |
+
|
| 93 |
+
def preprocess(self, x: torch.Tensor) -> torch.Tensor:
|
| 94 |
+
"""Normalize pixel values and pad to a square input."""
|
| 95 |
+
# Normalize colors
|
| 96 |
+
x = (x - self.pixel_mean) / self.pixel_std
|
| 97 |
+
|
| 98 |
+
# Pad
|
| 99 |
+
h, w = x.shape[-2:]
|
| 100 |
+
padh = self.image_encoder.img_size - h
|
| 101 |
+
padw = self.image_encoder.img_size - w
|
| 102 |
+
x = F.pad(x, (0, padw, 0, padh))
|
| 103 |
+
return x
|
model/segment_anything/modeling/transformer.py
ADDED
|
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import Tensor, nn
|
| 3 |
+
|
| 4 |
+
import math
|
| 5 |
+
from typing import Tuple, Type
|
| 6 |
+
|
| 7 |
+
from .common import MLPBlock
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class TwoWayTransformer(nn.Module):
|
| 11 |
+
def __init__(
|
| 12 |
+
self,
|
| 13 |
+
depth: int,
|
| 14 |
+
embedding_dim: int,
|
| 15 |
+
num_heads: int,
|
| 16 |
+
mlp_dim: int,
|
| 17 |
+
activation: Type[nn.Module] = nn.ReLU,
|
| 18 |
+
attention_downsample_rate: int = 2,
|
| 19 |
+
) -> None:
|
| 20 |
+
super().__init__()
|
| 21 |
+
self.depth = depth
|
| 22 |
+
self.embedding_dim = embedding_dim
|
| 23 |
+
self.num_heads = num_heads
|
| 24 |
+
self.mlp_dim = mlp_dim
|
| 25 |
+
self.layers = nn.ModuleList()
|
| 26 |
+
|
| 27 |
+
for i in range(depth):
|
| 28 |
+
self.layers.append(
|
| 29 |
+
TwoWayAttentionBlock(
|
| 30 |
+
embedding_dim=embedding_dim,
|
| 31 |
+
num_heads=num_heads,
|
| 32 |
+
mlp_dim=mlp_dim,
|
| 33 |
+
activation=activation,
|
| 34 |
+
attention_downsample_rate=attention_downsample_rate,
|
| 35 |
+
skip_first_layer_pe=(i == 0),
|
| 36 |
+
)
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
self.final_attn_token_to_image = Attention(
|
| 40 |
+
embedding_dim, num_heads, downsample_rate=attention_downsample_rate
|
| 41 |
+
)
|
| 42 |
+
self.norm_final_attn = nn.LayerNorm(embedding_dim)
|
| 43 |
+
|
| 44 |
+
def forward(
|
| 45 |
+
self,
|
| 46 |
+
image_embedding: Tensor,
|
| 47 |
+
image_pe: Tensor,
|
| 48 |
+
point_embedding: Tensor,
|
| 49 |
+
) -> Tuple[Tensor, Tensor]:
|
| 50 |
+
# BxCxHxW -> BxHWxC == B x N_image_tokens x C
|
| 51 |
+
bs, c, h, w = image_embedding.shape
|
| 52 |
+
image_embedding = image_embedding.flatten(2).permute(0, 2, 1)
|
| 53 |
+
image_pe = image_pe.flatten(2).permute(0, 2, 1)
|
| 54 |
+
|
| 55 |
+
# Prepare queries
|
| 56 |
+
queries = point_embedding
|
| 57 |
+
keys = image_embedding
|
| 58 |
+
|
| 59 |
+
# Apply transformer blocks and final layernorm
|
| 60 |
+
for layer in self.layers:
|
| 61 |
+
queries, keys = layer(
|
| 62 |
+
queries=queries,
|
| 63 |
+
keys=keys,
|
| 64 |
+
query_pe=point_embedding,
|
| 65 |
+
key_pe=image_pe,
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
# Apply the final attention layer from the points to the image
|
| 69 |
+
q = queries + point_embedding
|
| 70 |
+
k = keys + image_pe
|
| 71 |
+
attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys)
|
| 72 |
+
queries = queries + attn_out
|
| 73 |
+
queries = self.norm_final_attn(queries)
|
| 74 |
+
|
| 75 |
+
return queries, keys
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
class TwoWayAttentionBlock(nn.Module):
|
| 79 |
+
def __init__(
|
| 80 |
+
self,
|
| 81 |
+
embedding_dim: int,
|
| 82 |
+
num_heads: int,
|
| 83 |
+
mlp_dim: int = 2048,
|
| 84 |
+
activation: Type[nn.Module] = nn.ReLU,
|
| 85 |
+
attention_downsample_rate: int = 2,
|
| 86 |
+
skip_first_layer_pe: bool = False,
|
| 87 |
+
) -> None:
|
| 88 |
+
super().__init__()
|
| 89 |
+
self.self_attn = Attention(embedding_dim, num_heads)
|
| 90 |
+
self.norm1 = nn.LayerNorm(embedding_dim)
|
| 91 |
+
|
| 92 |
+
self.cross_attn_token_to_image = Attention(
|
| 93 |
+
embedding_dim, num_heads, downsample_rate=attention_downsample_rate
|
| 94 |
+
)
|
| 95 |
+
self.norm2 = nn.LayerNorm(embedding_dim)
|
| 96 |
+
|
| 97 |
+
self.mlp = MLPBlock(embedding_dim, mlp_dim, activation)
|
| 98 |
+
self.norm3 = nn.LayerNorm(embedding_dim)
|
| 99 |
+
|
| 100 |
+
self.norm4 = nn.LayerNorm(embedding_dim)
|
| 101 |
+
self.cross_attn_image_to_token = Attention(
|
| 102 |
+
embedding_dim, num_heads, downsample_rate=attention_downsample_rate
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
self.skip_first_layer_pe = skip_first_layer_pe
|
| 106 |
+
|
| 107 |
+
def forward(
|
| 108 |
+
self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor
|
| 109 |
+
) -> Tuple[Tensor, Tensor]:
|
| 110 |
+
# Self attention block
|
| 111 |
+
if self.skip_first_layer_pe:
|
| 112 |
+
queries = self.self_attn(q=queries, k=queries, v=queries)
|
| 113 |
+
else:
|
| 114 |
+
q = queries + query_pe
|
| 115 |
+
attn_out = self.self_attn(q=q, k=q, v=queries)
|
| 116 |
+
queries = queries + attn_out
|
| 117 |
+
queries = self.norm1(queries)
|
| 118 |
+
|
| 119 |
+
# Cross attention block, tokens attending to image embedding
|
| 120 |
+
q = queries + query_pe
|
| 121 |
+
k = keys + key_pe
|
| 122 |
+
attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys)
|
| 123 |
+
queries = queries + attn_out
|
| 124 |
+
queries = self.norm2(queries)
|
| 125 |
+
|
| 126 |
+
# MLP block
|
| 127 |
+
mlp_out = self.mlp(queries)
|
| 128 |
+
queries = queries + mlp_out
|
| 129 |
+
queries = self.norm3(queries)
|
| 130 |
+
|
| 131 |
+
# Cross attention block, image embedding attending to tokens
|
| 132 |
+
q = queries + query_pe
|
| 133 |
+
k = keys + key_pe
|
| 134 |
+
attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries)
|
| 135 |
+
keys = keys + attn_out
|
| 136 |
+
keys = self.norm4(keys)
|
| 137 |
+
|
| 138 |
+
return queries, keys
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
class Attention(nn.Module):
|
| 142 |
+
"""
|
| 143 |
+
An attention layer that allows for downscaling the size of the embedding
|
| 144 |
+
after projection to queries, keys, and values.
|
| 145 |
+
"""
|
| 146 |
+
|
| 147 |
+
def __init__(
|
| 148 |
+
self,
|
| 149 |
+
embedding_dim: int,
|
| 150 |
+
num_heads: int,
|
| 151 |
+
downsample_rate: int = 1,
|
| 152 |
+
) -> None:
|
| 153 |
+
super().__init__()
|
| 154 |
+
self.embedding_dim = embedding_dim
|
| 155 |
+
self.internal_dim = embedding_dim // downsample_rate
|
| 156 |
+
self.num_heads = num_heads
|
| 157 |
+
assert self.internal_dim % num_heads == 0, "num_heads must divide embedding_dim."
|
| 158 |
+
|
| 159 |
+
self.q_proj = nn.Linear(embedding_dim, self.internal_dim)
|
| 160 |
+
self.k_proj = nn.Linear(embedding_dim, self.internal_dim)
|
| 161 |
+
self.v_proj = nn.Linear(embedding_dim, self.internal_dim)
|
| 162 |
+
self.out_proj = nn.Linear(self.internal_dim, embedding_dim)
|
| 163 |
+
|
| 164 |
+
def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor:
|
| 165 |
+
b, n, c = x.shape
|
| 166 |
+
x = x.reshape(b, n, num_heads, c // num_heads)
|
| 167 |
+
return x.transpose(1, 2) # B x N_heads x N_tokens x C_per_head
|
| 168 |
+
|
| 169 |
+
def _recombine_heads(self, x: Tensor) -> Tensor:
|
| 170 |
+
b, n_heads, n_tokens, c_per_head = x.shape
|
| 171 |
+
x = x.transpose(1, 2)
|
| 172 |
+
return x.reshape(b, n_tokens, n_heads * c_per_head) # B x N_tokens x C
|
| 173 |
+
|
| 174 |
+
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
|
| 175 |
+
# Input projections
|
| 176 |
+
q = self.q_proj(q)
|
| 177 |
+
k = self.k_proj(k)
|
| 178 |
+
v = self.v_proj(v)
|
| 179 |
+
|
| 180 |
+
# Separate into heads
|
| 181 |
+
q = self._separate_heads(q, self.num_heads)
|
| 182 |
+
k = self._separate_heads(k, self.num_heads)
|
| 183 |
+
v = self._separate_heads(v, self.num_heads)
|
| 184 |
+
|
| 185 |
+
# Attention
|
| 186 |
+
_, _, _, c_per_head = q.shape
|
| 187 |
+
attn = q @ k.permute(0, 1, 3, 2) # B x N_heads x N_tokens x N_tokens
|
| 188 |
+
attn = attn / math.sqrt(c_per_head)
|
| 189 |
+
attn = torch.softmax(attn, dim=-1)
|
| 190 |
+
|
| 191 |
+
# Get output
|
| 192 |
+
out = attn @ v
|
| 193 |
+
out = self._recombine_heads(out)
|
| 194 |
+
out = self.out_proj(out)
|
| 195 |
+
|
| 196 |
+
return out
|
model/segment_anything/predictor.py
ADDED
|
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
import time
|
| 6 |
+
from model.segment_anything.modeling import Sam
|
| 7 |
+
|
| 8 |
+
from typing import Optional, Tuple
|
| 9 |
+
|
| 10 |
+
from model.segment_anything.utils.transforms import ResizeLongestSide
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class SamPredictor:
|
| 14 |
+
def __init__(
|
| 15 |
+
self,
|
| 16 |
+
sam_model: Sam,
|
| 17 |
+
) -> None:
|
| 18 |
+
"""
|
| 19 |
+
Uses SAM to calculate the image embedding for an image, and then
|
| 20 |
+
allow repeated, efficient mask prediction given prompts.
|
| 21 |
+
|
| 22 |
+
Arguments:
|
| 23 |
+
sam_model (Sam): The model to use for mask prediction.
|
| 24 |
+
"""
|
| 25 |
+
super().__init__()
|
| 26 |
+
self.model = sam_model
|
| 27 |
+
self.transform = ResizeLongestSide(sam_model.image_encoder.img_size)
|
| 28 |
+
self.reset_image()
|
| 29 |
+
|
| 30 |
+
def set_image(
|
| 31 |
+
self,
|
| 32 |
+
image: np.ndarray,
|
| 33 |
+
image_format: str = "RGB",
|
| 34 |
+
) -> None:
|
| 35 |
+
|
| 36 |
+
assert image_format in [
|
| 37 |
+
"RGB",
|
| 38 |
+
"BGR",
|
| 39 |
+
], f"image_format must be in ['RGB', 'BGR'], is {image_format}."
|
| 40 |
+
if image_format != self.model.image_format:
|
| 41 |
+
image = image[..., ::-1]
|
| 42 |
+
|
| 43 |
+
# Transform the image to the form expected by the model
|
| 44 |
+
input_image = self.transform.apply_image(image)
|
| 45 |
+
input_image_torch = torch.as_tensor(input_image, device=self.device)
|
| 46 |
+
input_image_torch = input_image_torch.permute(2, 0, 1).contiguous()[None, :, :, :]
|
| 47 |
+
|
| 48 |
+
self.set_torch_image(input_image_torch, image.shape[:2])
|
| 49 |
+
|
| 50 |
+
@torch.no_grad()
|
| 51 |
+
def set_torch_image(
|
| 52 |
+
self,
|
| 53 |
+
transformed_image: torch.Tensor,
|
| 54 |
+
original_image_size: Tuple[int, ...],
|
| 55 |
+
) -> None:
|
| 56 |
+
|
| 57 |
+
assert (
|
| 58 |
+
len(transformed_image.shape) == 4
|
| 59 |
+
and transformed_image.shape[1] == 3
|
| 60 |
+
and max(*transformed_image.shape[2:]) == self.model.image_encoder.img_size
|
| 61 |
+
), f"set_torch_image input must be BCHW with long side {self.model.image_encoder.img_size}."
|
| 62 |
+
self.reset_image()
|
| 63 |
+
|
| 64 |
+
self.original_size = original_image_size
|
| 65 |
+
self.input_size = tuple(transformed_image.shape[-2:])
|
| 66 |
+
input_image = self.model.preprocess(transformed_image)
|
| 67 |
+
self.features = self.model.image_encoder(input_image)
|
| 68 |
+
self.is_image_set = True
|
| 69 |
+
|
| 70 |
+
def predict(
|
| 71 |
+
self,
|
| 72 |
+
point_coords: Optional[np.ndarray] = None,
|
| 73 |
+
point_labels: Optional[np.ndarray] = None,
|
| 74 |
+
box: Optional[np.ndarray] = None,
|
| 75 |
+
mask_input: Optional[np.ndarray] = None,
|
| 76 |
+
multimask_output: bool = True,
|
| 77 |
+
return_logits: bool = False,
|
| 78 |
+
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
|
| 79 |
+
if not self.is_image_set:
|
| 80 |
+
raise RuntimeError("An image must be set with .set_image(...) before mask prediction.")
|
| 81 |
+
|
| 82 |
+
# Transform input prompts
|
| 83 |
+
coords_torch, labels_torch, box_torch, mask_input_torch = None, None, None, None
|
| 84 |
+
if point_coords is not None:
|
| 85 |
+
assert (
|
| 86 |
+
point_labels is not None
|
| 87 |
+
), "point_labels must be supplied if point_coords is supplied."
|
| 88 |
+
point_coords = self.transform.apply_coords(point_coords, self.original_size)
|
| 89 |
+
coords_torch = torch.as_tensor(point_coords, dtype=torch.float, device=self.device)
|
| 90 |
+
labels_torch = torch.as_tensor(point_labels, dtype=torch.int, device=self.device)
|
| 91 |
+
coords_torch, labels_torch = coords_torch[None, :, :], labels_torch[None, :]
|
| 92 |
+
if box is not None:
|
| 93 |
+
box = self.transform.apply_boxes(box, self.original_size)
|
| 94 |
+
box_torch = torch.as_tensor(box, dtype=torch.float, device=self.device)
|
| 95 |
+
box_torch = box_torch[None, :]
|
| 96 |
+
if mask_input is not None:
|
| 97 |
+
mask_input_torch = torch.as_tensor(mask_input, dtype=torch.float, device=self.device)
|
| 98 |
+
mask_input_torch = mask_input_torch[None, :, :, :]
|
| 99 |
+
|
| 100 |
+
masks, iou_predictions, low_res_masks = self.predict_torch(
|
| 101 |
+
coords_torch,
|
| 102 |
+
labels_torch,
|
| 103 |
+
box_torch,
|
| 104 |
+
mask_input_torch,
|
| 105 |
+
multimask_output,
|
| 106 |
+
return_logits=return_logits,
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
masks_np = masks[0].detach().cpu().numpy()
|
| 110 |
+
iou_predictions_np = iou_predictions[0].detach().cpu().numpy()
|
| 111 |
+
low_res_masks_np = low_res_masks[0].detach().cpu().numpy()
|
| 112 |
+
return masks_np, iou_predictions_np, low_res_masks_np
|
| 113 |
+
|
| 114 |
+
@torch.no_grad()
|
| 115 |
+
def predict_torch(
|
| 116 |
+
self,
|
| 117 |
+
point_coords: Optional[torch.Tensor],
|
| 118 |
+
point_labels: Optional[torch.Tensor],
|
| 119 |
+
boxes: Optional[torch.Tensor] = None,
|
| 120 |
+
mask_input: Optional[torch.Tensor] = None,
|
| 121 |
+
multimask_output: bool = True,
|
| 122 |
+
return_logits: bool = False,
|
| 123 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
| 124 |
+
if not self.is_image_set:
|
| 125 |
+
raise RuntimeError("An image must be set with .set_image(...) before mask prediction.")
|
| 126 |
+
|
| 127 |
+
if point_coords is not None:
|
| 128 |
+
points = (point_coords, point_labels)
|
| 129 |
+
else:
|
| 130 |
+
points = None
|
| 131 |
+
|
| 132 |
+
# Embed prompts
|
| 133 |
+
sparse_embeddings, dense_embeddings = self.model.prompt_encoder(
|
| 134 |
+
points=points,
|
| 135 |
+
boxes=boxes,
|
| 136 |
+
masks=mask_input,
|
| 137 |
+
)
|
| 138 |
+
|
| 139 |
+
# Predict masks
|
| 140 |
+
low_res_masks, iou_predictions = self.model.mask_decoder(
|
| 141 |
+
image_embeddings=self.features,
|
| 142 |
+
image_pe=self.model.prompt_encoder.get_dense_pe(),
|
| 143 |
+
sparse_prompt_embeddings=sparse_embeddings,
|
| 144 |
+
dense_prompt_embeddings=dense_embeddings,
|
| 145 |
+
multimask_output=multimask_output,
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
# Upscale the masks to the original image resolution
|
| 149 |
+
masks = self.model.postprocess_masks(low_res_masks, self.input_size, self.original_size)
|
| 150 |
+
|
| 151 |
+
if not return_logits:
|
| 152 |
+
masks = masks > self.model.mask_threshold
|
| 153 |
+
|
| 154 |
+
return masks, iou_predictions, low_res_masks
|
| 155 |
+
|
| 156 |
+
def get_image_embedding(self) -> torch.Tensor:
|
| 157 |
+
"""
|
| 158 |
+
Returns the image embeddings for the currently set image, with
|
| 159 |
+
shape 1xCxHxW, where C is the embedding dimension and (H,W) are
|
| 160 |
+
the embedding spatial dimension of SAM (typically C=256, H=W=64).
|
| 161 |
+
"""
|
| 162 |
+
if not self.is_image_set:
|
| 163 |
+
raise RuntimeError(
|
| 164 |
+
"An image must be set with .set_image(...) to generate an embedding."
|
| 165 |
+
)
|
| 166 |
+
assert self.features is not None, "Features must exist if an image has been set."
|
| 167 |
+
return self.features
|
| 168 |
+
|
| 169 |
+
@property
|
| 170 |
+
def device(self) -> torch.device:
|
| 171 |
+
return self.model.device
|
| 172 |
+
|
| 173 |
+
def reset_image(self) -> None:
|
| 174 |
+
"""Resets the currently set image."""
|
| 175 |
+
self.is_image_set = False
|
| 176 |
+
self.features = None
|
| 177 |
+
self.orig_h = None
|
| 178 |
+
self.orig_w = None
|
| 179 |
+
self.input_h = None
|
| 180 |
+
self.input_w = None
|
model/segment_anything/utils/__init__.py
ADDED
|
File without changes
|
model/segment_anything/utils/amg.py
ADDED
|
@@ -0,0 +1,329 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
|
| 6 |
+
import math
|
| 7 |
+
from copy import deepcopy
|
| 8 |
+
from itertools import product
|
| 9 |
+
from typing import Any, Dict, Generator, ItemsView, List, Tuple
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class MaskData:
|
| 13 |
+
"""
|
| 14 |
+
A structure for storing masks and their related data in batched format.
|
| 15 |
+
Implements basic filtering and concatenation.
|
| 16 |
+
"""
|
| 17 |
+
|
| 18 |
+
def __init__(self, **kwargs) -> None:
|
| 19 |
+
for v in kwargs.values():
|
| 20 |
+
assert isinstance(
|
| 21 |
+
v, (list, np.ndarray, torch.Tensor)
|
| 22 |
+
), "MaskData only supports list, numpy arrays, and torch tensors."
|
| 23 |
+
self._stats = dict(**kwargs)
|
| 24 |
+
|
| 25 |
+
def __setitem__(self, key: str, item: Any) -> None:
|
| 26 |
+
assert isinstance(
|
| 27 |
+
item, (list, np.ndarray, torch.Tensor)
|
| 28 |
+
), "MaskData only supports list, numpy arrays, and torch tensors."
|
| 29 |
+
self._stats[key] = item
|
| 30 |
+
|
| 31 |
+
def __delitem__(self, key: str) -> None:
|
| 32 |
+
del self._stats[key]
|
| 33 |
+
|
| 34 |
+
def __getitem__(self, key: str) -> Any:
|
| 35 |
+
return self._stats[key]
|
| 36 |
+
|
| 37 |
+
def items(self) -> ItemsView[str, Any]:
|
| 38 |
+
return self._stats.items()
|
| 39 |
+
|
| 40 |
+
def filter(self, keep: torch.Tensor) -> None:
|
| 41 |
+
for k, v in self._stats.items():
|
| 42 |
+
if v is None:
|
| 43 |
+
self._stats[k] = None
|
| 44 |
+
elif isinstance(v, torch.Tensor):
|
| 45 |
+
self._stats[k] = v[torch.as_tensor(keep, device=v.device)]
|
| 46 |
+
elif isinstance(v, np.ndarray):
|
| 47 |
+
self._stats[k] = v[keep.detach().cpu().numpy()]
|
| 48 |
+
elif isinstance(v, list) and keep.dtype == torch.bool:
|
| 49 |
+
self._stats[k] = [a for i, a in enumerate(v) if keep[i]]
|
| 50 |
+
elif isinstance(v, list):
|
| 51 |
+
self._stats[k] = [v[i] for i in keep]
|
| 52 |
+
else:
|
| 53 |
+
raise TypeError(f"MaskData key {k} has an unsupported type {type(v)}.")
|
| 54 |
+
|
| 55 |
+
def cat(self, new_stats: "MaskData") -> None:
|
| 56 |
+
for k, v in new_stats.items():
|
| 57 |
+
if k not in self._stats or self._stats[k] is None:
|
| 58 |
+
self._stats[k] = deepcopy(v)
|
| 59 |
+
elif isinstance(v, torch.Tensor):
|
| 60 |
+
self._stats[k] = torch.cat([self._stats[k], v], dim=0)
|
| 61 |
+
elif isinstance(v, np.ndarray):
|
| 62 |
+
self._stats[k] = np.concatenate([self._stats[k], v], axis=0)
|
| 63 |
+
elif isinstance(v, list):
|
| 64 |
+
self._stats[k] = self._stats[k] + deepcopy(v)
|
| 65 |
+
else:
|
| 66 |
+
raise TypeError(f"MaskData key {k} has an unsupported type {type(v)}.")
|
| 67 |
+
|
| 68 |
+
def to_numpy(self) -> None:
|
| 69 |
+
for k, v in self._stats.items():
|
| 70 |
+
if isinstance(v, torch.Tensor):
|
| 71 |
+
self._stats[k] = v.detach().cpu().numpy()
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
def is_box_near_crop_edge(
|
| 75 |
+
boxes: torch.Tensor, crop_box: List[int], orig_box: List[int], atol: float = 20.0
|
| 76 |
+
) -> torch.Tensor:
|
| 77 |
+
"""Filter masks at the edge of a crop, but not at the edge of the original image."""
|
| 78 |
+
crop_box_torch = torch.as_tensor(crop_box, dtype=torch.float, device=boxes.device)
|
| 79 |
+
orig_box_torch = torch.as_tensor(orig_box, dtype=torch.float, device=boxes.device)
|
| 80 |
+
boxes = uncrop_boxes_xyxy(boxes, crop_box).float()
|
| 81 |
+
near_crop_edge = torch.isclose(boxes, crop_box_torch[None, :], atol=atol, rtol=0)
|
| 82 |
+
near_image_edge = torch.isclose(boxes, orig_box_torch[None, :], atol=atol, rtol=0)
|
| 83 |
+
near_crop_edge = torch.logical_and(near_crop_edge, ~near_image_edge)
|
| 84 |
+
return torch.any(near_crop_edge, dim=1)
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def box_xyxy_to_xywh(box_xyxy: torch.Tensor) -> torch.Tensor:
|
| 88 |
+
box_xywh = deepcopy(box_xyxy)
|
| 89 |
+
box_xywh[2] = box_xywh[2] - box_xywh[0]
|
| 90 |
+
box_xywh[3] = box_xywh[3] - box_xywh[1]
|
| 91 |
+
return box_xywh
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def batch_iterator(batch_size: int, *args) -> Generator[List[Any], None, None]:
|
| 95 |
+
assert len(args) > 0 and all(
|
| 96 |
+
len(a) == len(args[0]) for a in args
|
| 97 |
+
), "Batched iteration must have inputs of all the same size."
|
| 98 |
+
n_batches = len(args[0]) // batch_size + int(len(args[0]) % batch_size != 0)
|
| 99 |
+
for b in range(n_batches):
|
| 100 |
+
yield [arg[b * batch_size : (b + 1) * batch_size] for arg in args]
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
def mask_to_rle_pytorch(tensor: torch.Tensor) -> List[Dict[str, Any]]:
|
| 104 |
+
# Put in fortran order and flatten h,w
|
| 105 |
+
b, h, w = tensor.shape
|
| 106 |
+
tensor = tensor.permute(0, 2, 1).flatten(1)
|
| 107 |
+
|
| 108 |
+
# Compute change indices
|
| 109 |
+
diff = tensor[:, 1:] ^ tensor[:, :-1]
|
| 110 |
+
change_indices = diff.nonzero()
|
| 111 |
+
|
| 112 |
+
# Encode run length
|
| 113 |
+
out = []
|
| 114 |
+
for i in range(b):
|
| 115 |
+
cur_idxs = change_indices[change_indices[:, 0] == i, 1]
|
| 116 |
+
cur_idxs = torch.cat(
|
| 117 |
+
[
|
| 118 |
+
torch.tensor([0], dtype=cur_idxs.dtype, device=cur_idxs.device),
|
| 119 |
+
cur_idxs + 1,
|
| 120 |
+
torch.tensor([h * w], dtype=cur_idxs.dtype, device=cur_idxs.device),
|
| 121 |
+
]
|
| 122 |
+
)
|
| 123 |
+
btw_idxs = cur_idxs[1:] - cur_idxs[:-1]
|
| 124 |
+
counts = [] if tensor[i, 0] == 0 else [0]
|
| 125 |
+
counts.extend(btw_idxs.detach().cpu().tolist())
|
| 126 |
+
out.append({"size": [h, w], "counts": counts})
|
| 127 |
+
return out
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
def rle_to_mask(rle: Dict[str, Any]) -> np.ndarray:
|
| 131 |
+
"""Compute a binary mask from an uncompressed RLE."""
|
| 132 |
+
h, w = rle["size"]
|
| 133 |
+
mask = np.empty(h * w, dtype=bool)
|
| 134 |
+
idx = 0
|
| 135 |
+
parity = False
|
| 136 |
+
for count in rle["counts"]:
|
| 137 |
+
mask[idx : idx + count] = parity
|
| 138 |
+
idx += count
|
| 139 |
+
parity ^= True
|
| 140 |
+
mask = mask.reshape(w, h)
|
| 141 |
+
return mask.transpose() # Put in C order
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
def area_from_rle(rle: Dict[str, Any]) -> int:
|
| 145 |
+
return sum(rle["counts"][1::2])
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
def calculate_stability_score(
|
| 149 |
+
masks: torch.Tensor, mask_threshold: float, threshold_offset: float
|
| 150 |
+
) -> torch.Tensor:
|
| 151 |
+
# One mask is always contained inside the other.
|
| 152 |
+
# Save memory by preventing unnecessary cast to torch.int64
|
| 153 |
+
intersections = (
|
| 154 |
+
(masks > (mask_threshold + threshold_offset))
|
| 155 |
+
.sum(-1, dtype=torch.int16)
|
| 156 |
+
.sum(-1, dtype=torch.int32)
|
| 157 |
+
)
|
| 158 |
+
unions = (
|
| 159 |
+
(masks > (mask_threshold - threshold_offset))
|
| 160 |
+
.sum(-1, dtype=torch.int16)
|
| 161 |
+
.sum(-1, dtype=torch.int32)
|
| 162 |
+
)
|
| 163 |
+
return intersections / unions
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
def build_point_grid(n_per_side: int) -> np.ndarray:
|
| 167 |
+
"""Generates a 2D grid of points evenly spaced in [0,1]x[0,1]."""
|
| 168 |
+
offset = 1 / (2 * n_per_side)
|
| 169 |
+
points_one_side = np.linspace(offset, 1 - offset, n_per_side)
|
| 170 |
+
points_x = np.tile(points_one_side[None, :], (n_per_side, 1))
|
| 171 |
+
points_y = np.tile(points_one_side[:, None], (1, n_per_side))
|
| 172 |
+
points = np.stack([points_x, points_y], axis=-1).reshape(-1, 2)
|
| 173 |
+
return points
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
def build_all_layer_point_grids(
|
| 177 |
+
n_per_side: int, n_layers: int, scale_per_layer: int
|
| 178 |
+
) -> List[np.ndarray]:
|
| 179 |
+
"""Generates point grids for all crop layers."""
|
| 180 |
+
points_by_layer = []
|
| 181 |
+
for i in range(n_layers + 1):
|
| 182 |
+
n_points = int(n_per_side / (scale_per_layer**i))
|
| 183 |
+
points_by_layer.append(build_point_grid(n_points))
|
| 184 |
+
return points_by_layer
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
def generate_crop_boxes(
|
| 188 |
+
im_size: Tuple[int, ...], n_layers: int, overlap_ratio: float
|
| 189 |
+
) -> Tuple[List[List[int]], List[int]]:
|
| 190 |
+
"""
|
| 191 |
+
Generates a list of crop boxes of different sizes. Each layer
|
| 192 |
+
has (2**i)**2 boxes for the ith layer.
|
| 193 |
+
"""
|
| 194 |
+
crop_boxes, layer_idxs = [], []
|
| 195 |
+
im_h, im_w = im_size
|
| 196 |
+
short_side = min(im_h, im_w)
|
| 197 |
+
|
| 198 |
+
# Original image
|
| 199 |
+
crop_boxes.append([0, 0, im_w, im_h])
|
| 200 |
+
layer_idxs.append(0)
|
| 201 |
+
|
| 202 |
+
def crop_len(orig_len, n_crops, overlap):
|
| 203 |
+
return int(math.ceil((overlap * (n_crops - 1) + orig_len) / n_crops))
|
| 204 |
+
|
| 205 |
+
for i_layer in range(n_layers):
|
| 206 |
+
n_crops_per_side = 2 ** (i_layer + 1)
|
| 207 |
+
overlap = int(overlap_ratio * short_side * (2 / n_crops_per_side))
|
| 208 |
+
|
| 209 |
+
crop_w = crop_len(im_w, n_crops_per_side, overlap)
|
| 210 |
+
crop_h = crop_len(im_h, n_crops_per_side, overlap)
|
| 211 |
+
|
| 212 |
+
crop_box_x0 = [int((crop_w - overlap) * i) for i in range(n_crops_per_side)]
|
| 213 |
+
crop_box_y0 = [int((crop_h - overlap) * i) for i in range(n_crops_per_side)]
|
| 214 |
+
|
| 215 |
+
# Crops in XYWH format
|
| 216 |
+
for x0, y0 in product(crop_box_x0, crop_box_y0):
|
| 217 |
+
box = [x0, y0, min(x0 + crop_w, im_w), min(y0 + crop_h, im_h)]
|
| 218 |
+
crop_boxes.append(box)
|
| 219 |
+
layer_idxs.append(i_layer + 1)
|
| 220 |
+
|
| 221 |
+
return crop_boxes, layer_idxs
|
| 222 |
+
|
| 223 |
+
|
| 224 |
+
def uncrop_boxes_xyxy(boxes: torch.Tensor, crop_box: List[int]) -> torch.Tensor:
|
| 225 |
+
x0, y0, _, _ = crop_box
|
| 226 |
+
offset = torch.tensor([[x0, y0, x0, y0]], device=boxes.device)
|
| 227 |
+
# Check if boxes has a channel dimension
|
| 228 |
+
if len(boxes.shape) == 3:
|
| 229 |
+
offset = offset.unsqueeze(1)
|
| 230 |
+
return boxes + offset
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
def uncrop_points(points: torch.Tensor, crop_box: List[int]) -> torch.Tensor:
|
| 234 |
+
x0, y0, _, _ = crop_box
|
| 235 |
+
offset = torch.tensor([[x0, y0]], device=points.device)
|
| 236 |
+
# Check if points has a channel dimension
|
| 237 |
+
if len(points.shape) == 3:
|
| 238 |
+
offset = offset.unsqueeze(1)
|
| 239 |
+
return points + offset
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
def uncrop_masks(
|
| 243 |
+
masks: torch.Tensor, crop_box: List[int], orig_h: int, orig_w: int
|
| 244 |
+
) -> torch.Tensor:
|
| 245 |
+
x0, y0, x1, y1 = crop_box
|
| 246 |
+
if x0 == 0 and y0 == 0 and x1 == orig_w and y1 == orig_h:
|
| 247 |
+
return masks
|
| 248 |
+
# Coordinate transform masks
|
| 249 |
+
pad_x, pad_y = orig_w - (x1 - x0), orig_h - (y1 - y0)
|
| 250 |
+
pad = (x0, pad_x - x0, y0, pad_y - y0)
|
| 251 |
+
return torch.nn.functional.pad(masks, pad, value=0)
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
def remove_small_regions(
|
| 255 |
+
mask: np.ndarray, area_thresh: float, mode: str
|
| 256 |
+
) -> Tuple[np.ndarray, bool]:
|
| 257 |
+
"""
|
| 258 |
+
Removes small disconnected regions and holes in a mask. Returns the
|
| 259 |
+
mask and an indicator of if the mask has been modified.
|
| 260 |
+
"""
|
| 261 |
+
import cv2 # type: ignore
|
| 262 |
+
|
| 263 |
+
assert mode in ["holes", "islands"]
|
| 264 |
+
correct_holes = mode == "holes"
|
| 265 |
+
working_mask = (correct_holes ^ mask).astype(np.uint8)
|
| 266 |
+
n_labels, regions, stats, _ = cv2.connectedComponentsWithStats(working_mask, 8)
|
| 267 |
+
sizes = stats[:, -1][1:] # Row 0 is background label
|
| 268 |
+
small_regions = [i + 1 for i, s in enumerate(sizes) if s < area_thresh]
|
| 269 |
+
if len(small_regions) == 0:
|
| 270 |
+
return mask, False
|
| 271 |
+
fill_labels = [0] + small_regions
|
| 272 |
+
if not correct_holes:
|
| 273 |
+
fill_labels = [i for i in range(n_labels) if i not in fill_labels]
|
| 274 |
+
# If every region is below threshold, keep largest
|
| 275 |
+
if len(fill_labels) == 0:
|
| 276 |
+
fill_labels = [int(np.argmax(sizes)) + 1]
|
| 277 |
+
mask = np.isin(regions, fill_labels)
|
| 278 |
+
return mask, True
|
| 279 |
+
|
| 280 |
+
|
| 281 |
+
def coco_encode_rle(uncompressed_rle: Dict[str, Any]) -> Dict[str, Any]:
|
| 282 |
+
from pycocotools import mask as mask_utils # type: ignore
|
| 283 |
+
|
| 284 |
+
h, w = uncompressed_rle["size"]
|
| 285 |
+
rle = mask_utils.frPyObjects(uncompressed_rle, h, w)
|
| 286 |
+
rle["counts"] = rle["counts"].decode("utf-8") # Necessary to serialize with json
|
| 287 |
+
return rle
|
| 288 |
+
|
| 289 |
+
|
| 290 |
+
def batched_mask_to_box(masks: torch.Tensor) -> torch.Tensor:
|
| 291 |
+
# torch.max below raises an error on empty inputs, just skip in this case
|
| 292 |
+
if torch.numel(masks) == 0:
|
| 293 |
+
return torch.zeros(*masks.shape[:-2], 4, device=masks.device)
|
| 294 |
+
|
| 295 |
+
# Normalize shape to CxHxW
|
| 296 |
+
shape = masks.shape
|
| 297 |
+
h, w = shape[-2:]
|
| 298 |
+
if len(shape) > 2:
|
| 299 |
+
masks = masks.flatten(0, -3)
|
| 300 |
+
else:
|
| 301 |
+
masks = masks.unsqueeze(0)
|
| 302 |
+
|
| 303 |
+
# Get top and bottom edges
|
| 304 |
+
in_height, _ = torch.max(masks, dim=-1)
|
| 305 |
+
in_height_coords = in_height * torch.arange(h, device=in_height.device)[None, :]
|
| 306 |
+
bottom_edges, _ = torch.max(in_height_coords, dim=-1)
|
| 307 |
+
in_height_coords = in_height_coords + h * (~in_height)
|
| 308 |
+
top_edges, _ = torch.min(in_height_coords, dim=-1)
|
| 309 |
+
|
| 310 |
+
# Get left and right edges
|
| 311 |
+
in_width, _ = torch.max(masks, dim=-2)
|
| 312 |
+
in_width_coords = in_width * torch.arange(w, device=in_width.device)[None, :]
|
| 313 |
+
right_edges, _ = torch.max(in_width_coords, dim=-1)
|
| 314 |
+
in_width_coords = in_width_coords + w * (~in_width)
|
| 315 |
+
left_edges, _ = torch.min(in_width_coords, dim=-1)
|
| 316 |
+
|
| 317 |
+
# If the mask is empty the right edge will be to the left of the left edge.
|
| 318 |
+
# Replace these boxes with [0, 0, 0, 0]
|
| 319 |
+
empty_filter = (right_edges < left_edges) | (bottom_edges < top_edges)
|
| 320 |
+
out = torch.stack([left_edges, top_edges, right_edges, bottom_edges], dim=-1)
|
| 321 |
+
out = out * (~empty_filter).unsqueeze(-1)
|
| 322 |
+
|
| 323 |
+
# Return to original shape
|
| 324 |
+
if len(shape) > 2:
|
| 325 |
+
out = out.reshape(*shape[:-2], 4)
|
| 326 |
+
else:
|
| 327 |
+
out = out[0]
|
| 328 |
+
|
| 329 |
+
return out
|
model/segment_anything/utils/onnx.py
ADDED
|
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
from torch.nn import functional as F
|
| 6 |
+
|
| 7 |
+
from typing import Tuple
|
| 8 |
+
|
| 9 |
+
from ..modeling import Sam
|
| 10 |
+
from .amg import calculate_stability_score
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class SamOnnxModel(nn.Module):
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def __init__(
|
| 17 |
+
self,
|
| 18 |
+
model: Sam,
|
| 19 |
+
return_single_mask: bool,
|
| 20 |
+
use_stability_score: bool = False,
|
| 21 |
+
return_extra_metrics: bool = False,
|
| 22 |
+
) -> None:
|
| 23 |
+
super().__init__()
|
| 24 |
+
self.mask_decoder = model.mask_decoder
|
| 25 |
+
self.model = model
|
| 26 |
+
self.img_size = model.image_encoder.img_size
|
| 27 |
+
self.return_single_mask = return_single_mask
|
| 28 |
+
self.use_stability_score = use_stability_score
|
| 29 |
+
self.stability_score_offset = 1.0
|
| 30 |
+
self.return_extra_metrics = return_extra_metrics
|
| 31 |
+
|
| 32 |
+
@staticmethod
|
| 33 |
+
def resize_longest_image_size(
|
| 34 |
+
input_image_size: torch.Tensor, longest_side: int
|
| 35 |
+
) -> torch.Tensor:
|
| 36 |
+
input_image_size = input_image_size.to(torch.float32)
|
| 37 |
+
scale = longest_side / torch.max(input_image_size)
|
| 38 |
+
transformed_size = scale * input_image_size
|
| 39 |
+
transformed_size = torch.floor(transformed_size + 0.5).to(torch.int64)
|
| 40 |
+
return transformed_size
|
| 41 |
+
|
| 42 |
+
def _embed_points(self, point_coords: torch.Tensor, point_labels: torch.Tensor) -> torch.Tensor:
|
| 43 |
+
point_coords = point_coords + 0.5
|
| 44 |
+
point_coords = point_coords / self.img_size
|
| 45 |
+
point_embedding = self.model.prompt_encoder.pe_layer._pe_encoding(point_coords)
|
| 46 |
+
point_labels = point_labels.unsqueeze(-1).expand_as(point_embedding)
|
| 47 |
+
|
| 48 |
+
point_embedding = point_embedding * (point_labels != -1)
|
| 49 |
+
point_embedding = point_embedding + self.model.prompt_encoder.not_a_point_embed.weight * (
|
| 50 |
+
point_labels == -1
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
for i in range(self.model.prompt_encoder.num_point_embeddings):
|
| 54 |
+
point_embedding = point_embedding + self.model.prompt_encoder.point_embeddings[
|
| 55 |
+
i
|
| 56 |
+
].weight * (point_labels == i)
|
| 57 |
+
|
| 58 |
+
return point_embedding
|
| 59 |
+
|
| 60 |
+
def _embed_masks(self, input_mask: torch.Tensor, has_mask_input: torch.Tensor) -> torch.Tensor:
|
| 61 |
+
mask_embedding = has_mask_input * self.model.prompt_encoder.mask_downscaling(input_mask)
|
| 62 |
+
mask_embedding = mask_embedding + (
|
| 63 |
+
1 - has_mask_input
|
| 64 |
+
) * self.model.prompt_encoder.no_mask_embed.weight.reshape(1, -1, 1, 1)
|
| 65 |
+
return mask_embedding
|
| 66 |
+
|
| 67 |
+
def mask_postprocessing(self, masks: torch.Tensor, orig_im_size: torch.Tensor) -> torch.Tensor:
|
| 68 |
+
masks = F.interpolate(
|
| 69 |
+
masks,
|
| 70 |
+
size=(self.img_size, self.img_size),
|
| 71 |
+
mode="bilinear",
|
| 72 |
+
align_corners=False,
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
prepadded_size = self.resize_longest_image_size(orig_im_size, self.img_size).to(torch.int64)
|
| 76 |
+
masks = masks[..., : prepadded_size[0], : prepadded_size[1]] # type: ignore
|
| 77 |
+
|
| 78 |
+
orig_im_size = orig_im_size.to(torch.int64)
|
| 79 |
+
h, w = orig_im_size[0], orig_im_size[1]
|
| 80 |
+
masks = F.interpolate(masks, size=(h, w), mode="bilinear", align_corners=False)
|
| 81 |
+
return masks
|
| 82 |
+
|
| 83 |
+
def select_masks(
|
| 84 |
+
self, masks: torch.Tensor, iou_preds: torch.Tensor, num_points: int
|
| 85 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 86 |
+
# Determine if we should return the multiclick mask or not from the number of points.
|
| 87 |
+
# The reweighting is used to avoid control flow.
|
| 88 |
+
score_reweight = torch.tensor(
|
| 89 |
+
[[1000] + [0] * (self.model.mask_decoder.num_mask_tokens - 1)]
|
| 90 |
+
).to(iou_preds.device)
|
| 91 |
+
score = iou_preds + (num_points - 2.5) * score_reweight
|
| 92 |
+
best_idx = torch.argmax(score, dim=1)
|
| 93 |
+
masks = masks[torch.arange(masks.shape[0]), best_idx, :, :].unsqueeze(1)
|
| 94 |
+
iou_preds = iou_preds[torch.arange(masks.shape[0]), best_idx].unsqueeze(1)
|
| 95 |
+
|
| 96 |
+
return masks, iou_preds
|
| 97 |
+
|
| 98 |
+
@torch.no_grad()
|
| 99 |
+
def forward(
|
| 100 |
+
self,
|
| 101 |
+
image_embeddings: torch.Tensor,
|
| 102 |
+
point_coords: torch.Tensor,
|
| 103 |
+
point_labels: torch.Tensor,
|
| 104 |
+
mask_input: torch.Tensor,
|
| 105 |
+
has_mask_input: torch.Tensor,
|
| 106 |
+
orig_im_size: torch.Tensor,
|
| 107 |
+
):
|
| 108 |
+
sparse_embedding = self._embed_points(point_coords, point_labels)
|
| 109 |
+
dense_embedding = self._embed_masks(mask_input, has_mask_input)
|
| 110 |
+
|
| 111 |
+
masks, scores = self.model.mask_decoder.predict_masks(
|
| 112 |
+
image_embeddings=image_embeddings,
|
| 113 |
+
image_pe=self.model.prompt_encoder.get_dense_pe(),
|
| 114 |
+
sparse_prompt_embeddings=sparse_embedding,
|
| 115 |
+
dense_prompt_embeddings=dense_embedding,
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
if self.use_stability_score:
|
| 119 |
+
scores = calculate_stability_score(
|
| 120 |
+
masks, self.model.mask_threshold, self.stability_score_offset
|
| 121 |
+
)
|
| 122 |
+
|
| 123 |
+
if self.return_single_mask:
|
| 124 |
+
masks, scores = self.select_masks(masks, scores, point_coords.shape[1])
|
| 125 |
+
|
| 126 |
+
upscaled_masks = self.mask_postprocessing(masks, orig_im_size)
|
| 127 |
+
|
| 128 |
+
if self.return_extra_metrics:
|
| 129 |
+
stability_scores = calculate_stability_score(
|
| 130 |
+
upscaled_masks, self.model.mask_threshold, self.stability_score_offset
|
| 131 |
+
)
|
| 132 |
+
areas = (upscaled_masks > self.model.mask_threshold).sum(-1).sum(-1)
|
| 133 |
+
return upscaled_masks, scores, stability_scores, areas, masks
|
| 134 |
+
|
| 135 |
+
return upscaled_masks, scores, masks
|
model/segment_anything/utils/transforms.py
ADDED
|
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
from torch.nn import functional as F
|
| 6 |
+
from torchvision.transforms.functional import resize, to_pil_image # type: ignore
|
| 7 |
+
|
| 8 |
+
from copy import deepcopy
|
| 9 |
+
from typing import Tuple
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class ResizeLongestSide:
|
| 13 |
+
|
| 14 |
+
def __init__(self, target_length: int) -> None:
|
| 15 |
+
self.target_length = target_length
|
| 16 |
+
|
| 17 |
+
def apply_image(self, image: np.ndarray) -> np.ndarray:
|
| 18 |
+
"""
|
| 19 |
+
Expects a numpy array with shape HxWxC in uint8 format.
|
| 20 |
+
"""
|
| 21 |
+
target_size = self.get_preprocess_shape(image.shape[0], image.shape[1], self.target_length)
|
| 22 |
+
return np.array(resize(to_pil_image(image), target_size))
|
| 23 |
+
|
| 24 |
+
def apply_coords(self, coords: np.ndarray, original_size: Tuple[int, ...]) -> np.ndarray:
|
| 25 |
+
"""
|
| 26 |
+
Expects a numpy array of length 2 in the final dimension. Requires the
|
| 27 |
+
original image size in (H, W) format.
|
| 28 |
+
"""
|
| 29 |
+
old_h, old_w = original_size
|
| 30 |
+
new_h, new_w = self.get_preprocess_shape(
|
| 31 |
+
original_size[0], original_size[1], self.target_length
|
| 32 |
+
)
|
| 33 |
+
coords = deepcopy(coords).astype(float)
|
| 34 |
+
coords[..., 0] = coords[..., 0] * (new_w / old_w)
|
| 35 |
+
coords[..., 1] = coords[..., 1] * (new_h / old_h)
|
| 36 |
+
return coords
|
| 37 |
+
|
| 38 |
+
def apply_boxes(self, boxes: np.ndarray, original_size: Tuple[int, ...]) -> np.ndarray:
|
| 39 |
+
"""
|
| 40 |
+
Expects a numpy array shape Bx4. Requires the original image size
|
| 41 |
+
in (H, W) format.
|
| 42 |
+
"""
|
| 43 |
+
boxes = self.apply_coords(boxes.reshape(-1, 2, 2), original_size)
|
| 44 |
+
return boxes.reshape(-1, 4)
|
| 45 |
+
|
| 46 |
+
def apply_image_torch(self, image: torch.Tensor) -> torch.Tensor:
|
| 47 |
+
"""
|
| 48 |
+
Expects batched images with shape BxCxHxW and float format. This
|
| 49 |
+
transformation may not exactly match apply_image. apply_image is
|
| 50 |
+
the transformation expected by the model.
|
| 51 |
+
"""
|
| 52 |
+
# Expects an image in BCHW format. May not exactly match apply_image.
|
| 53 |
+
target_size = self.get_preprocess_shape(image.shape[2], image.shape[3], self.target_length)
|
| 54 |
+
return F.interpolate(
|
| 55 |
+
image, target_size, mode="bilinear", align_corners=False, antialias=True
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
def apply_coords_torch(
|
| 59 |
+
self, coords: torch.Tensor, original_size: Tuple[int, ...]
|
| 60 |
+
) -> torch.Tensor:
|
| 61 |
+
"""
|
| 62 |
+
Expects a torch tensor with length 2 in the last dimension. Requires the
|
| 63 |
+
original image size in (H, W) format.
|
| 64 |
+
"""
|
| 65 |
+
old_h, old_w = original_size
|
| 66 |
+
new_h, new_w = self.get_preprocess_shape(
|
| 67 |
+
original_size[0], original_size[1], self.target_length
|
| 68 |
+
)
|
| 69 |
+
coords = deepcopy(coords).to(torch.float)
|
| 70 |
+
coords[..., 0] = coords[..., 0] * (new_w / old_w)
|
| 71 |
+
coords[..., 1] = coords[..., 1] * (new_h / old_h)
|
| 72 |
+
return coords
|
| 73 |
+
|
| 74 |
+
def apply_boxes_torch(
|
| 75 |
+
self, boxes: torch.Tensor, original_size: Tuple[int, ...]
|
| 76 |
+
) -> torch.Tensor:
|
| 77 |
+
"""
|
| 78 |
+
Expects a torch tensor with shape Bx4. Requires the original image
|
| 79 |
+
size in (H, W) format.
|
| 80 |
+
"""
|
| 81 |
+
boxes = self.apply_coords_torch(boxes.reshape(-1, 2, 2), original_size)
|
| 82 |
+
return boxes.reshape(-1, 4)
|
| 83 |
+
|
| 84 |
+
@staticmethod
|
| 85 |
+
def get_preprocess_shape(oldh: int, oldw: int, long_side_length: int) -> Tuple[int, int]:
|
| 86 |
+
"""
|
| 87 |
+
Compute the output size given input size and target long side length.
|
| 88 |
+
"""
|
| 89 |
+
scale = long_side_length * 1.0 / max(oldh, oldw)
|
| 90 |
+
newh, neww = oldh * scale, oldw * scale
|
| 91 |
+
neww = int(neww + 0.5)
|
| 92 |
+
newh = int(newh + 0.5)
|
| 93 |
+
return (newh, neww)
|
requirements.txt
ADDED
|
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
accelerate==1.11.0
|
| 2 |
+
aiohappyeyeballs==2.6.1
|
| 3 |
+
aiohttp==3.13.2
|
| 4 |
+
aiosignal==1.4.0
|
| 5 |
+
annotated-types==0.7.0
|
| 6 |
+
anyio==4.11.0
|
| 7 |
+
async-timeout==5.0.1
|
| 8 |
+
attrs==25.4.0
|
| 9 |
+
av==16.0.1
|
| 10 |
+
bitsandbytes==0.48.1
|
| 11 |
+
certifi==2025.10.5
|
| 12 |
+
charset-normalizer==3.4.4
|
| 13 |
+
click==8.3.0
|
| 14 |
+
contourpy==1.3.2
|
| 15 |
+
cycler==0.12.1
|
| 16 |
+
datasets==4.3.0
|
| 17 |
+
deepspeed==0.18.2
|
| 18 |
+
dill==0.4.0
|
| 19 |
+
einops==0.8.1
|
| 20 |
+
exceptiongroup==1.3.0
|
| 21 |
+
filelock==3.20.0
|
| 22 |
+
flash_attn==2.8.3
|
| 23 |
+
fonttools==4.60.1
|
| 24 |
+
frozenlist==1.8.0
|
| 25 |
+
fsspec==2025.9.0
|
| 26 |
+
gitdb==4.0.12
|
| 27 |
+
GitPython==3.1.45
|
| 28 |
+
h11==0.16.0
|
| 29 |
+
hf-xet==1.2.0
|
| 30 |
+
hjson==3.1.0
|
| 31 |
+
httpcore==1.0.9
|
| 32 |
+
httpx==0.28.1
|
| 33 |
+
huggingface-hub==0.36.0
|
| 34 |
+
idna==3.11
|
| 35 |
+
imageio==2.37.0
|
| 36 |
+
Jinja2==3.1.6
|
| 37 |
+
kiwisolver==1.4.9
|
| 38 |
+
lazy_loader==0.4
|
| 39 |
+
MarkupSafe==3.0.3
|
| 40 |
+
matplotlib==3.10.7
|
| 41 |
+
mpmath==1.3.0
|
| 42 |
+
msgpack==1.1.2
|
| 43 |
+
multidict==6.7.0
|
| 44 |
+
multiprocess==0.70.16
|
| 45 |
+
networkx==3.4.2
|
| 46 |
+
ninja==1.13.0
|
| 47 |
+
numpy==2.2.6
|
| 48 |
+
nvidia-cublas-cu12==12.6.4.1
|
| 49 |
+
nvidia-cuda-cupti-cu12==12.6.80
|
| 50 |
+
nvidia-cuda-nvrtc-cu12==12.6.77
|
| 51 |
+
nvidia-cuda-runtime-cu12==12.6.77
|
| 52 |
+
nvidia-cudnn-cu12==9.10.2.21
|
| 53 |
+
nvidia-cufft-cu12==11.3.0.4
|
| 54 |
+
nvidia-cufile-cu12==1.11.1.6
|
| 55 |
+
nvidia-curand-cu12==10.3.7.77
|
| 56 |
+
nvidia-cusolver-cu12==11.7.1.2
|
| 57 |
+
nvidia-cusparse-cu12==12.5.4.2
|
| 58 |
+
nvidia-cusparselt-cu12==0.7.1
|
| 59 |
+
nvidia-ml-py==13.580.82
|
| 60 |
+
nvidia-nccl-cu12==2.27.5
|
| 61 |
+
nvidia-nvjitlink-cu12==12.6.85
|
| 62 |
+
nvidia-nvshmem-cu12==3.3.20
|
| 63 |
+
nvidia-nvtx-cu12==12.6.77
|
| 64 |
+
opencv-python==4.12.0.88
|
| 65 |
+
packaging==25.0
|
| 66 |
+
pandas==2.3.3
|
| 67 |
+
peft==0.17.1
|
| 68 |
+
pillow==12.0.0
|
| 69 |
+
platformdirs==4.5.0
|
| 70 |
+
propcache==0.4.1
|
| 71 |
+
protobuf==6.33.0
|
| 72 |
+
psutil==7.1.1
|
| 73 |
+
py-cpuinfo==9.0.0
|
| 74 |
+
pyarrow==22.0.0
|
| 75 |
+
pycocotools==2.0.10
|
| 76 |
+
pydantic==2.12.4
|
| 77 |
+
pydantic_core==2.41.5
|
| 78 |
+
pyparsing==3.2.5
|
| 79 |
+
python-dateutil==2.9.0.post0
|
| 80 |
+
pytz==2025.2
|
| 81 |
+
PyYAML==6.0.3
|
| 82 |
+
qwen-vl-utils==0.0.14
|
| 83 |
+
regex==2025.10.23
|
| 84 |
+
requests==2.32.5
|
| 85 |
+
safetensors==0.6.2
|
| 86 |
+
scikit-image==0.25.2
|
| 87 |
+
scipy==1.15.3
|
| 88 |
+
sentencepiece==0.2.1
|
| 89 |
+
sentry-sdk==2.45.0
|
| 90 |
+
shellingham==1.5.4
|
| 91 |
+
six==1.17.0
|
| 92 |
+
smmap==5.0.2
|
| 93 |
+
sniffio==1.3.1
|
| 94 |
+
sympy==1.14.0
|
| 95 |
+
tifffile==2025.5.10
|
| 96 |
+
tiktoken==0.12.0
|
| 97 |
+
tokenizers==0.22.1
|
| 98 |
+
torch==2.9.0+cu126
|
| 99 |
+
torchaudio==2.9.0+cu126
|
| 100 |
+
torchvision==0.24.0+cu126
|
| 101 |
+
tqdm==4.67.1
|
| 102 |
+
transformers==4.57.1
|
| 103 |
+
triton==3.5.0
|
| 104 |
+
trl==0.24.0
|
| 105 |
+
typer-slim==0.20.0
|
| 106 |
+
typing-inspection==0.4.2
|
| 107 |
+
typing_extensions==4.15.0
|
| 108 |
+
tzdata==2025.2
|
| 109 |
+
urllib3==2.5.0
|
| 110 |
+
wandb==0.23.0
|
| 111 |
+
xxhash==3.6.0
|
| 112 |
+
yarl==1.22.0
|
run_seg_ref.py
ADDED
|
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
import numpy as np
|
| 5 |
+
import os
|
| 6 |
+
from model.segment_anything import SamPredictor, sam_model_registry
|
| 7 |
+
from eval.utils import compute_logits_from_mask, show_points, masks_sample_points
|
| 8 |
+
import cv2
|
| 9 |
+
|
| 10 |
+
import requests
|
| 11 |
+
from PIL import Image
|
| 12 |
+
from io import BytesIO
|
| 13 |
+
import re
|
| 14 |
+
|
| 15 |
+
from segment_predictor_cache import GenerativeSegmenter
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def image_parser(args):
|
| 19 |
+
out = args.image_file.split(args.sep)
|
| 20 |
+
return out
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def load_image(image_file):
|
| 24 |
+
if image_file.startswith("http") or image_file.startswith("https"
|
| 25 |
+
):
|
| 26 |
+
response = requests.get(image_file)
|
| 27 |
+
image = Image.open(BytesIO(response.content)).convert("RGB")
|
| 28 |
+
else:
|
| 29 |
+
image = Image.open(image_file).convert("RGB")
|
| 30 |
+
return image
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def load_images(image_files):
|
| 34 |
+
out = []
|
| 35 |
+
for image_file in image_files:
|
| 36 |
+
image = load_image(image_file)
|
| 37 |
+
out.append(image)
|
| 38 |
+
return out
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def upsample_tensor_vectorized(a, s):
|
| 42 |
+
h, w = a.shape
|
| 43 |
+
sh, sw = int(h * s), int(w * s)
|
| 44 |
+
# Create an output tensor of zeros
|
| 45 |
+
result = torch.zeros((sh, sw), dtype=a.dtype, device=a.device)
|
| 46 |
+
# Calculate the target indices
|
| 47 |
+
offset = int(s / 2)
|
| 48 |
+
i_indices = torch.arange(h) * s + offset
|
| 49 |
+
j_indices = torch.arange(w) * s + offset
|
| 50 |
+
# Use broadcasting to fill the result tensor
|
| 51 |
+
result[i_indices[:, None].long(), j_indices.long()] = a
|
| 52 |
+
return result
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def translate_sequence(sequence_str):
|
| 56 |
+
"""
|
| 57 |
+
Translates a comma-separated sequence of categorical data to numerical labels,
|
| 58 |
+
identifying categories from the sequence.
|
| 59 |
+
|
| 60 |
+
Parameters:
|
| 61 |
+
sequence_str (str): The comma-separated sequence of categorical data.
|
| 62 |
+
|
| 63 |
+
Returns:
|
| 64 |
+
list: The sequence of numerical labels.
|
| 65 |
+
"""
|
| 66 |
+
# Split the string into a list of categories
|
| 67 |
+
sequence = sequence_str.split('|')
|
| 68 |
+
|
| 69 |
+
# strip the whitespace from each category
|
| 70 |
+
sequence = [seq.strip() for seq in sequence]
|
| 71 |
+
|
| 72 |
+
# Identify unique categories from the sequence
|
| 73 |
+
unique_categories = list(dict.fromkeys(sequence))
|
| 74 |
+
|
| 75 |
+
# place "others" at the beginning of the list
|
| 76 |
+
if "others" in unique_categories:
|
| 77 |
+
unique_categories.remove("others")
|
| 78 |
+
unique_categories.insert(0, "others")
|
| 79 |
+
|
| 80 |
+
# Create a dictionary to map each category to a unique integer
|
| 81 |
+
category_to_label = {
|
| 82 |
+
category: idx
|
| 83 |
+
for idx, category in enumerate(unique_categories)
|
| 84 |
+
}
|
| 85 |
+
|
| 86 |
+
# Translate the sequence using the dictionary
|
| 87 |
+
translated_sequence = [category_to_label[item] for item in sequence]
|
| 88 |
+
|
| 89 |
+
return translated_sequence
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def decode_mask(encoded_str):
|
| 93 |
+
rows = encoded_str.strip("\n").split("\n ")
|
| 94 |
+
decoded_list = []
|
| 95 |
+
for row in rows:
|
| 96 |
+
tokens = row.split("| ")
|
| 97 |
+
for token in tokens:
|
| 98 |
+
label, count = token.split(" *")
|
| 99 |
+
decoded_list.extend([label] * int(count))
|
| 100 |
+
return "|".join(decoded_list)
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
def run_model(args):
|
| 104 |
+
# Model
|
| 105 |
+
|
| 106 |
+
segmenter = GenerativeSegmenter(
|
| 107 |
+
args.model_path,
|
| 108 |
+
device_map="cuda",
|
| 109 |
+
min_pixels=1024 * 28 * 28,
|
| 110 |
+
max_pixels=1280 * 28 * 28
|
| 111 |
+
)
|
| 112 |
+
sam_post_process = True
|
| 113 |
+
|
| 114 |
+
sam = sam_model_registry["vit_h"](checkpoint=args.sam_path)
|
| 115 |
+
sam = sam.to(dtype=torch.float32, device='cuda')
|
| 116 |
+
predictor = SamPredictor(sam)
|
| 117 |
+
|
| 118 |
+
prompt_seg_single = args.query
|
| 119 |
+
|
| 120 |
+
image_files = image_parser(args)
|
| 121 |
+
images = load_images(image_files)
|
| 122 |
+
image = images[0]
|
| 123 |
+
w_ori, h_ori = image.size
|
| 124 |
+
|
| 125 |
+
with torch.inference_mode():
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
predictor.set_image(np.array(image))
|
| 129 |
+
segmentation_masks, response_text = segmenter.generate_with_segmentation(
|
| 130 |
+
image, prompt_seg_single
|
| 131 |
+
)
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
print("Last response text:")
|
| 135 |
+
print(response_text) # This will print the last iteration's response_text
|
| 136 |
+
|
| 137 |
+
if segmentation_masks is None or len(segmentation_masks) == 0:
|
| 138 |
+
print("No mask found.")
|
| 139 |
+
return
|
| 140 |
+
|
| 141 |
+
assert len(segmentation_masks) == 1
|
| 142 |
+
|
| 143 |
+
mask = segmentation_masks[0] # This will use the last iteration's mask
|
| 144 |
+
|
| 145 |
+
mask_pred = pred_mask = F.interpolate(
|
| 146 |
+
mask.unsqueeze(0).unsqueeze(0).double(),
|
| 147 |
+
size=(h_ori, w_ori),
|
| 148 |
+
mode='nearest'
|
| 149 |
+
).squeeze(0).squeeze(0)
|
| 150 |
+
|
| 151 |
+
new_mask_pred = np.zeros((mask_pred.shape[0], mask_pred.shape[1]))
|
| 152 |
+
unique_classes = np.unique(mask_pred)
|
| 153 |
+
|
| 154 |
+
if sam_post_process:
|
| 155 |
+
unique_classes = torch.unique(pred_mask)
|
| 156 |
+
for class_id in unique_classes:
|
| 157 |
+
if class_id == 0:
|
| 158 |
+
continue
|
| 159 |
+
binary_mask = (pred_mask == class_id).double().cpu()
|
| 160 |
+
try:
|
| 161 |
+
logits = compute_logits_from_mask(pred_mask.cpu())
|
| 162 |
+
point_coords, point_labels = masks_sample_points(binary_mask)
|
| 163 |
+
sam_mask, _, logit = predictor.predict(
|
| 164 |
+
point_coords=point_coords,
|
| 165 |
+
point_labels=point_labels,
|
| 166 |
+
mask_input=logits,
|
| 167 |
+
multimask_output=False
|
| 168 |
+
)
|
| 169 |
+
for _ in range(2):
|
| 170 |
+
sam_mask, _, logit = predictor.predict(
|
| 171 |
+
point_coords=point_coords,
|
| 172 |
+
point_labels=point_labels,
|
| 173 |
+
mask_input=logit,
|
| 174 |
+
multimask_output=False
|
| 175 |
+
)
|
| 176 |
+
sam_mask = sam_mask[0].astype(np.float32)
|
| 177 |
+
except Exception as E:
|
| 178 |
+
print(f"Error: {E}")
|
| 179 |
+
sam_mask = np.zeros((h_ori, w_ori))
|
| 180 |
+
new_mask_pred = torch.from_numpy(sam_mask).to(pred_mask.device)
|
| 181 |
+
else:
|
| 182 |
+
new_mask_pred = mask_pred
|
| 183 |
+
new_mask_pred = new_mask_pred.unsqueeze(-1).repeat(1, 1, 3).numpy()
|
| 184 |
+
|
| 185 |
+
os.makedirs("STAMP/images", exist_ok=True)
|
| 186 |
+
image_path="STAMP/images/horses.png"
|
| 187 |
+
base_name = image_path.split("/")[-1].split(".")[0]
|
| 188 |
+
save_path = "{}/{}_mask.jpg".format(
|
| 189 |
+
"STAMP/images", base_name)
|
| 190 |
+
cv2.imwrite(save_path, new_mask_pred * 255)
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
if __name__ == "__main__":
|
| 195 |
+
parser = argparse.ArgumentParser()
|
| 196 |
+
parser.add_argument("--model-path", type=str, default="JiaZL/STAMP-2B-uni")
|
| 197 |
+
parser.add_argument("--image-file", type=str, default='STAMP/images/horses.png')
|
| 198 |
+
parser.add_argument("--sam_path", type=str, default='HCMUE-Research/SAM-vit-h')
|
| 199 |
+
parser.add_argument("--query", type=str, default='Please segment the white horse in the image.')
|
| 200 |
+
parser.add_argument("--sep", type=str, default=",")
|
| 201 |
+
args = parser.parse_args()
|
| 202 |
+
|
| 203 |
+
run_model(args)
|
segment_predictor_cache.py
ADDED
|
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from PIL import Image
|
| 3 |
+
from transformers import AutoProcessor, DynamicCache
|
| 4 |
+
import numpy as np
|
| 5 |
+
import torch.nn.functional as F
|
| 6 |
+
from model.qwen_changes import get_rope_index, SegQwenVL
|
| 7 |
+
import os
|
| 8 |
+
import json
|
| 9 |
+
import time
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def find_image_patch_info(image_pad_id, input_ids: torch.Tensor):
|
| 13 |
+
"""
|
| 14 |
+
From the end to the beginning, find consecutive image_pad_id in the input tensor and return their count.
|
| 15 |
+
|
| 16 |
+
Parameters:
|
| 17 |
+
image_pad_id (int): The ID of the image padding token.
|
| 18 |
+
input_ids (torch.Tensor): The input tensor of IDs.
|
| 19 |
+
|
| 20 |
+
Returns:
|
| 21 |
+
int: The number of consecutive image patches.
|
| 22 |
+
|
| 23 |
+
Raises:
|
| 24 |
+
RuntimeError: If no image patches (<|image_pad|>) are found in input_ids.
|
| 25 |
+
"""
|
| 26 |
+
input_ids_list = input_ids.squeeze().tolist()
|
| 27 |
+
|
| 28 |
+
# Reverse the list to search from the end to the beginning
|
| 29 |
+
reversed_input_ids_list = input_ids_list[::-1]
|
| 30 |
+
|
| 31 |
+
try:
|
| 32 |
+
# Find the first occurrence of image_pad_id in the reversed list
|
| 33 |
+
start_idx_rev = reversed_input_ids_list.index(image_pad_id)
|
| 34 |
+
end_idx_rev = start_idx_rev
|
| 35 |
+
|
| 36 |
+
# Continue to find consecutive image_pad_id
|
| 37 |
+
while end_idx_rev + 1 < len(reversed_input_ids_list) and reversed_input_ids_list[
|
| 38 |
+
end_idx_rev + 1] == image_pad_id:
|
| 39 |
+
end_idx_rev += 1
|
| 40 |
+
|
| 41 |
+
num_patches = (end_idx_rev - start_idx_rev) + 1
|
| 42 |
+
return num_patches
|
| 43 |
+
except ValueError:
|
| 44 |
+
raise RuntimeError("No image patches (<|image_pad|>) found in input_ids.")
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
class GenerativeSegmenter:
|
| 48 |
+
def __init__(self, model_path: str, min_pixels, max_pixels, **kwargs):
|
| 49 |
+
min_pixels = min_pixels
|
| 50 |
+
max_pixels = max_pixels
|
| 51 |
+
self.device = kwargs.get("device_map", "cuda" if torch.cuda.is_available() else "cpu")
|
| 52 |
+
|
| 53 |
+
# --- New intelligent loading logic ---
|
| 54 |
+
adapter_config_path = os.path.join(model_path, "adapter_config.json")
|
| 55 |
+
|
| 56 |
+
if os.path.exists(adapter_config_path):
|
| 57 |
+
print(f"Detected PEFT adapter configuration: {adapter_config_path}. Will load base model first, then load adapter.")
|
| 58 |
+
# Read the base model path from the adapter configuration
|
| 59 |
+
with open(adapter_config_path, 'r', encoding='utf-8') as f:
|
| 60 |
+
adapter_config = json.load(f)
|
| 61 |
+
# Base model path, if not present in the config, you need to specify it manually
|
| 62 |
+
base_model_path = adapter_config.get("base_model_name_or_path")
|
| 63 |
+
if not base_model_path:
|
| 64 |
+
# ********************************************************************************
|
| 65 |
+
# ** Important: If adapter_config.json does not contain base_model_name_or_path,
|
| 66 |
+
# ** please manually specify the correct base model name or path here
|
| 67 |
+
# ** Based on your previous error messages, the base model is likely "Qwen/Qwen2-VL-7B-Instruct"
|
| 68 |
+
# ********************************************************************************
|
| 69 |
+
base_model_path = "Qwen/Qwen2-VL-7B-Instruct"
|
| 70 |
+
print(f"Warning: 'base_model_name_or_path' not found in adapter configuration. Using default base model: '{base_model_path}'")
|
| 71 |
+
# 1. Load the base model
|
| 72 |
+
print(f"Loading base model from '{base_model_path}'...")
|
| 73 |
+
self.model = SegQwenVL.from_pretrained(
|
| 74 |
+
base_model_path,
|
| 75 |
+
torch_dtype="auto",
|
| 76 |
+
trust_remote_code=True,
|
| 77 |
+
# attn_implementation="flash_attention_2",
|
| 78 |
+
**kwargs
|
| 79 |
+
)
|
| 80 |
+
self.processor = AutoProcessor.from_pretrained(base_model_path, trust_remote_code=True,
|
| 81 |
+
min_pixels=min_pixels, max_pixels=max_pixels)
|
| 82 |
+
self.tokenizer = self.processor.tokenizer
|
| 83 |
+
self._add_special_tokens()
|
| 84 |
+
# 2. Load the adapter
|
| 85 |
+
print(f"Loading adapter from '{model_path}'...")
|
| 86 |
+
self.model.load_adapter(model_path)
|
| 87 |
+
|
| 88 |
+
else:
|
| 89 |
+
print(f"No PEFT adapter detected. Loading full model directly from '{model_path}'.")
|
| 90 |
+
# Keep the original direct loading method
|
| 91 |
+
self.model = SegQwenVL.from_pretrained(
|
| 92 |
+
model_path,
|
| 93 |
+
torch_dtype="auto",
|
| 94 |
+
trust_remote_code=True,
|
| 95 |
+
# attn_implementation="flash_attention_2",
|
| 96 |
+
**kwargs
|
| 97 |
+
)
|
| 98 |
+
self.processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True, min_pixels=min_pixels,
|
| 99 |
+
max_pixels=max_pixels)
|
| 100 |
+
self.tokenizer = self.processor.tokenizer
|
| 101 |
+
self._add_special_tokens()
|
| 102 |
+
# --- Intelligent loading logic ends ---
|
| 103 |
+
|
| 104 |
+
TargetClass = type(self.model.model)
|
| 105 |
+
TargetClass.get_rope_index = get_rope_index
|
| 106 |
+
|
| 107 |
+
# Get key token IDs
|
| 108 |
+
self.yes_token_id = self.tokenizer.convert_tokens_to_ids("<|yes|>")
|
| 109 |
+
self.no_token_id = self.tokenizer.convert_tokens_to_ids("<|no|>")
|
| 110 |
+
self.seg_token_id = self.tokenizer.convert_tokens_to_ids("<|seg|>")
|
| 111 |
+
self.mask_token_id = self.tokenizer.convert_tokens_to_ids("<|mask|>")
|
| 112 |
+
self.image_pad_id = self.tokenizer.convert_tokens_to_ids('<|image_pad|>')
|
| 113 |
+
self.eos_token_id = self.tokenizer.eos_token_id
|
| 114 |
+
self.model.mask_token_id = self.mask_token_id
|
| 115 |
+
|
| 116 |
+
def _add_special_tokens(self):
|
| 117 |
+
special_tokens = {'additional_special_tokens': ["<|seg|>", "<|mask|>", "<|yes|>", "<|no|>"]}
|
| 118 |
+
num_added = self.tokenizer.add_special_tokens(special_tokens)
|
| 119 |
+
if num_added > 0:
|
| 120 |
+
print(f"Added {num_added} special tokens. Resizing model embedding layer...")
|
| 121 |
+
self.model.resize_token_embeddings(len(self.tokenizer))
|
| 122 |
+
# Check if the resized size matches your model's expectations
|
| 123 |
+
print(
|
| 124 |
+
f"Resized vocabulary size: {len(self.tokenizer)}, Model embedding layer size: {self.model.get_input_embeddings().weight.shape[0]}")
|
| 125 |
+
if self.tokenizer.pad_token_id is None:
|
| 126 |
+
self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
|
| 127 |
+
|
| 128 |
+
@torch.no_grad()
|
| 129 |
+
def generate_with_segmentation(self, image: Image.Image, prompt: str):
|
| 130 |
+
messages = [{"role": "user", "content": [{"image": image}, {"text": prompt}]}]
|
| 131 |
+
text = self.processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 132 |
+
inputs = self.processor(text=[text], images=[image], return_tensors="pt")
|
| 133 |
+
merge_size = self.processor.image_processor.merge_size
|
| 134 |
+
|
| 135 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
| 136 |
+
prompt_len = inputs['input_ids'].shape[1]
|
| 137 |
+
image_grid_thw = inputs.get('image_grid_thw').to(self.device) # Qwen2.5-VL may use this key
|
| 138 |
+
attention_mask_raw = inputs['attention_mask'].to(self.device)
|
| 139 |
+
|
| 140 |
+
outputs = self.model.generate(
|
| 141 |
+
**inputs,
|
| 142 |
+
max_new_tokens=1024,
|
| 143 |
+
use_cache=True,
|
| 144 |
+
return_dict_in_generate=True,
|
| 145 |
+
eos_token_id=self.eos_token_id,
|
| 146 |
+
pad_token_id=self.tokenizer.pad_token_id
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
sequence = outputs.sequences[0]
|
| 150 |
+
full_past_key_values = outputs.past_key_values
|
| 151 |
+
|
| 152 |
+
# Find all <seg> token positions
|
| 153 |
+
seg_indices = torch.where(sequence == self.seg_token_id)[0].tolist()
|
| 154 |
+
|
| 155 |
+
all_segmentation_masks = []
|
| 156 |
+
seg_forward_times = [] # Initialize list to store times
|
| 157 |
+
if not seg_indices: # If there are no segmentation tasks
|
| 158 |
+
generated_ids = sequence[prompt_len:]
|
| 159 |
+
response_text = self.tokenizer.decode(generated_ids, skip_special_tokens=True)
|
| 160 |
+
return None, response_text
|
| 161 |
+
|
| 162 |
+
num_patches = find_image_patch_info(self.image_pad_id, inputs['input_ids'])
|
| 163 |
+
|
| 164 |
+
# Iterate over each <seg> token and perform segmentation
|
| 165 |
+
for i, idx in enumerate(seg_indices):
|
| 166 |
+
sliced_len = idx + 1
|
| 167 |
+
attention_mask = attention_mask_raw[:, :sliced_len]
|
| 168 |
+
legacy_cache = full_past_key_values.to_legacy_cache()
|
| 169 |
+
# 2. Slice each tensor in the tuple
|
| 170 |
+
past_key_values_sliced = tuple(
|
| 171 |
+
(
|
| 172 |
+
key_layer[:, :, :sliced_len, :],
|
| 173 |
+
value_layer[:, :, :sliced_len, :]
|
| 174 |
+
)
|
| 175 |
+
for key_layer, value_layer in legacy_cache
|
| 176 |
+
)
|
| 177 |
+
past_key_values_sliced = DynamicCache.from_legacy_cache(past_key_values_sliced)
|
| 178 |
+
|
| 179 |
+
mask_query_ids = torch.full((1, num_patches), self.mask_token_id, dtype=torch.long, device=self.device)
|
| 180 |
+
mask_query_attention_mask = torch.ones((1, num_patches + sliced_len - attention_mask[0].sum()),
|
| 181 |
+
dtype=torch.long, device=self.device)
|
| 182 |
+
mask_query_attention_mask = torch.cat((attention_mask, mask_query_attention_mask), dim=1)
|
| 183 |
+
mask_grid_thw = image_grid_thw[-1].clone()
|
| 184 |
+
mask_grid_thw = mask_grid_thw.unsqueeze(0)
|
| 185 |
+
|
| 186 |
+
mask_pre_ids = sequence.clone().unsqueeze(0)
|
| 187 |
+
mask_ids = torch.cat([mask_pre_ids[0, :sliced_len], mask_query_ids[0]], dim=0).unsqueeze(0)
|
| 188 |
+
|
| 189 |
+
seg_forward_outputs = self.model(
|
| 190 |
+
input_ids=mask_ids,
|
| 191 |
+
attention_mask=mask_query_attention_mask,
|
| 192 |
+
image_grid_thw=image_grid_thw,
|
| 193 |
+
pixel_values=inputs['pixel_values'],
|
| 194 |
+
past_key_values=past_key_values_sliced,
|
| 195 |
+
return_dict=True,
|
| 196 |
+
do_classification=True
|
| 197 |
+
)
|
| 198 |
+
|
| 199 |
+
mask_logits = seg_forward_outputs.bi_logits[:, -num_patches:]
|
| 200 |
+
|
| 201 |
+
segmentation_preds = (mask_logits > 0).long().squeeze().cpu()
|
| 202 |
+
h_grid, w_grid = mask_grid_thw[0, 1:]
|
| 203 |
+
h_grid, w_grid = int(h_grid / merge_size), int(w_grid / merge_size)
|
| 204 |
+
segmentation_preds = segmentation_preds.view(h_grid, w_grid)
|
| 205 |
+
all_segmentation_masks.append(segmentation_preds)
|
| 206 |
+
|
| 207 |
+
generated_ids = sequence[prompt_len:]
|
| 208 |
+
response_text = self.tokenizer.decode(generated_ids, skip_special_tokens=True)
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
return all_segmentation_masks, response_text
|
| 212 |
+
|