Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
ef0f225
0
Parent(s):
Initial commit on new branch
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +36 -0
- README.md +199 -0
- app.py +234 -0
- configs/eval_configs/eval.yaml +39 -0
- configs/prompts/alignment_image.txt +4 -0
- configs/train_configs/stage1_pretrain.yaml +77 -0
- configs/train_configs/stage2_finetune.yaml +84 -0
- environment.yml +225 -0
- figs/demo.png +0 -0
- figs/examples/car.mp4 +3 -0
- figs/examples/explosion2.mp4 +0 -0
- figs/icon.png +0 -0
- figs/motivation1.png +0 -0
- hawk/__init__.py +31 -0
- hawk/common/__init__.py +0 -0
- hawk/common/config.py +468 -0
- hawk/common/dist_utils.py +137 -0
- hawk/common/gradcam.py +24 -0
- hawk/common/logger.py +195 -0
- hawk/common/optims.py +119 -0
- hawk/common/registry.py +329 -0
- hawk/common/utils.py +424 -0
- hawk/configs/datasets/instruct/llava_instruct.yaml +6 -0
- hawk/configs/datasets/instruct/webvid_instruct.yaml +6 -0
- hawk/configs/datasets/webvid/defaults.yaml +6 -0
- hawk/configs/default.yaml +5 -0
- hawk/configs/models/minigpt4.yaml +33 -0
- hawk/configs/models/video_llama.yaml +36 -0
- hawk/conversation/__init__.py +0 -0
- hawk/conversation/conversation_video.py +362 -0
- hawk/datasets/__init__.py +0 -0
- hawk/datasets/builders/__init__.py +77 -0
- hawk/datasets/builders/base_dataset_builder.py +236 -0
- hawk/datasets/builders/image_text_pair_builder.py +106 -0
- hawk/datasets/builders/instruct_builder.py +79 -0
- hawk/datasets/builders/video_caption_builder.py +34 -0
- hawk/datasets/data_utils.py +196 -0
- hawk/datasets/datasets/__init__.py +0 -0
- hawk/datasets/datasets/base_dataset.py +68 -0
- hawk/datasets/datasets/caption_datasets.py +85 -0
- hawk/datasets/datasets/dataloader_utils.py +162 -0
- hawk/datasets/datasets/llava_instruct_dataset.py +312 -0
- hawk/datasets/datasets/video_instruct_dataset.py +426 -0
- hawk/datasets/datasets/webvid_datasets.py +173 -0
- hawk/models/ImageBind/.assets/bird_audio.wav +0 -0
- hawk/models/ImageBind/.assets/bird_image.jpg +0 -0
- hawk/models/ImageBind/.assets/car_audio.wav +0 -0
- hawk/models/ImageBind/.assets/car_image.jpg +0 -0
- hawk/models/ImageBind/.assets/dog_audio.wav +0 -0
- hawk/models/ImageBind/.assets/dog_image.jpg +0 -0
.gitattributes
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<div align="center">
|
| 2 |
+
|
| 3 |
+
# Hawk: Learning to Understand Open-World Video Anomalies
|
| 4 |
+
|
| 5 |
+
<div align="center">
|
| 6 |
+
|
| 7 |
+
### This is the official repository for [Hawk](https://arxiv.org/pdf/2405.16886).
|
| 8 |
+
|
| 9 |
+
[Jiaqi Tang^](https://jqt.me/), [Hao Lu^](https://scholar.google.com/citations?user=OOagpAcAAAAJ&hl=en), [Ruizheng Wu](https://scholar.google.com/citations?user=OOagpAcAAAAJ&hl=en), [Xiaogang Xu](https://xuxiaogang.com/), [Ke Ma](https://scholar.google.com.hk/citations?user=yXGNGS8AAAAJ&hl=en), [Cheng Fang](),
|
| 10 |
+
\
|
| 11 |
+
[Bin Guo](http://www.guob.org/), [Jiangbo Lu](https://sites.google.com/site/jiangbolu), [Qifeng Chen](https://cqf.io/) and [Ying-Cong Chen*](https://www.yingcong.me/)
|
| 12 |
+
|
| 13 |
+
^: Equal contribution.
|
| 14 |
+
*: Corresponding Author.
|
| 15 |
+
|
| 16 |
+
[](https://code.visualstudio.com/) [](https://badges.strrl.dev)
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
<img src="figs/icon.png" alt="Have eyes like a HAWK!" width="80">
|
| 21 |
+
</div>
|
| 22 |
+
</div>
|
| 23 |
+
|
| 24 |
+
## 🔍 **Motivation** - Have eyes like a Hawk!
|
| 25 |
+
- 🚩 Current VAD systems are often limited by their superficial semantic understanding of scenes and minimal user interaction.
|
| 26 |
+
- 🚩 Additionally, the prevalent data scarcity in existing datasets restricts their applicability in open-world scenarios.
|
| 27 |
+
|
| 28 |
+
<div align="center">
|
| 29 |
+
<img src="figs/motivation1.png" alt="Hawk">
|
| 30 |
+
</div>
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
## 📢 **Updates**
|
| 34 |
+
|
| 35 |
+
- ✅ Feb 24, 2025 - We release the **training and demo code** of **Hawk**.
|
| 36 |
+
- ✅ Feb 24, 2025 - We release the **dataset (video + annotation)** of **Hawk**. Check this Huggingface link for [DOWNLOAD](https://huggingface.co/datasets/Jiaqi-hkust/hawk).
|
| 37 |
+
- ✅ Step 26, 2024 - **Hawk** is accepted by NeurIPS 2024.
|
| 38 |
+
- ✅ June 29, 2024 - We release the **dataset (annotation)** of Hawk. Check this Google Cloud link for [DOWNLOAD](https://drive.google.com/file/d/1WCnizldWZvtS4Yg5SX7ay5C3kUQfz-Eg/view?usp=sharing).
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
## ▶️ **Getting Started**
|
| 42 |
+
|
| 43 |
+
### 🪒 *Installation*
|
| 44 |
+
- Create environment by following steps:
|
| 45 |
+
```
|
| 46 |
+
apt install ffmpeg
|
| 47 |
+
conda env create -f environment.yml
|
| 48 |
+
conda activate hawk
|
| 49 |
+
```
|
| 50 |
+
|
| 51 |
+
### 🏰 *Pretrained and Fine-tuned Model*
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
- The following checkpoints are utilized to run Hawk:
|
| 55 |
+
|
| 56 |
+
| Checkpoint | Link | Note |
|
| 57 |
+
|:------------------|-------------|-------------|
|
| 58 |
+
| Video-LLaMA-2-7B-Finetuned | [link](https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-2-7B-Finetuned/tree/main) | Used as initial weights for training.|
|
| 59 |
+
| **Hawk_Pretrained** | [link](https://huggingface.co/Jiaqi-hkust/hawk) | Pretrained on the [WebViD](https://github.com/m-bain/webvid)|
|
| 60 |
+
| **Hawk_Finetuned** | [link](https://huggingface.co/Jiaqi-hkust/hawk) | Fine-tuned on [Hawk dataset](https://huggingface.co/datasets/Jiaqi-hkust/hawk)|
|
| 61 |
+
|
| 62 |
+
- If you want to use the pretrained model, please use the **Hawk_Pretrained** checkpoint.
|
| 63 |
+
- If you wish to leverage the model for our anomaly understanding, please opt for the **Hawk_Finetuned** checkpoint.
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
## ⏳ **Domo**
|
| 67 |
+
|
| 68 |
+
- The configuration files for [`demo`](/configs/eval_configs/eval.yaml).
|
| 69 |
+
|
| 70 |
+
- Replace the following part as your own path:
|
| 71 |
+
```
|
| 72 |
+
# Use LLaMA-2-chat as base modal
|
| 73 |
+
|
| 74 |
+
# Some ckpts could be download from Video_LLaMA-2-7B-Finetuned
|
| 75 |
+
# https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-2-7B-Finetuned
|
| 76 |
+
llama_model: ".../Video-LLaMA-2-7B-Finetuned/llama-2-7b-chat-hf"
|
| 77 |
+
|
| 78 |
+
# Hawk Weight (Pretrained or Finetuned)
|
| 79 |
+
ckpt: '.../checkpoint.pth'
|
| 80 |
+
```
|
| 81 |
+
|
| 82 |
+
- Then, run the script:
|
| 83 |
+
```
|
| 84 |
+
python app.py \
|
| 85 |
+
--cfg-path configs/eval_configs/eval.yaml \
|
| 86 |
+
--model_type llama_v2 \
|
| 87 |
+
--gpu-id 0
|
| 88 |
+
```
|
| 89 |
+
|
| 90 |
+
- GUI
|
| 91 |
+
<div align="center">
|
| 92 |
+
<img src="figs/demo.png" alt="Hawk">
|
| 93 |
+
</div>
|
| 94 |
+
|
| 95 |
+
## 🖥️ **Training**
|
| 96 |
+
|
| 97 |
+
### 💾 *Dataset Preparation*
|
| 98 |
+
|
| 99 |
+
- **For your convenience, we now provide the video and annotations for the Hawk dataset. You can download them using the Hugglingface: [DOWNLOAD](https://huggingface.co/datasets/Jiaqi-hkust/hawk).**
|
| 100 |
+
|
| 101 |
+
- Traditional Data Acquisition Method:
|
| 102 |
+
|
| 103 |
+
- DOWNLOAD all video datasets for their original dources.
|
| 104 |
+
1. [CUHK_Avenue](https://www.cse.cuhk.edu.hk/leojia/projects/detectabnormal/dataset.html)
|
| 105 |
+
2. [DoTA](https://github.com/MoonBlvd/Detection-of-Traffic-Anomaly)
|
| 106 |
+
3. [Ped1](http://www.svcl.ucsd.edu/projects/anomaly/dataset.htm)
|
| 107 |
+
4. [Ped2](http://www.svcl.ucsd.edu/projects/anomaly/dataset.htm)
|
| 108 |
+
5. [ShanghaiTech](https://svip-lab.github.io/dataset/campus_dataset.html)
|
| 109 |
+
6. [UBNormal](https://github.com/lilygeorgescu/UBnormal/)
|
| 110 |
+
7. [UCF_Crime](https://www.crcv.ucf.edu/projects/real-world/)
|
| 111 |
+
|
| 112 |
+
- Google Drive Link to [DOWNLOAD](https://drive.google.com/file/d/1WCnizldWZvtS4Yg5SX7ay5C3kUQfz-Eg/view?usp=sharing) our annotations.
|
| 113 |
+
|
| 114 |
+
- Data Structure: each forder contains one annotation file (e.g. CUHK Avenue, DoTA, etc.). The `All_Mix` directory contains all of datasets in training and testing.
|
| 115 |
+
|
| 116 |
+
- The dataset is organized as follows:
|
| 117 |
+
|
| 118 |
+
```
|
| 119 |
+
(Hawk_data)
|
| 120 |
+
|
| 121 |
+
Annotation
|
| 122 |
+
├── All_Mix
|
| 123 |
+
│ ├── all_videos_all.json
|
| 124 |
+
│ ���── all_videos_test.json
|
| 125 |
+
│ └── all_videos_train.json
|
| 126 |
+
│
|
| 127 |
+
├── CUHK_Avenue
|
| 128 |
+
│ └── Avenue.json
|
| 129 |
+
├── DoTA
|
| 130 |
+
│ └── DoTA.json
|
| 131 |
+
├── Ped1
|
| 132 |
+
│ ├── ...
|
| 133 |
+
├── ...
|
| 134 |
+
└── UCF_Crime
|
| 135 |
+
│ └── ...
|
| 136 |
+
│
|
| 137 |
+
Videos
|
| 138 |
+
├── CUHK_Avenue
|
| 139 |
+
│ └── Avenue.json
|
| 140 |
+
├── DoTA
|
| 141 |
+
│ └── DoTA.json
|
| 142 |
+
├── Ped1
|
| 143 |
+
│ ├── ...
|
| 144 |
+
├── ...
|
| 145 |
+
│
|
| 146 |
+
readme
|
| 147 |
+
|
| 148 |
+
```
|
| 149 |
+
Note:the data path should be redefined.
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
### 🔨 *Configuration*
|
| 153 |
+
|
| 154 |
+
- The configuration files for [`training`](/configs/train_configs) including two stages.
|
| 155 |
+
|
| 156 |
+
- Replace the following part as your own path:
|
| 157 |
+
|
| 158 |
+
```
|
| 159 |
+
llama_model: ".../Video-LLaMA-2-7B-Finetuned/llama-2-7b-chat-hf"
|
| 160 |
+
|
| 161 |
+
# The ckpt of vision branch after stage1 pretrained, (only for stage 2)
|
| 162 |
+
ckpt: ".../checkpoint.pth"
|
| 163 |
+
```
|
| 164 |
+
|
| 165 |
+
### 🖥️ *To Train*
|
| 166 |
+
|
| 167 |
+
- Then, run the script:
|
| 168 |
+
```
|
| 169 |
+
# for pretraining
|
| 170 |
+
NCCL_P2P_DISABLE=1 CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun --nproc_per_node=4 --master_port='10000' train.py --cfg-path ./configs/train_configs/stage1_pretrain.yaml
|
| 171 |
+
|
| 172 |
+
# for fine-tuning
|
| 173 |
+
NCCL_P2P_DISABLE=1 CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun --nproc_per_node=4 --master_port='12001' train.py --cfg-path ./configs/train_configs/stage2_finetune.yaml
|
| 174 |
+
```
|
| 175 |
+
|
| 176 |
+
*Resource Usage: Training (stage 1 and stage 2): 4 * RTX A6000 48G*
|
| 177 |
+
|
| 178 |
+
## 🌐 **Citations**
|
| 179 |
+
|
| 180 |
+
**The following is a BibTeX reference:**
|
| 181 |
+
|
| 182 |
+
``` latex
|
| 183 |
+
@inproceedings{atang2024hawk,
|
| 184 |
+
title = {Hawk: Learning to Understand Open-World Video Anomalies},
|
| 185 |
+
author = {Tang, Jiaqi and Lu, Hao and Wu, Ruizheng and Xu, Xiaogang and Ma, Ke and Fang, Cheng and Guo, Bin and Lu, Jiangbo and Chen, Qifeng and Chen, Ying-Cong},
|
| 186 |
+
year = {2024},
|
| 187 |
+
booktitle = {Neural Information Processing Systems (NeurIPS)}
|
| 188 |
+
}
|
| 189 |
+
```
|
| 190 |
+
|
| 191 |
+
## 📧 **Connecting with Us?**
|
| 192 |
+
|
| 193 |
+
If you have any questions, please feel free to send email to `[email protected]`.
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
## 📜 **Acknowledgment**
|
| 197 |
+
This work is supported by the National Natural Science Foundation of China (No. 62206068) and the Natural Science Foundation of Zhejiang Province, China under No. LD24F020002.
|
| 198 |
+
|
| 199 |
+
Also, this project is inspired by [Video-LLaMA](https://github.com/DAMO-NLP-SG/Video-LLaMA).
|
app.py
ADDED
|
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Run the following command to start the demo:
|
| 3 |
+
|
| 4 |
+
python demo_video.py \
|
| 5 |
+
--cfg-path /remote-home/share/jiaqitang/Hawk_Ours/configs/eval_configs/eval.yaml \
|
| 6 |
+
--model_type llama_v2 \
|
| 7 |
+
--gpu-id 0
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
import argparse
|
| 11 |
+
import os
|
| 12 |
+
import random
|
| 13 |
+
|
| 14 |
+
import numpy as np
|
| 15 |
+
import torch
|
| 16 |
+
import torch.backends.cudnn as cudnn
|
| 17 |
+
import gradio as gr
|
| 18 |
+
|
| 19 |
+
from hawk.common.config import Config
|
| 20 |
+
from hawk.common.dist_utils import get_rank
|
| 21 |
+
from hawk.common.registry import registry
|
| 22 |
+
from hawk.conversation.conversation_video import Chat, Conversation, default_conversation, SeparatorStyle,conv_llava_llama_2
|
| 23 |
+
import decord
|
| 24 |
+
decord.bridge.set_bridge('torch')
|
| 25 |
+
|
| 26 |
+
#%%
|
| 27 |
+
# imports modules for registration
|
| 28 |
+
from hawk.datasets.builders import *
|
| 29 |
+
from hawk.models import *
|
| 30 |
+
from hawk.processors import *
|
| 31 |
+
from hawk.runners import *
|
| 32 |
+
from hawk.tasks import *
|
| 33 |
+
import time
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def parse_args():
|
| 37 |
+
parser = argparse.ArgumentParser(description="Demo")
|
| 38 |
+
parser.add_argument("--cfg-path", required=False, default='./configs/eval_configs/eval.yaml', help="path to configuration file.")
|
| 39 |
+
parser.add_argument("--gpu-id", type=int, default=6, help="specify the gpu to load the model.")
|
| 40 |
+
parser.add_argument("--model_type", type=str, default='llama_v2', help="The type of LLM")
|
| 41 |
+
parser.add_argument(
|
| 42 |
+
"--options",
|
| 43 |
+
nargs="+",
|
| 44 |
+
help="override some settings in the used config, the key-value pair "
|
| 45 |
+
"in xxx=yyy format will be merged into config file (deprecate), "
|
| 46 |
+
"change to --cfg-options instead.",
|
| 47 |
+
)
|
| 48 |
+
args = parser.parse_args()
|
| 49 |
+
return args
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def setup_seeds(config):
|
| 53 |
+
seed = config.run_cfg.seed + get_rank()
|
| 54 |
+
|
| 55 |
+
random.seed(seed)
|
| 56 |
+
np.random.seed(seed)
|
| 57 |
+
torch.manual_seed(seed)
|
| 58 |
+
|
| 59 |
+
cudnn.benchmark = False
|
| 60 |
+
cudnn.deterministic = True
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
# ========================================
|
| 64 |
+
# Model Initialization
|
| 65 |
+
# ========================================
|
| 66 |
+
|
| 67 |
+
print('Initializing Chat')
|
| 68 |
+
args = parse_args()
|
| 69 |
+
cfg = Config(args)
|
| 70 |
+
|
| 71 |
+
model_config = cfg.model_cfg
|
| 72 |
+
model_config.device_8bit = args.gpu_id
|
| 73 |
+
model_cls = registry.get_model_class(model_config.arch)
|
| 74 |
+
model = model_cls.from_config(model_config).to('cuda:{}'.format(args.gpu_id))
|
| 75 |
+
model.eval()
|
| 76 |
+
vis_processor_cfg = cfg.datasets_cfg.webvid.vis_processor.train
|
| 77 |
+
vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg)
|
| 78 |
+
chat = Chat(model, vis_processor, device='cuda:{}'.format(args.gpu_id))
|
| 79 |
+
print('Initialization Finished')
|
| 80 |
+
|
| 81 |
+
# ========================================
|
| 82 |
+
# Gradio Setting
|
| 83 |
+
# ========================================
|
| 84 |
+
|
| 85 |
+
def gradio_reset(chat_state, img_list):
|
| 86 |
+
if chat_state is not None:
|
| 87 |
+
chat_state.messages = []
|
| 88 |
+
if img_list is not None:
|
| 89 |
+
img_list = []
|
| 90 |
+
return None, gr.update(value=None, interactive=True), gr.update(interactive=False),gr.update(value="Upload & Start Chat", interactive=True), chat_state, img_list
|
| 91 |
+
|
| 92 |
+
def upload_imgorvideo(gr_video, text_input, chat_state, chatbot):
|
| 93 |
+
# if args.model_type == 'vicuna':
|
| 94 |
+
# chat_state = default_conversation.copy()
|
| 95 |
+
# else:
|
| 96 |
+
chat_state = conv_llava_llama_2.copy()
|
| 97 |
+
if gr_video is None:
|
| 98 |
+
return None, None, None, gr.update(interactive=True), chat_state, None
|
| 99 |
+
# elif gr_img is not None and gr_video is None:
|
| 100 |
+
# print(gr_img)
|
| 101 |
+
# chatbot = chatbot + [((gr_img,), None)]
|
| 102 |
+
# chat_state.system = "You are able to understand the visual content that the user provides. Follow the instructions carefully and explain your answers in detail."
|
| 103 |
+
# img_list = []
|
| 104 |
+
# llm_message = chat.upload_img(gr_img, chat_state, img_list)
|
| 105 |
+
# return gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(value="Start Chatting", interactive=False), chat_state, img_list,chatbot
|
| 106 |
+
elif gr_video is not None:
|
| 107 |
+
print(gr_video)
|
| 108 |
+
chatbot = chatbot + [((gr_video,), None)]
|
| 109 |
+
chat_state.system = "You are able to understand the visual content that the user provides. Follow the instructions carefully and explain your answers in detail."
|
| 110 |
+
img_list = []
|
| 111 |
+
llm_message = chat.upload_video_without_audio(gr_video, chat_state, img_list)
|
| 112 |
+
return gr.update(interactive=False), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(value="Start Chatting", interactive=False), chat_state, img_list,chatbot
|
| 113 |
+
# else:
|
| 114 |
+
# # img_list = []
|
| 115 |
+
# return gr.update(interactive=False), gr.update(interactive=False, placeholder='Currently, only one input is supported'), gr.update(value="Currently, only one input is supported", interactive=False), chat_state, None,chatbot
|
| 116 |
+
|
| 117 |
+
def gradio_ask(user_message, chatbot, chat_state):
|
| 118 |
+
if len(user_message) == 0:
|
| 119 |
+
return gr.update(interactive=True, placeholder='Input should not be empty!'), chatbot, chat_state
|
| 120 |
+
chat.ask(user_message, chat_state)
|
| 121 |
+
chatbot = chatbot + [[user_message, None]]
|
| 122 |
+
return '', chatbot, chat_state
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
def gradio_answer(chatbot, chat_state, img_list, num_beams, temperature):
|
| 126 |
+
llm_message = chat.answer(conv=chat_state,
|
| 127 |
+
img_list=img_list,
|
| 128 |
+
num_beams=num_beams,
|
| 129 |
+
temperature=temperature,
|
| 130 |
+
max_new_tokens=300,
|
| 131 |
+
max_length=2000)[0]
|
| 132 |
+
chatbot[-1][1] = llm_message
|
| 133 |
+
print(chat_state.get_prompt())
|
| 134 |
+
print(chat_state)
|
| 135 |
+
return chatbot, chat_state, img_list
|
| 136 |
+
|
| 137 |
+
title = """
|
| 138 |
+
<div align="center">
|
| 139 |
+
<h1>Hawk: Learning to Understand Open-World Video Anomalies</h1>
|
| 140 |
+
</div>
|
| 141 |
+
|
| 142 |
+
<h5 align="center"> "Have eyes like a Hawk!" </h5>
|
| 143 |
+
|
| 144 |
+
<div style="display: flex; justify-content: center; gap: 0.25rem;">
|
| 145 |
+
<a href='https://github.com/jqtangust/hawk'>
|
| 146 |
+
<img src='https://img.shields.io/badge/Github-Code-success' alt="GitHub Code">
|
| 147 |
+
</a>
|
| 148 |
+
<a href='https://huggingface.co/spaces/Jiaqi-hkust/hawk'>
|
| 149 |
+
<img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue' alt="Hugging Face Spaces">
|
| 150 |
+
</a>
|
| 151 |
+
<a href='https://huggingface.co/spaces/Jiaqi-hkust/hawk'>
|
| 152 |
+
<img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Model-blue' alt="Hugging Face Model">
|
| 153 |
+
</a>
|
| 154 |
+
<a href='https://arxiv.org/pdf/2405.16886'>
|
| 155 |
+
<img src='https://img.shields.io/badge/Paper-PDF-red' alt="Download Paper">
|
| 156 |
+
</a>
|
| 157 |
+
</div>
|
| 158 |
+
|
| 159 |
+
"""
|
| 160 |
+
|
| 161 |
+
cite_markdown = ("""
|
| 162 |
+
## Citation
|
| 163 |
+
The following is a BibTeX reference:
|
| 164 |
+
```
|
| 165 |
+
@inproceedings{atang2024hawk,
|
| 166 |
+
title = {Hawk: Learning to Understand Open-World Video Anomalies},
|
| 167 |
+
author = {Tang, Jiaqi and Lu, Hao and Wu, Ruizheng and Xu, Xiaogang and Ma, Ke and Fang, Cheng and Guo, Bin and Lu, Jiangbo and Chen, Qifeng and Chen, Ying-Cong},
|
| 168 |
+
year = {2024},
|
| 169 |
+
booktitle = {Neural Information Processing Systems (NeurIPS)}
|
| 170 |
+
}
|
| 171 |
+
""")
|
| 172 |
+
|
| 173 |
+
# case_note_upload = ("""
|
| 174 |
+
# ### We provide some examples at the bottom of the page. Simply click on them to try them out directly.
|
| 175 |
+
# """)
|
| 176 |
+
|
| 177 |
+
#TODO show examples below
|
| 178 |
+
|
| 179 |
+
with gr.Blocks() as demo:
|
| 180 |
+
gr.Markdown(title)
|
| 181 |
+
|
| 182 |
+
with gr.Row():
|
| 183 |
+
with gr.Column(scale=0.5):
|
| 184 |
+
video = gr.Video()
|
| 185 |
+
# image = gr.Image(type="filepath")
|
| 186 |
+
# gr.Markdown(case_note_upload)
|
| 187 |
+
|
| 188 |
+
upload_button = gr.Button(value="Upload & Start Chat", interactive=True, variant="primary")
|
| 189 |
+
clear = gr.Button("Restart")
|
| 190 |
+
|
| 191 |
+
num_beams = gr.Slider(
|
| 192 |
+
minimum=1,
|
| 193 |
+
maximum=10,
|
| 194 |
+
value=1,
|
| 195 |
+
step=1,
|
| 196 |
+
interactive=True,
|
| 197 |
+
label="beam search numbers)",
|
| 198 |
+
)
|
| 199 |
+
|
| 200 |
+
temperature = gr.Slider(
|
| 201 |
+
minimum=0.1,
|
| 202 |
+
maximum=2.0,
|
| 203 |
+
value=1.0,
|
| 204 |
+
step=0.1,
|
| 205 |
+
interactive=True,
|
| 206 |
+
label="Temperature",
|
| 207 |
+
)
|
| 208 |
+
# audio = gr.Checkbox(interactive=True, value=False, label="Audio")
|
| 209 |
+
with gr.Column():
|
| 210 |
+
chat_state = gr.State()
|
| 211 |
+
img_list = gr.State()
|
| 212 |
+
chatbot = gr.Chatbot(label='Hawk')
|
| 213 |
+
text_input = gr.Textbox(label='User', placeholder='Upload your video first and start to chat.', interactive=False)
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
with gr.Column():
|
| 217 |
+
gr.Examples(examples=[
|
| 218 |
+
[f"figs/examples/explosion2.mp4", "What happened in this video? "],
|
| 219 |
+
[f"figs/examples/car.mp4", "What is the anomaly for the car in this video? "],
|
| 220 |
+
], inputs=[video, text_input])
|
| 221 |
+
|
| 222 |
+
gr.Markdown(cite_markdown)
|
| 223 |
+
upload_button.click(upload_imgorvideo, [video, text_input, chat_state, chatbot], [video, text_input, upload_button, chat_state, img_list, chatbot])
|
| 224 |
+
|
| 225 |
+
start_time = time.time()
|
| 226 |
+
text_input.submit(gradio_ask, [text_input, chatbot, chat_state], [text_input, chatbot, chat_state]).then(
|
| 227 |
+
gradio_answer, [chatbot, chat_state, img_list, num_beams, temperature], [chatbot, chat_state, img_list]
|
| 228 |
+
)
|
| 229 |
+
end_time = time.time()
|
| 230 |
+
print('Time:', end_time - start_time)
|
| 231 |
+
|
| 232 |
+
clear.click(gradio_reset, [chat_state, img_list], [chatbot, video, text_input, upload_button, chat_state, img_list], queue=False)
|
| 233 |
+
|
| 234 |
+
demo.launch(share=False)
|
configs/eval_configs/eval.yaml
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model:
|
| 2 |
+
arch: hawk
|
| 3 |
+
model_type: pretrain_llama_v2
|
| 4 |
+
freeze_vit: True
|
| 5 |
+
freeze_qformer: True
|
| 6 |
+
max_txt_len: 512
|
| 7 |
+
end_sym: "</s>"
|
| 8 |
+
low_resource: False
|
| 9 |
+
|
| 10 |
+
frozen_llama_proj: False
|
| 11 |
+
|
| 12 |
+
# Use LLaMA-2-chat as base modal
|
| 13 |
+
|
| 14 |
+
# some ckpts could be download from Video_LLaMA-2-7B-Finetuned
|
| 15 |
+
# https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-2-7B-Finetuned
|
| 16 |
+
llama_model: "/remote-home/share/jiaqitang/Video-LLaMA-2-7B-Finetuned/llama-2-7b-chat-hf"
|
| 17 |
+
|
| 18 |
+
# Hawk Weight
|
| 19 |
+
ckpt: '/remote-home/share/jiaqitang/Hawk_Ours/hawk/output/hawk_finetune/20250221045/checkpoint_5.pth'
|
| 20 |
+
|
| 21 |
+
equip_audio_branch: False
|
| 22 |
+
|
| 23 |
+
fusion_head_layers: 2
|
| 24 |
+
max_frame_pos: 32
|
| 25 |
+
fusion_header_type: "seqTransf"
|
| 26 |
+
|
| 27 |
+
datasets:
|
| 28 |
+
webvid:
|
| 29 |
+
vis_processor:
|
| 30 |
+
train:
|
| 31 |
+
name: "alpro_video_eval"
|
| 32 |
+
n_frms: 32
|
| 33 |
+
image_size: 224
|
| 34 |
+
text_processor:
|
| 35 |
+
train:
|
| 36 |
+
name: "blip_caption"
|
| 37 |
+
|
| 38 |
+
run:
|
| 39 |
+
task: video_text_pretrain
|
configs/prompts/alignment_image.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<Image><ImageHere></Image> Describe this video in detail.
|
| 2 |
+
<Image><ImageHere></Image> Take a look at this video and describe what you notice.
|
| 3 |
+
<Image><ImageHere></Image> Please provide a detailed description of the video.
|
| 4 |
+
<Image><ImageHere></Image> Could you describe the contents of this video for me?
|
configs/train_configs/stage1_pretrain.yaml
ADDED
|
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model:
|
| 2 |
+
arch: hawk
|
| 3 |
+
model_type: pretrain_llama_v2
|
| 4 |
+
freeze_vit: True
|
| 5 |
+
freeze_qformer: True
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
# Q-Former
|
| 9 |
+
num_query_token: 32
|
| 10 |
+
|
| 11 |
+
# If you want train models based on LLaMA-2-chat,
|
| 12 |
+
# some ckpts could be download from our provided huggingface repo
|
| 13 |
+
# i.e. https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-2-13B-Finetuned
|
| 14 |
+
|
| 15 |
+
llama_model: "/remote-home/share/jiaqitang/Video-LLaMA-2-7B-Finetuned/llama-2-7b-chat-hf"
|
| 16 |
+
# imagebind_ckpt_path: "/remote-home/share/jiaqitang/ImageBind/weight"
|
| 17 |
+
|
| 18 |
+
# llama_proj_model: ''
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
# only train vision branch
|
| 22 |
+
equip_audio_branch: False
|
| 23 |
+
frozen_llama_proj: False
|
| 24 |
+
frozen_video_Qformer: False
|
| 25 |
+
frozen_audio_Qformer: True
|
| 26 |
+
|
| 27 |
+
fusion_head_layers: 2
|
| 28 |
+
max_frame_pos: 32
|
| 29 |
+
fusion_header_type: "seqTransf"
|
| 30 |
+
num_video_query_token: 32
|
| 31 |
+
|
| 32 |
+
datasets:
|
| 33 |
+
webvid:
|
| 34 |
+
data_type: video
|
| 35 |
+
build_info:
|
| 36 |
+
anno_dir: /remote-home/share/jiaqitang/WebVid-2M/train_data/filter_annotations/
|
| 37 |
+
videos_dir: /remote-home/share/jiaqitang/WebVid-2M/train_data/videos/
|
| 38 |
+
|
| 39 |
+
vis_processor:
|
| 40 |
+
train:
|
| 41 |
+
name: "alpro_video_train"
|
| 42 |
+
n_frms: 32
|
| 43 |
+
image_size: 224
|
| 44 |
+
text_processor:
|
| 45 |
+
train:
|
| 46 |
+
name: "blip_caption"
|
| 47 |
+
sample_ratio: 100
|
| 48 |
+
|
| 49 |
+
run:
|
| 50 |
+
task: video_text_pretrain
|
| 51 |
+
# optimizer
|
| 52 |
+
lr_sched: "linear_warmup_cosine_lr"
|
| 53 |
+
init_lr: 1e-5
|
| 54 |
+
min_lr: 1e-6
|
| 55 |
+
warmup_lr: 1e-6
|
| 56 |
+
|
| 57 |
+
weight_decay: 0.05
|
| 58 |
+
max_epoch: 160
|
| 59 |
+
batch_size_train: 1
|
| 60 |
+
batch_size_eval: 1
|
| 61 |
+
num_workers: 16
|
| 62 |
+
warmup_steps: 1000
|
| 63 |
+
iters_per_epoch: 2500
|
| 64 |
+
|
| 65 |
+
seed: 42
|
| 66 |
+
output_dir: "output/hawk_pretrain"
|
| 67 |
+
|
| 68 |
+
amp: True
|
| 69 |
+
resume_ckpt_path: null
|
| 70 |
+
|
| 71 |
+
evaluate: False
|
| 72 |
+
train_splits: ["train"]
|
| 73 |
+
|
| 74 |
+
device: "cuda"
|
| 75 |
+
world_size: 1
|
| 76 |
+
dist_url: "env://"
|
| 77 |
+
distributed: True
|
configs/train_configs/stage2_finetune.yaml
ADDED
|
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model:
|
| 2 |
+
arch: hawk
|
| 3 |
+
model_type: pretrain_llama_v2
|
| 4 |
+
freeze_vit: True
|
| 5 |
+
freeze_qformer: True
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
# Q-Former
|
| 9 |
+
num_query_token: 32
|
| 10 |
+
|
| 11 |
+
# If you want train models based on LLaMA-2-chat,
|
| 12 |
+
# some ckpts could be download from our provided huggingface repo
|
| 13 |
+
# i.e. https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-2-13B-Finetuned
|
| 14 |
+
llama_model: "/remote-home/share/jiaqitang/Video-LLaMA-2-7B-Finetuned/llama-2-7b-chat-hf"
|
| 15 |
+
# imagebind_ckpt_path: "/remote-home/share/jiaqitang/Video-LLaMA-2-7B-Finetuned"
|
| 16 |
+
|
| 17 |
+
# The ckpt of vision branch after stage1 pretrained,
|
| 18 |
+
ckpt: "/remote-home/share/jiaqitang/Hawk_Ours/hawk/output/hawk_pretrain/20250217073/checkpoint_127.pth"
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
# only train vision branch
|
| 22 |
+
equip_audio_branch: False
|
| 23 |
+
frozen_llama_proj: False
|
| 24 |
+
frozen_video_Qformer: False
|
| 25 |
+
frozen_audio_Qformer: True
|
| 26 |
+
|
| 27 |
+
fusion_head_layers: 2
|
| 28 |
+
max_frame_pos: 32
|
| 29 |
+
fusion_header_type: "seqTransf"
|
| 30 |
+
|
| 31 |
+
max_txt_len: 320
|
| 32 |
+
|
| 33 |
+
for llama_2_chat:
|
| 34 |
+
end_sym: "</s>"
|
| 35 |
+
prompt_path: "/remote-home/share/jiaqitang/Hawk_Ours/configs/prompts/alignment_image.txt"
|
| 36 |
+
prompt_template: '[INST] <<SYS>>\n \n<</SYS>>\n\n{} [/INST] '
|
| 37 |
+
|
| 38 |
+
datasets:
|
| 39 |
+
webvid_instruct:
|
| 40 |
+
data_type: video
|
| 41 |
+
build_info:
|
| 42 |
+
anno_dir: /remote-home/share/jiaqitang/Data_Annotation/A_Overall/all_videos_train.json
|
| 43 |
+
videos_dir: /remote-home/share/jiaqitang/Data/
|
| 44 |
+
vis_processor:
|
| 45 |
+
train:
|
| 46 |
+
name: "alpro_video_train"
|
| 47 |
+
n_frms: 32
|
| 48 |
+
image_size: 224
|
| 49 |
+
text_processor:
|
| 50 |
+
train:
|
| 51 |
+
name: "blip_caption"
|
| 52 |
+
num_video_query_token: 32
|
| 53 |
+
tokenizer_name: "/remote-home/share/jiaqitang/Video-LLaMA-2-7B-Finetuned/llama-2-7b-chat-hf"
|
| 54 |
+
model_type: "llama_v2"
|
| 55 |
+
|
| 56 |
+
run:
|
| 57 |
+
task: video_text_pretrain
|
| 58 |
+
# optimizer
|
| 59 |
+
lr_sched: "linear_warmup_cosine_lr"
|
| 60 |
+
init_lr: 1e-5
|
| 61 |
+
min_lr: 1e-6
|
| 62 |
+
warmup_lr: 1e-6
|
| 63 |
+
|
| 64 |
+
weight_decay: 0.05
|
| 65 |
+
max_epoch: 160
|
| 66 |
+
batch_size_train: 1
|
| 67 |
+
batch_size_eval: 1
|
| 68 |
+
num_workers: 16
|
| 69 |
+
warmup_steps: 1000
|
| 70 |
+
iters_per_epoch: 2500
|
| 71 |
+
|
| 72 |
+
seed: 42
|
| 73 |
+
output_dir: "output/hawk_finetune"
|
| 74 |
+
|
| 75 |
+
amp: True
|
| 76 |
+
resume_ckpt_path: null
|
| 77 |
+
|
| 78 |
+
evaluate: False
|
| 79 |
+
train_splits: ["train"]
|
| 80 |
+
|
| 81 |
+
device: "cuda"
|
| 82 |
+
world_size: 1
|
| 83 |
+
dist_url: "env://"
|
| 84 |
+
distributed: True
|
environment.yml
ADDED
|
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
name: hawk
|
| 2 |
+
channels:
|
| 3 |
+
- defaults
|
| 4 |
+
dependencies:
|
| 5 |
+
- _libgcc_mutex=0.1=main
|
| 6 |
+
- _openmp_mutex=5.1=1_gnu
|
| 7 |
+
- bzip2=1.0.8=h7b6447c_0
|
| 8 |
+
- ca-certificates=2023.08.22=h06a4308_0
|
| 9 |
+
- ld_impl_linux-64=2.38=h1181459_1
|
| 10 |
+
- libffi=3.4.4=h6a678d5_0
|
| 11 |
+
- libgcc-ng=11.2.0=h1234567_1
|
| 12 |
+
- libgfortran-ng=7.5.0=ha8ba4b0_17
|
| 13 |
+
- libgfortran4=7.5.0=ha8ba4b0_17
|
| 14 |
+
- libgomp=11.2.0=h1234567_1
|
| 15 |
+
- libstdcxx-ng=11.2.0=h1234567_1
|
| 16 |
+
- libuuid=1.41.5=h5eee18b_0
|
| 17 |
+
- mpi=1.0=mpich
|
| 18 |
+
- mpi4py=3.1.4=py310hfc96bbd_0
|
| 19 |
+
- mpich=3.3.2=hc856adb_0
|
| 20 |
+
- ncurses=6.4=h6a678d5_0
|
| 21 |
+
- openssl=3.0.11=h7f8727e_2
|
| 22 |
+
- pip=23.2.1=py310h06a4308_0
|
| 23 |
+
- python=3.10.13=h955ad1f_0
|
| 24 |
+
- readline=8.2=h5eee18b_0
|
| 25 |
+
- setuptools=68.0.0=py310h06a4308_0
|
| 26 |
+
- sqlite=3.41.2=h5eee18b_0
|
| 27 |
+
- tk=8.6.12=h1ccaba5_0
|
| 28 |
+
- wheel=0.41.2=py310h06a4308_0
|
| 29 |
+
- xz=5.4.2=h5eee18b_0
|
| 30 |
+
- zlib=1.2.13=h5eee18b_0
|
| 31 |
+
- pip:
|
| 32 |
+
- absl-py==2.1.0
|
| 33 |
+
- accelerate==0.23.0
|
| 34 |
+
- aiofiles==23.2.1
|
| 35 |
+
- aiohttp==3.8.6
|
| 36 |
+
- aiosignal==1.3.1
|
| 37 |
+
- altair==5.1.2
|
| 38 |
+
- annotated-types==0.6.0
|
| 39 |
+
- antlr4-python3-runtime==4.9.3
|
| 40 |
+
- anyio==3.7.1
|
| 41 |
+
- appdirs==1.4.4
|
| 42 |
+
- asttokens==2.4.0
|
| 43 |
+
- async-timeout==4.0.3
|
| 44 |
+
- attrs==23.1.0
|
| 45 |
+
- av==10.0.0
|
| 46 |
+
- backcall==0.2.0
|
| 47 |
+
- bitsandbytes==0.41.1
|
| 48 |
+
- black==23.9.1
|
| 49 |
+
- blessed==1.20.0
|
| 50 |
+
- blis==1.2.0
|
| 51 |
+
- braceexpand==0.1.7
|
| 52 |
+
- brotli==1.1.0
|
| 53 |
+
- cachetools==5.3.1
|
| 54 |
+
- catalogue==2.0.10
|
| 55 |
+
- certifi==2023.7.22
|
| 56 |
+
- charset-normalizer==3.3.0
|
| 57 |
+
- click==8.1.7
|
| 58 |
+
- cloudpathlib==0.20.0
|
| 59 |
+
- cmake==3.27.6
|
| 60 |
+
- coloredlogs==15.0.1
|
| 61 |
+
- confection==0.1.5
|
| 62 |
+
- contourpy==1.1.1
|
| 63 |
+
- cycler==0.12.1
|
| 64 |
+
- cymem==2.0.11
|
| 65 |
+
- datasets==2.14.5
|
| 66 |
+
- debugpy==1.8.12
|
| 67 |
+
- decorator==5.1.1
|
| 68 |
+
- decord==0.6.0
|
| 69 |
+
- dill==0.3.7
|
| 70 |
+
- einops==0.7.0
|
| 71 |
+
- en-core-web-sm==3.8.0
|
| 72 |
+
- exceptiongroup==1.1.3
|
| 73 |
+
- executing==2.0.0
|
| 74 |
+
- fairscale==0.4.13
|
| 75 |
+
- fastapi==0.115.8
|
| 76 |
+
- ffmpy==0.3.1
|
| 77 |
+
- filelock==3.12.4
|
| 78 |
+
- fire==0.5.0
|
| 79 |
+
- fonttools==4.43.1
|
| 80 |
+
- frozenlist==1.4.0
|
| 81 |
+
- fsspec==2023.6.0
|
| 82 |
+
- ftfy==6.1.1
|
| 83 |
+
- fvcore==0.1.5.post20221221
|
| 84 |
+
- gpustat==1.1.1
|
| 85 |
+
- gradio==5.16.0
|
| 86 |
+
- gradio-client==1.7.0
|
| 87 |
+
- grpcio==1.70.0
|
| 88 |
+
- h11==0.14.0
|
| 89 |
+
- hiq-python==1.1.12
|
| 90 |
+
- httpcore==0.18.0
|
| 91 |
+
- httpx==0.25.0
|
| 92 |
+
- huggingface-hub==0.28.1
|
| 93 |
+
- humanfriendly==10.0
|
| 94 |
+
- idna==3.4
|
| 95 |
+
- importlib-resources==6.1.0
|
| 96 |
+
- inflate64==0.3.1
|
| 97 |
+
- iopath==0.1.10
|
| 98 |
+
- ipython==8.16.1
|
| 99 |
+
- jedi==0.19.1
|
| 100 |
+
- jinja2==3.1.2
|
| 101 |
+
- jsonschema==4.19.1
|
| 102 |
+
- jsonschema-specifications==2023.7.1
|
| 103 |
+
- kiwisolver==1.4.5
|
| 104 |
+
- langcodes==3.5.0
|
| 105 |
+
- language-data==1.3.0
|
| 106 |
+
- linkify-it-py==2.0.2
|
| 107 |
+
- lit==17.0.2
|
| 108 |
+
- loralib==0.1.2
|
| 109 |
+
- marisa-trie==1.2.1
|
| 110 |
+
- markdown==3.7
|
| 111 |
+
- markdown-it-py==2.2.0
|
| 112 |
+
- markupsafe==2.1.3
|
| 113 |
+
- matplotlib==3.8.0
|
| 114 |
+
- matplotlib-inline==0.1.6
|
| 115 |
+
- mdit-py-plugins==0.3.3
|
| 116 |
+
- mdurl==0.1.2
|
| 117 |
+
- mpmath==1.3.0
|
| 118 |
+
- multidict==6.0.4
|
| 119 |
+
- multiprocess==0.70.15
|
| 120 |
+
- multivolumefile==0.2.3
|
| 121 |
+
- murmurhash==1.0.12
|
| 122 |
+
- mypy-extensions==1.0.0
|
| 123 |
+
- networkx==3.1
|
| 124 |
+
- numpy==1.26.0
|
| 125 |
+
- nvidia-ml-py==12.535.108
|
| 126 |
+
- nvitop==1.3.1
|
| 127 |
+
- omegaconf==2.3.0
|
| 128 |
+
- opencv-python==4.8.1.78
|
| 129 |
+
- optimum==1.13.2
|
| 130 |
+
- orjson==3.9.9
|
| 131 |
+
- packaging==23.2
|
| 132 |
+
- pandas==2.1.1
|
| 133 |
+
- parameterized==0.9.0
|
| 134 |
+
- parso==0.8.3
|
| 135 |
+
- pathspec==0.11.2
|
| 136 |
+
- peft==0.5.0
|
| 137 |
+
- pexpect==4.8.0
|
| 138 |
+
- pickleshare==0.7.5
|
| 139 |
+
- pillow==10.0.1
|
| 140 |
+
- platformdirs==3.11.0
|
| 141 |
+
- portalocker==2.8.2
|
| 142 |
+
- preshed==3.0.9
|
| 143 |
+
- prompt-toolkit==3.0.39
|
| 144 |
+
- protobuf==4.24.4
|
| 145 |
+
- psutil==5.9.5
|
| 146 |
+
- ptyprocess==0.7.0
|
| 147 |
+
- pure-eval==0.2.2
|
| 148 |
+
- py-itree==0.0.19
|
| 149 |
+
- py3nvml==0.2.7
|
| 150 |
+
- py7zr==0.20.6
|
| 151 |
+
- pyarrow==13.0.0
|
| 152 |
+
- pybcj==1.0.1
|
| 153 |
+
- pycryptodomex==3.19.0
|
| 154 |
+
- pydantic==2.4.2
|
| 155 |
+
- pydantic-core==2.10.1
|
| 156 |
+
- pydub==0.25.1
|
| 157 |
+
- pygments==2.16.1
|
| 158 |
+
- pyllama==0.0.9
|
| 159 |
+
- pyparsing==3.1.1
|
| 160 |
+
- pyppmd==1.0.0
|
| 161 |
+
- python-dateutil==2.8.2
|
| 162 |
+
- python-multipart==0.0.20
|
| 163 |
+
- pytorchvideo==0.1.5
|
| 164 |
+
- pytz==2023.3.post1
|
| 165 |
+
- pyyaml==6.0.1
|
| 166 |
+
- pyzstd==0.15.9
|
| 167 |
+
- referencing==0.30.2
|
| 168 |
+
- regex==2023.10.3
|
| 169 |
+
- requests==2.31.0
|
| 170 |
+
- rich==13.6.0
|
| 171 |
+
- rpds-py==0.10.6
|
| 172 |
+
- ruff==0.9.6
|
| 173 |
+
- safehttpx==0.1.6
|
| 174 |
+
- safetensors==0.4.0
|
| 175 |
+
- scipy==1.11.3
|
| 176 |
+
- semantic-version==2.10.0
|
| 177 |
+
- sentencepiece==0.1.97
|
| 178 |
+
- shellingham==1.5.4
|
| 179 |
+
- six==1.16.0
|
| 180 |
+
- smart-open==7.1.0
|
| 181 |
+
- sniffio==1.3.0
|
| 182 |
+
- spacy==3.8.4
|
| 183 |
+
- spacy-legacy==3.0.12
|
| 184 |
+
- spacy-loggers==1.0.5
|
| 185 |
+
- srsly==2.5.1
|
| 186 |
+
- stack-data==0.6.3
|
| 187 |
+
- starlette==0.45.3
|
| 188 |
+
- sympy==1.12
|
| 189 |
+
- tabulate==0.9.0
|
| 190 |
+
- tensorboard==2.18.0
|
| 191 |
+
- tensorboard-data-server==0.7.2
|
| 192 |
+
- termcolor==2.3.0
|
| 193 |
+
- texttable==1.7.0
|
| 194 |
+
- thinc==8.3.4
|
| 195 |
+
- timm==0.9.7
|
| 196 |
+
- tokenize-rt==5.2.0
|
| 197 |
+
- tokenizers==0.13.3
|
| 198 |
+
- tomli==2.0.1
|
| 199 |
+
- tomlkit==0.13.2
|
| 200 |
+
- toolz==0.12.0
|
| 201 |
+
- torch==2.0.1+cu117
|
| 202 |
+
- torchaudio==2.0.2+cu117
|
| 203 |
+
- torchvision==0.15.2+cu117
|
| 204 |
+
- tqdm==4.66.1
|
| 205 |
+
- traitlets==5.11.2
|
| 206 |
+
- transformers==4.28.0
|
| 207 |
+
- triton==2.0.0
|
| 208 |
+
- typer==0.15.1
|
| 209 |
+
- typing-extensions==4.8.0
|
| 210 |
+
- tzdata==2023.3
|
| 211 |
+
- uc-micro-py==1.0.2
|
| 212 |
+
- urllib3==2.0.6
|
| 213 |
+
- uvicorn==0.23.2
|
| 214 |
+
- wasabi==1.1.3
|
| 215 |
+
- wcwidth==0.2.8
|
| 216 |
+
- weasel==0.4.1
|
| 217 |
+
- webdataset==0.2.57
|
| 218 |
+
- websockets==11.0.3
|
| 219 |
+
- werkzeug==3.1.3
|
| 220 |
+
- wrapt==1.17.2
|
| 221 |
+
- xmltodict==0.13.0
|
| 222 |
+
- xxhash==3.4.1
|
| 223 |
+
- yacs==0.1.8
|
| 224 |
+
- yarl==1.9.2
|
| 225 |
+
prefix: /root/anaconda3/envs/hawk
|
figs/demo.png
ADDED
|
figs/examples/car.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1aca21a877d9569fc1f0c102644012a8232d06caef7a883ab3cc0750640e209d
|
| 3 |
+
size 1443171
|
figs/examples/explosion2.mp4
ADDED
|
Binary file (834 kB). View file
|
|
|
figs/icon.png
ADDED
|
|
figs/motivation1.png
ADDED
|
hawk/__init__.py
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Copyright (c) 2022, salesforce.com, inc.
|
| 3 |
+
All rights reserved.
|
| 4 |
+
SPDX-License-Identifier: BSD-3-Clause
|
| 5 |
+
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import os
|
| 9 |
+
import sys
|
| 10 |
+
|
| 11 |
+
from omegaconf import OmegaConf
|
| 12 |
+
|
| 13 |
+
from hawk.common.registry import registry
|
| 14 |
+
|
| 15 |
+
from hawk.datasets.builders import *
|
| 16 |
+
from hawk.models import *
|
| 17 |
+
from hawk.processors import *
|
| 18 |
+
from hawk.tasks import *
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
root_dir = os.path.dirname(os.path.abspath(__file__))
|
| 22 |
+
default_cfg = OmegaConf.load(os.path.join(root_dir, "configs/default.yaml"))
|
| 23 |
+
|
| 24 |
+
registry.register_path("library_root", root_dir)
|
| 25 |
+
repo_root = os.path.join(root_dir, "..")
|
| 26 |
+
registry.register_path("repo_root", repo_root)
|
| 27 |
+
cache_root = os.path.join(repo_root, default_cfg.env.cache_root)
|
| 28 |
+
registry.register_path("cache_root", cache_root)
|
| 29 |
+
|
| 30 |
+
registry.register("MAX_INT", sys.maxsize)
|
| 31 |
+
registry.register("SPLIT_NAMES", ["train", "val", "test"])
|
hawk/common/__init__.py
ADDED
|
File without changes
|
hawk/common/config.py
ADDED
|
@@ -0,0 +1,468 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Copyright (c) 2022, salesforce.com, inc.
|
| 3 |
+
All rights reserved.
|
| 4 |
+
SPDX-License-Identifier: BSD-3-Clause
|
| 5 |
+
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import logging
|
| 9 |
+
import json
|
| 10 |
+
from typing import Dict
|
| 11 |
+
|
| 12 |
+
from omegaconf import OmegaConf
|
| 13 |
+
from hawk.common.registry import registry
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class Config:
|
| 17 |
+
def __init__(self, args):
|
| 18 |
+
self.config = {}
|
| 19 |
+
|
| 20 |
+
self.args = args
|
| 21 |
+
|
| 22 |
+
# Register the config and configuration for setup
|
| 23 |
+
registry.register("configuration", self)
|
| 24 |
+
|
| 25 |
+
user_config = self._build_opt_list(self.args.options)
|
| 26 |
+
|
| 27 |
+
config = OmegaConf.load(self.args.cfg_path)
|
| 28 |
+
|
| 29 |
+
runner_config = self.build_runner_config(config)
|
| 30 |
+
model_config = self.build_model_config(config, **user_config)
|
| 31 |
+
dataset_config = self.build_dataset_config(config)
|
| 32 |
+
|
| 33 |
+
# Validate the user-provided runner configuration
|
| 34 |
+
# model and dataset configuration are supposed to be validated by the respective classes
|
| 35 |
+
# [TODO] validate the model/dataset configuration
|
| 36 |
+
# self._validate_runner_config(runner_config)
|
| 37 |
+
|
| 38 |
+
# Override the default configuration with user options.
|
| 39 |
+
self.config = OmegaConf.merge(
|
| 40 |
+
runner_config, model_config, dataset_config, user_config
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
def _validate_runner_config(self, runner_config):
|
| 44 |
+
"""
|
| 45 |
+
This method validates the configuration, such that
|
| 46 |
+
1) all the user specified options are valid;
|
| 47 |
+
2) no type mismatches between the user specified options and the config.
|
| 48 |
+
"""
|
| 49 |
+
runner_config_validator = create_runner_config_validator()
|
| 50 |
+
runner_config_validator.validate(runner_config)
|
| 51 |
+
|
| 52 |
+
def _build_opt_list(self, opts):
|
| 53 |
+
opts_dot_list = self._convert_to_dot_list(opts)
|
| 54 |
+
return OmegaConf.from_dotlist(opts_dot_list)
|
| 55 |
+
|
| 56 |
+
@staticmethod
|
| 57 |
+
def build_model_config(config, **kwargs):
|
| 58 |
+
model = config.get("model", None)
|
| 59 |
+
assert model is not None, "Missing model configuration file."
|
| 60 |
+
|
| 61 |
+
model_cls = registry.get_model_class(model.arch)
|
| 62 |
+
assert model_cls is not None, f"Model '{model.arch}' has not been registered."
|
| 63 |
+
|
| 64 |
+
model_type = kwargs.get("model.model_type", None)
|
| 65 |
+
if not model_type:
|
| 66 |
+
model_type = model.get("model_type", None)
|
| 67 |
+
# else use the model type selected by user.
|
| 68 |
+
|
| 69 |
+
assert model_type is not None, "Missing model_type."
|
| 70 |
+
|
| 71 |
+
model_config_path = model_cls.default_config_path(model_type=model_type)
|
| 72 |
+
|
| 73 |
+
model_config = OmegaConf.create()
|
| 74 |
+
# hierarchy override, customized config > default config
|
| 75 |
+
model_config = OmegaConf.merge(
|
| 76 |
+
model_config,
|
| 77 |
+
OmegaConf.load(model_config_path),
|
| 78 |
+
{"model": config["model"]},
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
return model_config
|
| 82 |
+
|
| 83 |
+
@staticmethod
|
| 84 |
+
def build_runner_config(config):
|
| 85 |
+
return {"run": config.run}
|
| 86 |
+
|
| 87 |
+
@staticmethod
|
| 88 |
+
def build_dataset_config(config):
|
| 89 |
+
datasets = config.get("datasets", None)
|
| 90 |
+
if datasets is None:
|
| 91 |
+
raise KeyError(
|
| 92 |
+
"Expecting 'datasets' as the root key for dataset configuration."
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
dataset_config = OmegaConf.create()
|
| 96 |
+
|
| 97 |
+
for dataset_name in datasets:
|
| 98 |
+
builder_cls = registry.get_builder_class(dataset_name)
|
| 99 |
+
|
| 100 |
+
dataset_config_type = datasets[dataset_name].get("type", "default")
|
| 101 |
+
dataset_config_path = builder_cls.default_config_path(
|
| 102 |
+
type=dataset_config_type
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
# hierarchy override, customized config > default config
|
| 106 |
+
dataset_config = OmegaConf.merge(
|
| 107 |
+
dataset_config,
|
| 108 |
+
OmegaConf.load(dataset_config_path),
|
| 109 |
+
{"datasets": {dataset_name: config["datasets"][dataset_name]}},
|
| 110 |
+
)
|
| 111 |
+
|
| 112 |
+
return dataset_config
|
| 113 |
+
|
| 114 |
+
def _convert_to_dot_list(self, opts):
|
| 115 |
+
if opts is None:
|
| 116 |
+
opts = []
|
| 117 |
+
|
| 118 |
+
if len(opts) == 0:
|
| 119 |
+
return opts
|
| 120 |
+
|
| 121 |
+
has_equal = opts[0].find("=") != -1
|
| 122 |
+
|
| 123 |
+
if has_equal:
|
| 124 |
+
return opts
|
| 125 |
+
|
| 126 |
+
return [(opt + "=" + value) for opt, value in zip(opts[0::2], opts[1::2])]
|
| 127 |
+
|
| 128 |
+
def get_config(self):
|
| 129 |
+
return self.config
|
| 130 |
+
|
| 131 |
+
@property
|
| 132 |
+
def run_cfg(self):
|
| 133 |
+
return self.config.run
|
| 134 |
+
|
| 135 |
+
@property
|
| 136 |
+
def datasets_cfg(self):
|
| 137 |
+
return self.config.datasets
|
| 138 |
+
|
| 139 |
+
@property
|
| 140 |
+
def model_cfg(self):
|
| 141 |
+
return self.config.model
|
| 142 |
+
|
| 143 |
+
def pretty_print(self):
|
| 144 |
+
logging.info("\n===== Running Parameters =====")
|
| 145 |
+
logging.info(self._convert_node_to_json(self.config.run))
|
| 146 |
+
|
| 147 |
+
logging.info("\n====== Dataset Attributes ======")
|
| 148 |
+
datasets = self.config.datasets
|
| 149 |
+
|
| 150 |
+
for dataset in datasets:
|
| 151 |
+
if dataset in self.config.datasets:
|
| 152 |
+
logging.info(f"\n======== {dataset} =======")
|
| 153 |
+
dataset_config = self.config.datasets[dataset]
|
| 154 |
+
logging.info(self._convert_node_to_json(dataset_config))
|
| 155 |
+
else:
|
| 156 |
+
logging.warning(f"No dataset named '{dataset}' in config. Skipping")
|
| 157 |
+
|
| 158 |
+
logging.info(f"\n====== Model Attributes ======")
|
| 159 |
+
logging.info(self._convert_node_to_json(self.config.model))
|
| 160 |
+
|
| 161 |
+
def _convert_node_to_json(self, node):
|
| 162 |
+
container = OmegaConf.to_container(node, resolve=True)
|
| 163 |
+
return json.dumps(container, indent=4, sort_keys=True)
|
| 164 |
+
|
| 165 |
+
def to_dict(self):
|
| 166 |
+
return OmegaConf.to_container(self.config)
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
def node_to_dict(node):
|
| 170 |
+
return OmegaConf.to_container(node)
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
class ConfigValidator:
|
| 174 |
+
"""
|
| 175 |
+
This is a preliminary implementation to centralize and validate the configuration.
|
| 176 |
+
May be altered in the future.
|
| 177 |
+
|
| 178 |
+
A helper class to validate configurations from yaml file.
|
| 179 |
+
|
| 180 |
+
This serves the following purposes:
|
| 181 |
+
1. Ensure all the options in the yaml are defined, raise error if not.
|
| 182 |
+
2. when type mismatches are found, the validator will raise an error.
|
| 183 |
+
3. a central place to store and display helpful messages for supported configurations.
|
| 184 |
+
|
| 185 |
+
"""
|
| 186 |
+
|
| 187 |
+
class _Argument:
|
| 188 |
+
def __init__(self, name, choices=None, type=None, help=None):
|
| 189 |
+
self.name = name
|
| 190 |
+
self.val = None
|
| 191 |
+
self.choices = choices
|
| 192 |
+
self.type = type
|
| 193 |
+
self.help = help
|
| 194 |
+
|
| 195 |
+
def __str__(self):
|
| 196 |
+
s = f"{self.name}={self.val}"
|
| 197 |
+
if self.type is not None:
|
| 198 |
+
s += f", ({self.type})"
|
| 199 |
+
if self.choices is not None:
|
| 200 |
+
s += f", choices: {self.choices}"
|
| 201 |
+
if self.help is not None:
|
| 202 |
+
s += f", ({self.help})"
|
| 203 |
+
return s
|
| 204 |
+
|
| 205 |
+
def __init__(self, description):
|
| 206 |
+
self.description = description
|
| 207 |
+
|
| 208 |
+
self.arguments = dict()
|
| 209 |
+
|
| 210 |
+
self.parsed_args = None
|
| 211 |
+
|
| 212 |
+
def __getitem__(self, key):
|
| 213 |
+
assert self.parsed_args is not None, "No arguments parsed yet."
|
| 214 |
+
|
| 215 |
+
return self.parsed_args[key]
|
| 216 |
+
|
| 217 |
+
def __str__(self) -> str:
|
| 218 |
+
return self.format_help()
|
| 219 |
+
|
| 220 |
+
def add_argument(self, *args, **kwargs):
|
| 221 |
+
"""
|
| 222 |
+
Assume the first argument is the name of the argument.
|
| 223 |
+
"""
|
| 224 |
+
self.arguments[args[0]] = self._Argument(*args, **kwargs)
|
| 225 |
+
|
| 226 |
+
def validate(self, config=None):
|
| 227 |
+
"""
|
| 228 |
+
Convert yaml config (dict-like) to list, required by argparse.
|
| 229 |
+
"""
|
| 230 |
+
for k, v in config.items():
|
| 231 |
+
assert (
|
| 232 |
+
k in self.arguments
|
| 233 |
+
), f"""{k} is not a valid argument. Support arguments are {self.format_arguments()}."""
|
| 234 |
+
|
| 235 |
+
if self.arguments[k].type is not None:
|
| 236 |
+
try:
|
| 237 |
+
self.arguments[k].val = self.arguments[k].type(v)
|
| 238 |
+
except ValueError:
|
| 239 |
+
raise ValueError(f"{k} is not a valid {self.arguments[k].type}.")
|
| 240 |
+
|
| 241 |
+
if self.arguments[k].choices is not None:
|
| 242 |
+
assert (
|
| 243 |
+
v in self.arguments[k].choices
|
| 244 |
+
), f"""{k} must be one of {self.arguments[k].choices}."""
|
| 245 |
+
|
| 246 |
+
return config
|
| 247 |
+
|
| 248 |
+
def format_arguments(self):
|
| 249 |
+
return str([f"{k}" for k in sorted(self.arguments.keys())])
|
| 250 |
+
|
| 251 |
+
def format_help(self):
|
| 252 |
+
# description + key-value pair string for each argument
|
| 253 |
+
help_msg = str(self.description)
|
| 254 |
+
return help_msg + ", available arguments: " + self.format_arguments()
|
| 255 |
+
|
| 256 |
+
def print_help(self):
|
| 257 |
+
# display help message
|
| 258 |
+
print(self.format_help())
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
def create_runner_config_validator():
|
| 262 |
+
validator = ConfigValidator(description="Runner configurations")
|
| 263 |
+
|
| 264 |
+
validator.add_argument(
|
| 265 |
+
"runner",
|
| 266 |
+
type=str,
|
| 267 |
+
choices=["runner_base", "runner_iter"],
|
| 268 |
+
help="""Runner to use. The "runner_base" uses epoch-based training while iter-based
|
| 269 |
+
runner runs based on iters. Default: runner_base""",
|
| 270 |
+
)
|
| 271 |
+
# add argumetns for training dataset ratios
|
| 272 |
+
validator.add_argument(
|
| 273 |
+
"train_dataset_ratios",
|
| 274 |
+
type=Dict[str, float],
|
| 275 |
+
help="""Ratios of training dataset. This is used in iteration-based runner.
|
| 276 |
+
Do not support for epoch-based runner because how to define an epoch becomes tricky.
|
| 277 |
+
Default: None""",
|
| 278 |
+
)
|
| 279 |
+
validator.add_argument(
|
| 280 |
+
"max_iters",
|
| 281 |
+
type=float,
|
| 282 |
+
help="Maximum number of iterations to run.",
|
| 283 |
+
)
|
| 284 |
+
validator.add_argument(
|
| 285 |
+
"max_epoch",
|
| 286 |
+
type=int,
|
| 287 |
+
help="Maximum number of epochs to run.",
|
| 288 |
+
)
|
| 289 |
+
# add arguments for iters_per_inner_epoch
|
| 290 |
+
validator.add_argument(
|
| 291 |
+
"iters_per_inner_epoch",
|
| 292 |
+
type=float,
|
| 293 |
+
help="Number of iterations per inner epoch. This is required when runner is runner_iter.",
|
| 294 |
+
)
|
| 295 |
+
lr_scheds_choices = registry.list_lr_schedulers()
|
| 296 |
+
validator.add_argument(
|
| 297 |
+
"lr_sched",
|
| 298 |
+
type=str,
|
| 299 |
+
choices=lr_scheds_choices,
|
| 300 |
+
help="Learning rate scheduler to use, from {}".format(lr_scheds_choices),
|
| 301 |
+
)
|
| 302 |
+
task_choices = registry.list_tasks()
|
| 303 |
+
validator.add_argument(
|
| 304 |
+
"task",
|
| 305 |
+
type=str,
|
| 306 |
+
choices=task_choices,
|
| 307 |
+
help="Task to use, from {}".format(task_choices),
|
| 308 |
+
)
|
| 309 |
+
# add arguments for init_lr
|
| 310 |
+
validator.add_argument(
|
| 311 |
+
"init_lr",
|
| 312 |
+
type=float,
|
| 313 |
+
help="Initial learning rate. This will be the learning rate after warmup and before decay.",
|
| 314 |
+
)
|
| 315 |
+
# add arguments for min_lr
|
| 316 |
+
validator.add_argument(
|
| 317 |
+
"min_lr",
|
| 318 |
+
type=float,
|
| 319 |
+
help="Minimum learning rate (after decay).",
|
| 320 |
+
)
|
| 321 |
+
# add arguments for warmup_lr
|
| 322 |
+
validator.add_argument(
|
| 323 |
+
"warmup_lr",
|
| 324 |
+
type=float,
|
| 325 |
+
help="Starting learning rate for warmup.",
|
| 326 |
+
)
|
| 327 |
+
# add arguments for learning rate decay rate
|
| 328 |
+
validator.add_argument(
|
| 329 |
+
"lr_decay_rate",
|
| 330 |
+
type=float,
|
| 331 |
+
help="Learning rate decay rate. Required if using a decaying learning rate scheduler.",
|
| 332 |
+
)
|
| 333 |
+
# add arguments for weight decay
|
| 334 |
+
validator.add_argument(
|
| 335 |
+
"weight_decay",
|
| 336 |
+
type=float,
|
| 337 |
+
help="Weight decay rate.",
|
| 338 |
+
)
|
| 339 |
+
# add arguments for training batch size
|
| 340 |
+
validator.add_argument(
|
| 341 |
+
"batch_size_train",
|
| 342 |
+
type=int,
|
| 343 |
+
help="Training batch size.",
|
| 344 |
+
)
|
| 345 |
+
# add arguments for evaluation batch size
|
| 346 |
+
validator.add_argument(
|
| 347 |
+
"batch_size_eval",
|
| 348 |
+
type=int,
|
| 349 |
+
help="Evaluation batch size, including validation and testing.",
|
| 350 |
+
)
|
| 351 |
+
# add arguments for number of workers for data loading
|
| 352 |
+
validator.add_argument(
|
| 353 |
+
"num_workers",
|
| 354 |
+
help="Number of workers for data loading.",
|
| 355 |
+
)
|
| 356 |
+
# add arguments for warm up steps
|
| 357 |
+
validator.add_argument(
|
| 358 |
+
"warmup_steps",
|
| 359 |
+
type=int,
|
| 360 |
+
help="Number of warmup steps. Required if a warmup schedule is used.",
|
| 361 |
+
)
|
| 362 |
+
# add arguments for random seed
|
| 363 |
+
validator.add_argument(
|
| 364 |
+
"seed",
|
| 365 |
+
type=int,
|
| 366 |
+
help="Random seed.",
|
| 367 |
+
)
|
| 368 |
+
# add arguments for output directory
|
| 369 |
+
validator.add_argument(
|
| 370 |
+
"output_dir",
|
| 371 |
+
type=str,
|
| 372 |
+
help="Output directory to save checkpoints and logs.",
|
| 373 |
+
)
|
| 374 |
+
# add arguments for whether only use evaluation
|
| 375 |
+
validator.add_argument(
|
| 376 |
+
"evaluate",
|
| 377 |
+
help="Whether to only evaluate the model. If true, training will not be performed.",
|
| 378 |
+
)
|
| 379 |
+
# add arguments for splits used for training, e.g. ["train", "val"]
|
| 380 |
+
validator.add_argument(
|
| 381 |
+
"train_splits",
|
| 382 |
+
type=list,
|
| 383 |
+
help="Splits to use for training.",
|
| 384 |
+
)
|
| 385 |
+
# add arguments for splits used for validation, e.g. ["val"]
|
| 386 |
+
validator.add_argument(
|
| 387 |
+
"valid_splits",
|
| 388 |
+
type=list,
|
| 389 |
+
help="Splits to use for validation. If not provided, will skip the validation.",
|
| 390 |
+
)
|
| 391 |
+
# add arguments for splits used for testing, e.g. ["test"]
|
| 392 |
+
validator.add_argument(
|
| 393 |
+
"test_splits",
|
| 394 |
+
type=list,
|
| 395 |
+
help="Splits to use for testing. If not provided, will skip the testing.",
|
| 396 |
+
)
|
| 397 |
+
# add arguments for accumulating gradient for iterations
|
| 398 |
+
validator.add_argument(
|
| 399 |
+
"accum_grad_iters",
|
| 400 |
+
type=int,
|
| 401 |
+
help="Number of iterations to accumulate gradient for.",
|
| 402 |
+
)
|
| 403 |
+
|
| 404 |
+
# ====== distributed training ======
|
| 405 |
+
validator.add_argument(
|
| 406 |
+
"device",
|
| 407 |
+
type=str,
|
| 408 |
+
choices=["cpu", "cuda"],
|
| 409 |
+
help="Device to use. Support 'cuda' or 'cpu' as for now.",
|
| 410 |
+
)
|
| 411 |
+
validator.add_argument(
|
| 412 |
+
"world_size",
|
| 413 |
+
type=int,
|
| 414 |
+
help="Number of processes participating in the job.",
|
| 415 |
+
)
|
| 416 |
+
validator.add_argument("dist_url", type=str)
|
| 417 |
+
validator.add_argument("distributed", type=bool)
|
| 418 |
+
# add arguments to opt using distributed sampler during evaluation or not
|
| 419 |
+
validator.add_argument(
|
| 420 |
+
"use_dist_eval_sampler",
|
| 421 |
+
type=bool,
|
| 422 |
+
help="Whether to use distributed sampler during evaluation or not.",
|
| 423 |
+
)
|
| 424 |
+
|
| 425 |
+
# ====== task specific ======
|
| 426 |
+
# generation task specific arguments
|
| 427 |
+
# add arguments for maximal length of text output
|
| 428 |
+
validator.add_argument(
|
| 429 |
+
"max_len",
|
| 430 |
+
type=int,
|
| 431 |
+
help="Maximal length of text output.",
|
| 432 |
+
)
|
| 433 |
+
# add arguments for minimal length of text output
|
| 434 |
+
validator.add_argument(
|
| 435 |
+
"min_len",
|
| 436 |
+
type=int,
|
| 437 |
+
help="Minimal length of text output.",
|
| 438 |
+
)
|
| 439 |
+
# add arguments number of beams
|
| 440 |
+
validator.add_argument(
|
| 441 |
+
"num_beams",
|
| 442 |
+
type=int,
|
| 443 |
+
help="Number of beams used for beam search.",
|
| 444 |
+
)
|
| 445 |
+
|
| 446 |
+
# vqa task specific arguments
|
| 447 |
+
# add arguments for number of answer candidates
|
| 448 |
+
validator.add_argument(
|
| 449 |
+
"num_ans_candidates",
|
| 450 |
+
type=int,
|
| 451 |
+
help="""For ALBEF and BLIP, these models first rank answers according to likelihood to select answer candidates.""",
|
| 452 |
+
)
|
| 453 |
+
# add arguments for inference method
|
| 454 |
+
validator.add_argument(
|
| 455 |
+
"inference_method",
|
| 456 |
+
type=str,
|
| 457 |
+
choices=["genearte", "rank"],
|
| 458 |
+
help="""Inference method to use for question answering. If rank, requires a answer list.""",
|
| 459 |
+
)
|
| 460 |
+
|
| 461 |
+
# ====== model specific ======
|
| 462 |
+
validator.add_argument(
|
| 463 |
+
"k_test",
|
| 464 |
+
type=int,
|
| 465 |
+
help="Number of top k most similar samples from ITC/VTC selection to be tested.",
|
| 466 |
+
)
|
| 467 |
+
|
| 468 |
+
return validator
|
hawk/common/dist_utils.py
ADDED
|
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Copyright (c) 2022, salesforce.com, inc.
|
| 3 |
+
All rights reserved.
|
| 4 |
+
SPDX-License-Identifier: BSD-3-Clause
|
| 5 |
+
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import datetime
|
| 9 |
+
import functools
|
| 10 |
+
import os
|
| 11 |
+
|
| 12 |
+
import torch
|
| 13 |
+
import torch.distributed as dist
|
| 14 |
+
import timm.models.hub as timm_hub
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def setup_for_distributed(is_master):
|
| 18 |
+
"""
|
| 19 |
+
This function disables printing when not in master process
|
| 20 |
+
"""
|
| 21 |
+
import builtins as __builtin__
|
| 22 |
+
|
| 23 |
+
builtin_print = __builtin__.print
|
| 24 |
+
|
| 25 |
+
def print(*args, **kwargs):
|
| 26 |
+
force = kwargs.pop("force", False)
|
| 27 |
+
if is_master or force:
|
| 28 |
+
builtin_print(*args, **kwargs)
|
| 29 |
+
|
| 30 |
+
__builtin__.print = print
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def is_dist_avail_and_initialized():
|
| 34 |
+
if not dist.is_available():
|
| 35 |
+
return False
|
| 36 |
+
if not dist.is_initialized():
|
| 37 |
+
return False
|
| 38 |
+
return True
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def get_world_size():
|
| 42 |
+
if not is_dist_avail_and_initialized():
|
| 43 |
+
return 1
|
| 44 |
+
return dist.get_world_size()
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def get_rank():
|
| 48 |
+
if not is_dist_avail_and_initialized():
|
| 49 |
+
return 0
|
| 50 |
+
return dist.get_rank()
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def is_main_process():
|
| 54 |
+
return get_rank() == 0
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def init_distributed_mode(args):
|
| 58 |
+
if "RANK" in os.environ and "WORLD_SIZE" in os.environ:
|
| 59 |
+
args.rank = int(os.environ["RANK"])
|
| 60 |
+
args.world_size = int(os.environ["WORLD_SIZE"])
|
| 61 |
+
args.gpu = int(os.environ["LOCAL_RANK"])
|
| 62 |
+
elif "SLURM_PROCID" in os.environ:
|
| 63 |
+
args.rank = int(os.environ["SLURM_PROCID"])
|
| 64 |
+
args.gpu = args.rank % torch.cuda.device_count()
|
| 65 |
+
else:
|
| 66 |
+
print("Not using distributed mode")
|
| 67 |
+
args.distributed = False
|
| 68 |
+
return
|
| 69 |
+
|
| 70 |
+
args.distributed = True
|
| 71 |
+
|
| 72 |
+
torch.cuda.set_device(args.gpu)
|
| 73 |
+
args.dist_backend = "nccl"
|
| 74 |
+
print(
|
| 75 |
+
"| distributed init (rank {}, world {}): {}".format(
|
| 76 |
+
args.rank, args.world_size, args.dist_url
|
| 77 |
+
),
|
| 78 |
+
flush=True,
|
| 79 |
+
)
|
| 80 |
+
torch.distributed.init_process_group(
|
| 81 |
+
backend=args.dist_backend,
|
| 82 |
+
init_method=args.dist_url,
|
| 83 |
+
world_size=args.world_size,
|
| 84 |
+
rank=args.rank,
|
| 85 |
+
timeout=datetime.timedelta(
|
| 86 |
+
days=365
|
| 87 |
+
), # allow auto-downloading and de-compressing
|
| 88 |
+
)
|
| 89 |
+
torch.distributed.barrier()
|
| 90 |
+
setup_for_distributed(args.rank == 0)
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
def get_dist_info():
|
| 94 |
+
if torch.__version__ < "1.0":
|
| 95 |
+
initialized = dist._initialized
|
| 96 |
+
else:
|
| 97 |
+
initialized = dist.is_initialized()
|
| 98 |
+
if initialized:
|
| 99 |
+
rank = dist.get_rank()
|
| 100 |
+
world_size = dist.get_world_size()
|
| 101 |
+
else: # non-distributed training
|
| 102 |
+
rank = 0
|
| 103 |
+
world_size = 1
|
| 104 |
+
return rank, world_size
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
def main_process(func):
|
| 108 |
+
@functools.wraps(func)
|
| 109 |
+
def wrapper(*args, **kwargs):
|
| 110 |
+
rank, _ = get_dist_info()
|
| 111 |
+
if rank == 0:
|
| 112 |
+
return func(*args, **kwargs)
|
| 113 |
+
|
| 114 |
+
return wrapper
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
def download_cached_file(url, check_hash=True, progress=False):
|
| 118 |
+
"""
|
| 119 |
+
Download a file from a URL and cache it locally. If the file already exists, it is not downloaded again.
|
| 120 |
+
If distributed, only the main process downloads the file, and the other processes wait for the file to be downloaded.
|
| 121 |
+
"""
|
| 122 |
+
|
| 123 |
+
def get_cached_file_path():
|
| 124 |
+
# a hack to sync the file path across processes
|
| 125 |
+
parts = torch.hub.urlparse(url)
|
| 126 |
+
filename = os.path.basename(parts.path)
|
| 127 |
+
cached_file = os.path.join(timm_hub.get_cache_dir(), filename)
|
| 128 |
+
|
| 129 |
+
return cached_file
|
| 130 |
+
|
| 131 |
+
if is_main_process():
|
| 132 |
+
timm_hub.download_cached_file(url, check_hash, progress)
|
| 133 |
+
|
| 134 |
+
if is_dist_avail_and_initialized():
|
| 135 |
+
dist.barrier()
|
| 136 |
+
|
| 137 |
+
return get_cached_file_path()
|
hawk/common/gradcam.py
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
from matplotlib import pyplot as plt
|
| 3 |
+
from scipy.ndimage import filters
|
| 4 |
+
from skimage import transform as skimage_transform
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def getAttMap(img, attMap, blur=True, overlap=True):
|
| 8 |
+
attMap -= attMap.min()
|
| 9 |
+
if attMap.max() > 0:
|
| 10 |
+
attMap /= attMap.max()
|
| 11 |
+
attMap = skimage_transform.resize(attMap, (img.shape[:2]), order=3, mode="constant")
|
| 12 |
+
if blur:
|
| 13 |
+
attMap = filters.gaussian_filter(attMap, 0.02 * max(img.shape[:2]))
|
| 14 |
+
attMap -= attMap.min()
|
| 15 |
+
attMap /= attMap.max()
|
| 16 |
+
cmap = plt.get_cmap("jet")
|
| 17 |
+
attMapV = cmap(attMap)
|
| 18 |
+
attMapV = np.delete(attMapV, 3, 2)
|
| 19 |
+
if overlap:
|
| 20 |
+
attMap = (
|
| 21 |
+
1 * (1 - attMap**0.7).reshape(attMap.shape + (1,)) * img
|
| 22 |
+
+ (attMap**0.7).reshape(attMap.shape + (1,)) * attMapV
|
| 23 |
+
)
|
| 24 |
+
return attMap
|
hawk/common/logger.py
ADDED
|
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Copyright (c) 2022, salesforce.com, inc.
|
| 3 |
+
All rights reserved.
|
| 4 |
+
SPDX-License-Identifier: BSD-3-Clause
|
| 5 |
+
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import datetime
|
| 9 |
+
import logging
|
| 10 |
+
import time
|
| 11 |
+
from collections import defaultdict, deque
|
| 12 |
+
|
| 13 |
+
import torch
|
| 14 |
+
import torch.distributed as dist
|
| 15 |
+
|
| 16 |
+
from hawk.common import dist_utils
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class SmoothedValue(object):
|
| 20 |
+
"""Track a series of values and provide access to smoothed values over a
|
| 21 |
+
window or the global series average.
|
| 22 |
+
"""
|
| 23 |
+
|
| 24 |
+
def __init__(self, window_size=20, fmt=None):
|
| 25 |
+
if fmt is None:
|
| 26 |
+
fmt = "{median:.4f} ({global_avg:.4f})"
|
| 27 |
+
self.deque = deque(maxlen=window_size)
|
| 28 |
+
self.total = 0.0
|
| 29 |
+
self.count = 0
|
| 30 |
+
self.fmt = fmt
|
| 31 |
+
|
| 32 |
+
def update(self, value, n=1):
|
| 33 |
+
self.deque.append(value)
|
| 34 |
+
self.count += n
|
| 35 |
+
self.total += value * n
|
| 36 |
+
|
| 37 |
+
def synchronize_between_processes(self):
|
| 38 |
+
"""
|
| 39 |
+
Warning: does not synchronize the deque!
|
| 40 |
+
"""
|
| 41 |
+
if not dist_utils.is_dist_avail_and_initialized():
|
| 42 |
+
return
|
| 43 |
+
t = torch.tensor([self.count, self.total], dtype=torch.float64, device="cuda")
|
| 44 |
+
dist.barrier()
|
| 45 |
+
dist.all_reduce(t)
|
| 46 |
+
t = t.tolist()
|
| 47 |
+
self.count = int(t[0])
|
| 48 |
+
self.total = t[1]
|
| 49 |
+
|
| 50 |
+
@property
|
| 51 |
+
def median(self):
|
| 52 |
+
d = torch.tensor(list(self.deque))
|
| 53 |
+
return d.median().item()
|
| 54 |
+
|
| 55 |
+
@property
|
| 56 |
+
def avg(self):
|
| 57 |
+
d = torch.tensor(list(self.deque), dtype=torch.float32)
|
| 58 |
+
return d.mean().item()
|
| 59 |
+
|
| 60 |
+
@property
|
| 61 |
+
def global_avg(self):
|
| 62 |
+
return self.total / self.count
|
| 63 |
+
|
| 64 |
+
@property
|
| 65 |
+
def max(self):
|
| 66 |
+
return max(self.deque)
|
| 67 |
+
|
| 68 |
+
@property
|
| 69 |
+
def value(self):
|
| 70 |
+
return self.deque[-1]
|
| 71 |
+
|
| 72 |
+
def __str__(self):
|
| 73 |
+
return self.fmt.format(
|
| 74 |
+
median=self.median,
|
| 75 |
+
avg=self.avg,
|
| 76 |
+
global_avg=self.global_avg,
|
| 77 |
+
max=self.max,
|
| 78 |
+
value=self.value,
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
class MetricLogger(object):
|
| 83 |
+
def __init__(self, delimiter="\t"):
|
| 84 |
+
self.meters = defaultdict(SmoothedValue)
|
| 85 |
+
self.delimiter = delimiter
|
| 86 |
+
|
| 87 |
+
def update(self, **kwargs):
|
| 88 |
+
for k, v in kwargs.items():
|
| 89 |
+
if isinstance(v, torch.Tensor):
|
| 90 |
+
v = v.item()
|
| 91 |
+
assert isinstance(v, (float, int))
|
| 92 |
+
self.meters[k].update(v)
|
| 93 |
+
|
| 94 |
+
def __getattr__(self, attr):
|
| 95 |
+
if attr in self.meters:
|
| 96 |
+
return self.meters[attr]
|
| 97 |
+
if attr in self.__dict__:
|
| 98 |
+
return self.__dict__[attr]
|
| 99 |
+
raise AttributeError(
|
| 100 |
+
"'{}' object has no attribute '{}'".format(type(self).__name__, attr)
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
def __str__(self):
|
| 104 |
+
loss_str = []
|
| 105 |
+
for name, meter in self.meters.items():
|
| 106 |
+
loss_str.append("{}: {}".format(name, str(meter)))
|
| 107 |
+
return self.delimiter.join(loss_str)
|
| 108 |
+
|
| 109 |
+
def global_avg(self):
|
| 110 |
+
loss_str = []
|
| 111 |
+
for name, meter in self.meters.items():
|
| 112 |
+
loss_str.append("{}: {:.4f}".format(name, meter.global_avg))
|
| 113 |
+
return self.delimiter.join(loss_str)
|
| 114 |
+
|
| 115 |
+
def synchronize_between_processes(self):
|
| 116 |
+
for meter in self.meters.values():
|
| 117 |
+
meter.synchronize_between_processes()
|
| 118 |
+
|
| 119 |
+
def add_meter(self, name, meter):
|
| 120 |
+
self.meters[name] = meter
|
| 121 |
+
|
| 122 |
+
def log_every(self, iterable, print_freq, header=None):
|
| 123 |
+
i = 0
|
| 124 |
+
if not header:
|
| 125 |
+
header = ""
|
| 126 |
+
start_time = time.time()
|
| 127 |
+
end = time.time()
|
| 128 |
+
iter_time = SmoothedValue(fmt="{avg:.4f}")
|
| 129 |
+
data_time = SmoothedValue(fmt="{avg:.4f}")
|
| 130 |
+
space_fmt = ":" + str(len(str(len(iterable)))) + "d"
|
| 131 |
+
log_msg = [
|
| 132 |
+
header,
|
| 133 |
+
"[{0" + space_fmt + "}/{1}]",
|
| 134 |
+
"eta: {eta}",
|
| 135 |
+
"{meters}",
|
| 136 |
+
"time: {time}",
|
| 137 |
+
"data: {data}",
|
| 138 |
+
]
|
| 139 |
+
if torch.cuda.is_available():
|
| 140 |
+
log_msg.append("max mem: {memory:.0f}")
|
| 141 |
+
log_msg = self.delimiter.join(log_msg)
|
| 142 |
+
MB = 1024.0 * 1024.0
|
| 143 |
+
for obj in iterable:
|
| 144 |
+
data_time.update(time.time() - end)
|
| 145 |
+
yield obj
|
| 146 |
+
iter_time.update(time.time() - end)
|
| 147 |
+
if i % print_freq == 0 or i == len(iterable) - 1:
|
| 148 |
+
eta_seconds = iter_time.global_avg * (len(iterable) - i)
|
| 149 |
+
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
|
| 150 |
+
if torch.cuda.is_available():
|
| 151 |
+
print(
|
| 152 |
+
log_msg.format(
|
| 153 |
+
i,
|
| 154 |
+
len(iterable),
|
| 155 |
+
eta=eta_string,
|
| 156 |
+
meters=str(self),
|
| 157 |
+
time=str(iter_time),
|
| 158 |
+
data=str(data_time),
|
| 159 |
+
memory=torch.cuda.max_memory_allocated() / MB,
|
| 160 |
+
)
|
| 161 |
+
)
|
| 162 |
+
else:
|
| 163 |
+
print(
|
| 164 |
+
log_msg.format(
|
| 165 |
+
i,
|
| 166 |
+
len(iterable),
|
| 167 |
+
eta=eta_string,
|
| 168 |
+
meters=str(self),
|
| 169 |
+
time=str(iter_time),
|
| 170 |
+
data=str(data_time),
|
| 171 |
+
)
|
| 172 |
+
)
|
| 173 |
+
i += 1
|
| 174 |
+
end = time.time()
|
| 175 |
+
total_time = time.time() - start_time
|
| 176 |
+
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
|
| 177 |
+
print(
|
| 178 |
+
"{} Total time: {} ({:.4f} s / it)".format(
|
| 179 |
+
header, total_time_str, total_time / len(iterable)
|
| 180 |
+
)
|
| 181 |
+
)
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
class AttrDict(dict):
|
| 185 |
+
def __init__(self, *args, **kwargs):
|
| 186 |
+
super(AttrDict, self).__init__(*args, **kwargs)
|
| 187 |
+
self.__dict__ = self
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
def setup_logger():
|
| 191 |
+
logging.basicConfig(
|
| 192 |
+
level=logging.INFO if dist_utils.is_main_process() else logging.WARN,
|
| 193 |
+
format="%(asctime)s [%(levelname)s] %(message)s",
|
| 194 |
+
handlers=[logging.StreamHandler()],
|
| 195 |
+
)
|
hawk/common/optims.py
ADDED
|
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Copyright (c) 2022, salesforce.com, inc.
|
| 3 |
+
All rights reserved.
|
| 4 |
+
SPDX-License-Identifier: BSD-3-Clause
|
| 5 |
+
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import math
|
| 9 |
+
|
| 10 |
+
from hawk.common.registry import registry
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
@registry.register_lr_scheduler("linear_warmup_step_lr")
|
| 14 |
+
class LinearWarmupStepLRScheduler:
|
| 15 |
+
def __init__(
|
| 16 |
+
self,
|
| 17 |
+
optimizer,
|
| 18 |
+
max_epoch,
|
| 19 |
+
min_lr,
|
| 20 |
+
init_lr,
|
| 21 |
+
decay_rate=1,
|
| 22 |
+
warmup_start_lr=-1,
|
| 23 |
+
warmup_steps=0,
|
| 24 |
+
**kwargs
|
| 25 |
+
):
|
| 26 |
+
self.optimizer = optimizer
|
| 27 |
+
|
| 28 |
+
self.max_epoch = max_epoch
|
| 29 |
+
self.min_lr = min_lr
|
| 30 |
+
|
| 31 |
+
self.decay_rate = decay_rate
|
| 32 |
+
|
| 33 |
+
self.init_lr = init_lr
|
| 34 |
+
self.warmup_steps = warmup_steps
|
| 35 |
+
self.warmup_start_lr = warmup_start_lr if warmup_start_lr >= 0 else init_lr
|
| 36 |
+
|
| 37 |
+
def step(self, cur_epoch, cur_step):
|
| 38 |
+
if cur_epoch == 0:
|
| 39 |
+
warmup_lr_schedule(
|
| 40 |
+
step=cur_step,
|
| 41 |
+
optimizer=self.optimizer,
|
| 42 |
+
max_step=self.warmup_steps,
|
| 43 |
+
init_lr=self.warmup_start_lr,
|
| 44 |
+
max_lr=self.init_lr,
|
| 45 |
+
)
|
| 46 |
+
else:
|
| 47 |
+
step_lr_schedule(
|
| 48 |
+
epoch=cur_epoch,
|
| 49 |
+
optimizer=self.optimizer,
|
| 50 |
+
init_lr=self.init_lr,
|
| 51 |
+
min_lr=self.min_lr,
|
| 52 |
+
decay_rate=self.decay_rate,
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
@registry.register_lr_scheduler("linear_warmup_cosine_lr")
|
| 57 |
+
class LinearWarmupCosineLRScheduler:
|
| 58 |
+
def __init__(
|
| 59 |
+
self,
|
| 60 |
+
optimizer,
|
| 61 |
+
max_epoch,
|
| 62 |
+
iters_per_epoch,
|
| 63 |
+
min_lr,
|
| 64 |
+
init_lr,
|
| 65 |
+
warmup_steps=0,
|
| 66 |
+
warmup_start_lr=-1,
|
| 67 |
+
**kwargs
|
| 68 |
+
):
|
| 69 |
+
self.optimizer = optimizer
|
| 70 |
+
|
| 71 |
+
self.max_epoch = max_epoch
|
| 72 |
+
self.iters_per_epoch = iters_per_epoch
|
| 73 |
+
self.min_lr = min_lr
|
| 74 |
+
|
| 75 |
+
self.init_lr = init_lr
|
| 76 |
+
self.warmup_steps = warmup_steps
|
| 77 |
+
self.warmup_start_lr = warmup_start_lr if warmup_start_lr >= 0 else init_lr
|
| 78 |
+
|
| 79 |
+
def step(self, cur_epoch, cur_step):
|
| 80 |
+
total_cur_step = cur_epoch * self.iters_per_epoch + cur_step
|
| 81 |
+
if total_cur_step < self.warmup_steps:
|
| 82 |
+
warmup_lr_schedule(
|
| 83 |
+
step=cur_step,
|
| 84 |
+
optimizer=self.optimizer,
|
| 85 |
+
max_step=self.warmup_steps,
|
| 86 |
+
init_lr=self.warmup_start_lr,
|
| 87 |
+
max_lr=self.init_lr,
|
| 88 |
+
)
|
| 89 |
+
else:
|
| 90 |
+
cosine_lr_schedule(
|
| 91 |
+
epoch=total_cur_step,
|
| 92 |
+
optimizer=self.optimizer,
|
| 93 |
+
max_epoch=self.max_epoch * self.iters_per_epoch,
|
| 94 |
+
init_lr=self.init_lr,
|
| 95 |
+
min_lr=self.min_lr,
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
def cosine_lr_schedule(optimizer, epoch, max_epoch, init_lr, min_lr):
|
| 100 |
+
"""Decay the learning rate"""
|
| 101 |
+
lr = (init_lr - min_lr) * 0.5 * (
|
| 102 |
+
1.0 + math.cos(math.pi * epoch / max_epoch)
|
| 103 |
+
) + min_lr
|
| 104 |
+
for param_group in optimizer.param_groups:
|
| 105 |
+
param_group["lr"] = lr
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
def warmup_lr_schedule(optimizer, step, max_step, init_lr, max_lr):
|
| 109 |
+
"""Warmup the learning rate"""
|
| 110 |
+
lr = min(max_lr, init_lr + (max_lr - init_lr) * step / max(max_step, 1))
|
| 111 |
+
for param_group in optimizer.param_groups:
|
| 112 |
+
param_group["lr"] = lr
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
def step_lr_schedule(optimizer, epoch, init_lr, min_lr, decay_rate):
|
| 116 |
+
"""Decay the learning rate"""
|
| 117 |
+
lr = max(min_lr, init_lr * (decay_rate**epoch))
|
| 118 |
+
for param_group in optimizer.param_groups:
|
| 119 |
+
param_group["lr"] = lr
|
hawk/common/registry.py
ADDED
|
@@ -0,0 +1,329 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Copyright (c) 2022, salesforce.com, inc.
|
| 3 |
+
All rights reserved.
|
| 4 |
+
SPDX-License-Identifier: BSD-3-Clause
|
| 5 |
+
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class Registry:
|
| 10 |
+
mapping = {
|
| 11 |
+
"builder_name_mapping": {},
|
| 12 |
+
"task_name_mapping": {},
|
| 13 |
+
"processor_name_mapping": {},
|
| 14 |
+
"model_name_mapping": {},
|
| 15 |
+
"lr_scheduler_name_mapping": {},
|
| 16 |
+
"runner_name_mapping": {},
|
| 17 |
+
"state": {},
|
| 18 |
+
"paths": {},
|
| 19 |
+
}
|
| 20 |
+
|
| 21 |
+
@classmethod
|
| 22 |
+
def register_builder(cls, name):
|
| 23 |
+
r"""Register a dataset builder to registry with key 'name'
|
| 24 |
+
|
| 25 |
+
Args:
|
| 26 |
+
name: Key with which the builder will be registered.
|
| 27 |
+
|
| 28 |
+
Usage:
|
| 29 |
+
|
| 30 |
+
from video_llama.common.registry import registry
|
| 31 |
+
from video_llama.datasets.base_dataset_builder import BaseDatasetBuilder
|
| 32 |
+
"""
|
| 33 |
+
|
| 34 |
+
def wrap(builder_cls):
|
| 35 |
+
from hawk.datasets.builders.base_dataset_builder import BaseDatasetBuilder
|
| 36 |
+
|
| 37 |
+
assert issubclass(
|
| 38 |
+
builder_cls, BaseDatasetBuilder
|
| 39 |
+
), "All builders must inherit BaseDatasetBuilder class, found {}".format(
|
| 40 |
+
builder_cls
|
| 41 |
+
)
|
| 42 |
+
if name in cls.mapping["builder_name_mapping"]:
|
| 43 |
+
raise KeyError(
|
| 44 |
+
"Name '{}' already registered for {}.".format(
|
| 45 |
+
name, cls.mapping["builder_name_mapping"][name]
|
| 46 |
+
)
|
| 47 |
+
)
|
| 48 |
+
cls.mapping["builder_name_mapping"][name] = builder_cls
|
| 49 |
+
return builder_cls
|
| 50 |
+
|
| 51 |
+
return wrap
|
| 52 |
+
|
| 53 |
+
@classmethod
|
| 54 |
+
def register_task(cls, name):
|
| 55 |
+
r"""Register a task to registry with key 'name'
|
| 56 |
+
|
| 57 |
+
Args:
|
| 58 |
+
name: Key with which the task will be registered.
|
| 59 |
+
|
| 60 |
+
Usage:
|
| 61 |
+
|
| 62 |
+
from video_llama.common.registry import registry
|
| 63 |
+
"""
|
| 64 |
+
|
| 65 |
+
def wrap(task_cls):
|
| 66 |
+
from hawk.tasks.base_task import BaseTask
|
| 67 |
+
|
| 68 |
+
assert issubclass(
|
| 69 |
+
task_cls, BaseTask
|
| 70 |
+
), "All tasks must inherit BaseTask class"
|
| 71 |
+
if name in cls.mapping["task_name_mapping"]:
|
| 72 |
+
raise KeyError(
|
| 73 |
+
"Name '{}' already registered for {}.".format(
|
| 74 |
+
name, cls.mapping["task_name_mapping"][name]
|
| 75 |
+
)
|
| 76 |
+
)
|
| 77 |
+
cls.mapping["task_name_mapping"][name] = task_cls
|
| 78 |
+
return task_cls
|
| 79 |
+
|
| 80 |
+
return wrap
|
| 81 |
+
|
| 82 |
+
@classmethod
|
| 83 |
+
def register_model(cls, name):
|
| 84 |
+
r"""Register a task to registry with key 'name'
|
| 85 |
+
|
| 86 |
+
Args:
|
| 87 |
+
name: Key with which the task will be registered.
|
| 88 |
+
|
| 89 |
+
Usage:
|
| 90 |
+
|
| 91 |
+
from video_llama.common.registry import registry
|
| 92 |
+
"""
|
| 93 |
+
|
| 94 |
+
def wrap(model_cls):
|
| 95 |
+
from hawk.models import BaseModel
|
| 96 |
+
|
| 97 |
+
assert issubclass(
|
| 98 |
+
model_cls, BaseModel
|
| 99 |
+
), "All models must inherit BaseModel class"
|
| 100 |
+
if name in cls.mapping["model_name_mapping"]:
|
| 101 |
+
raise KeyError(
|
| 102 |
+
"Name '{}' already registered for {}.".format(
|
| 103 |
+
name, cls.mapping["model_name_mapping"][name]
|
| 104 |
+
)
|
| 105 |
+
)
|
| 106 |
+
cls.mapping["model_name_mapping"][name] = model_cls
|
| 107 |
+
return model_cls
|
| 108 |
+
|
| 109 |
+
return wrap
|
| 110 |
+
|
| 111 |
+
@classmethod
|
| 112 |
+
def register_processor(cls, name):
|
| 113 |
+
r"""Register a processor to registry with key 'name'
|
| 114 |
+
|
| 115 |
+
Args:
|
| 116 |
+
name: Key with which the task will be registered.
|
| 117 |
+
|
| 118 |
+
Usage:
|
| 119 |
+
|
| 120 |
+
from video_llama.common.registry import registry
|
| 121 |
+
"""
|
| 122 |
+
|
| 123 |
+
def wrap(processor_cls):
|
| 124 |
+
from hawk.processors import BaseProcessor
|
| 125 |
+
|
| 126 |
+
assert issubclass(
|
| 127 |
+
processor_cls, BaseProcessor
|
| 128 |
+
), "All processors must inherit BaseProcessor class"
|
| 129 |
+
if name in cls.mapping["processor_name_mapping"]:
|
| 130 |
+
raise KeyError(
|
| 131 |
+
"Name '{}' already registered for {}.".format(
|
| 132 |
+
name, cls.mapping["processor_name_mapping"][name]
|
| 133 |
+
)
|
| 134 |
+
)
|
| 135 |
+
cls.mapping["processor_name_mapping"][name] = processor_cls
|
| 136 |
+
return processor_cls
|
| 137 |
+
|
| 138 |
+
return wrap
|
| 139 |
+
|
| 140 |
+
@classmethod
|
| 141 |
+
def register_lr_scheduler(cls, name):
|
| 142 |
+
r"""Register a model to registry with key 'name'
|
| 143 |
+
|
| 144 |
+
Args:
|
| 145 |
+
name: Key with which the task will be registered.
|
| 146 |
+
|
| 147 |
+
Usage:
|
| 148 |
+
|
| 149 |
+
from video_llama.common.registry import registry
|
| 150 |
+
"""
|
| 151 |
+
|
| 152 |
+
def wrap(lr_sched_cls):
|
| 153 |
+
if name in cls.mapping["lr_scheduler_name_mapping"]:
|
| 154 |
+
raise KeyError(
|
| 155 |
+
"Name '{}' already registered for {}.".format(
|
| 156 |
+
name, cls.mapping["lr_scheduler_name_mapping"][name]
|
| 157 |
+
)
|
| 158 |
+
)
|
| 159 |
+
cls.mapping["lr_scheduler_name_mapping"][name] = lr_sched_cls
|
| 160 |
+
return lr_sched_cls
|
| 161 |
+
|
| 162 |
+
return wrap
|
| 163 |
+
|
| 164 |
+
@classmethod
|
| 165 |
+
def register_runner(cls, name):
|
| 166 |
+
r"""Register a model to registry with key 'name'
|
| 167 |
+
|
| 168 |
+
Args:
|
| 169 |
+
name: Key with which the task will be registered.
|
| 170 |
+
|
| 171 |
+
Usage:
|
| 172 |
+
|
| 173 |
+
from video_llama.common.registry import registry
|
| 174 |
+
"""
|
| 175 |
+
|
| 176 |
+
def wrap(runner_cls):
|
| 177 |
+
if name in cls.mapping["runner_name_mapping"]:
|
| 178 |
+
raise KeyError(
|
| 179 |
+
"Name '{}' already registered for {}.".format(
|
| 180 |
+
name, cls.mapping["runner_name_mapping"][name]
|
| 181 |
+
)
|
| 182 |
+
)
|
| 183 |
+
cls.mapping["runner_name_mapping"][name] = runner_cls
|
| 184 |
+
return runner_cls
|
| 185 |
+
|
| 186 |
+
return wrap
|
| 187 |
+
|
| 188 |
+
@classmethod
|
| 189 |
+
def register_path(cls, name, path):
|
| 190 |
+
r"""Register a path to registry with key 'name'
|
| 191 |
+
|
| 192 |
+
Args:
|
| 193 |
+
name: Key with which the path will be registered.
|
| 194 |
+
|
| 195 |
+
Usage:
|
| 196 |
+
|
| 197 |
+
from video_llama.common.registry import registry
|
| 198 |
+
"""
|
| 199 |
+
assert isinstance(path, str), "All path must be str."
|
| 200 |
+
if name in cls.mapping["paths"]:
|
| 201 |
+
raise KeyError("Name '{}' already registered.".format(name))
|
| 202 |
+
cls.mapping["paths"][name] = path
|
| 203 |
+
|
| 204 |
+
@classmethod
|
| 205 |
+
def register(cls, name, obj):
|
| 206 |
+
r"""Register an item to registry with key 'name'
|
| 207 |
+
|
| 208 |
+
Args:
|
| 209 |
+
name: Key with which the item will be registered.
|
| 210 |
+
|
| 211 |
+
Usage::
|
| 212 |
+
|
| 213 |
+
from video_llama.common.registry import registry
|
| 214 |
+
|
| 215 |
+
registry.register("config", {})
|
| 216 |
+
"""
|
| 217 |
+
path = name.split(".")
|
| 218 |
+
current = cls.mapping["state"]
|
| 219 |
+
|
| 220 |
+
for part in path[:-1]:
|
| 221 |
+
if part not in current:
|
| 222 |
+
current[part] = {}
|
| 223 |
+
current = current[part]
|
| 224 |
+
|
| 225 |
+
current[path[-1]] = obj
|
| 226 |
+
|
| 227 |
+
# @classmethod
|
| 228 |
+
# def get_trainer_class(cls, name):
|
| 229 |
+
# return cls.mapping["trainer_name_mapping"].get(name, None)
|
| 230 |
+
|
| 231 |
+
@classmethod
|
| 232 |
+
def get_builder_class(cls, name):
|
| 233 |
+
return cls.mapping["builder_name_mapping"].get(name, None)
|
| 234 |
+
|
| 235 |
+
@classmethod
|
| 236 |
+
def get_model_class(cls, name):
|
| 237 |
+
return cls.mapping["model_name_mapping"].get(name, None)
|
| 238 |
+
|
| 239 |
+
@classmethod
|
| 240 |
+
def get_task_class(cls, name):
|
| 241 |
+
return cls.mapping["task_name_mapping"].get(name, None)
|
| 242 |
+
|
| 243 |
+
@classmethod
|
| 244 |
+
def get_processor_class(cls, name):
|
| 245 |
+
return cls.mapping["processor_name_mapping"].get(name, None)
|
| 246 |
+
|
| 247 |
+
@classmethod
|
| 248 |
+
def get_lr_scheduler_class(cls, name):
|
| 249 |
+
return cls.mapping["lr_scheduler_name_mapping"].get(name, None)
|
| 250 |
+
|
| 251 |
+
@classmethod
|
| 252 |
+
def get_runner_class(cls, name):
|
| 253 |
+
return cls.mapping["runner_name_mapping"].get(name, None)
|
| 254 |
+
|
| 255 |
+
@classmethod
|
| 256 |
+
def list_runners(cls):
|
| 257 |
+
return sorted(cls.mapping["runner_name_mapping"].keys())
|
| 258 |
+
|
| 259 |
+
@classmethod
|
| 260 |
+
def list_models(cls):
|
| 261 |
+
return sorted(cls.mapping["model_name_mapping"].keys())
|
| 262 |
+
|
| 263 |
+
@classmethod
|
| 264 |
+
def list_tasks(cls):
|
| 265 |
+
return sorted(cls.mapping["task_name_mapping"].keys())
|
| 266 |
+
|
| 267 |
+
@classmethod
|
| 268 |
+
def list_processors(cls):
|
| 269 |
+
return sorted(cls.mapping["processor_name_mapping"].keys())
|
| 270 |
+
|
| 271 |
+
@classmethod
|
| 272 |
+
def list_lr_schedulers(cls):
|
| 273 |
+
return sorted(cls.mapping["lr_scheduler_name_mapping"].keys())
|
| 274 |
+
|
| 275 |
+
@classmethod
|
| 276 |
+
def list_datasets(cls):
|
| 277 |
+
return sorted(cls.mapping["builder_name_mapping"].keys())
|
| 278 |
+
|
| 279 |
+
@classmethod
|
| 280 |
+
def get_path(cls, name):
|
| 281 |
+
return cls.mapping["paths"].get(name, None)
|
| 282 |
+
|
| 283 |
+
@classmethod
|
| 284 |
+
def get(cls, name, default=None, no_warning=False):
|
| 285 |
+
r"""Get an item from registry with key 'name'
|
| 286 |
+
|
| 287 |
+
Args:
|
| 288 |
+
name (string): Key whose value needs to be retrieved.
|
| 289 |
+
default: If passed and key is not in registry, default value will
|
| 290 |
+
be returned with a warning. Default: None
|
| 291 |
+
no_warning (bool): If passed as True, warning when key doesn't exist
|
| 292 |
+
will not be generated. Useful for MMF's
|
| 293 |
+
internal operations. Default: False
|
| 294 |
+
"""
|
| 295 |
+
original_name = name
|
| 296 |
+
name = name.split(".")
|
| 297 |
+
value = cls.mapping["state"]
|
| 298 |
+
for subname in name:
|
| 299 |
+
value = value.get(subname, default)
|
| 300 |
+
if value is default:
|
| 301 |
+
break
|
| 302 |
+
|
| 303 |
+
if (
|
| 304 |
+
"writer" in cls.mapping["state"]
|
| 305 |
+
and value == default
|
| 306 |
+
and no_warning is False
|
| 307 |
+
):
|
| 308 |
+
cls.mapping["state"]["writer"].warning(
|
| 309 |
+
"Key {} is not present in registry, returning default value "
|
| 310 |
+
"of {}".format(original_name, default)
|
| 311 |
+
)
|
| 312 |
+
return value
|
| 313 |
+
|
| 314 |
+
@classmethod
|
| 315 |
+
def unregister(cls, name):
|
| 316 |
+
r"""Remove an item from registry with key 'name'
|
| 317 |
+
|
| 318 |
+
Args:
|
| 319 |
+
name: Key which needs to be removed.
|
| 320 |
+
Usage::
|
| 321 |
+
|
| 322 |
+
from mmf.common.registry import registry
|
| 323 |
+
|
| 324 |
+
config = registry.unregister("config")
|
| 325 |
+
"""
|
| 326 |
+
return cls.mapping["state"].pop(name, None)
|
| 327 |
+
|
| 328 |
+
|
| 329 |
+
registry = Registry()
|
hawk/common/utils.py
ADDED
|
@@ -0,0 +1,424 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Copyright (c) 2022, salesforce.com, inc.
|
| 3 |
+
All rights reserved.
|
| 4 |
+
SPDX-License-Identifier: BSD-3-Clause
|
| 5 |
+
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import io
|
| 9 |
+
import json
|
| 10 |
+
import logging
|
| 11 |
+
import os
|
| 12 |
+
import pickle
|
| 13 |
+
import re
|
| 14 |
+
import shutil
|
| 15 |
+
import urllib
|
| 16 |
+
import urllib.error
|
| 17 |
+
import urllib.request
|
| 18 |
+
from typing import Optional
|
| 19 |
+
from urllib.parse import urlparse
|
| 20 |
+
|
| 21 |
+
import numpy as np
|
| 22 |
+
import pandas as pd
|
| 23 |
+
import yaml
|
| 24 |
+
from iopath.common.download import download
|
| 25 |
+
from iopath.common.file_io import file_lock, g_pathmgr
|
| 26 |
+
from hawk.common.registry import registry
|
| 27 |
+
from torch.utils.model_zoo import tqdm
|
| 28 |
+
from torchvision.datasets.utils import (
|
| 29 |
+
check_integrity,
|
| 30 |
+
download_file_from_google_drive,
|
| 31 |
+
extract_archive,
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def now():
|
| 36 |
+
from datetime import datetime
|
| 37 |
+
|
| 38 |
+
return datetime.now().strftime("%Y%m%d%H%M")[:-1]
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def is_url(url_or_filename):
|
| 42 |
+
parsed = urlparse(url_or_filename)
|
| 43 |
+
return parsed.scheme in ("http", "https")
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def get_cache_path(rel_path):
|
| 47 |
+
return os.path.expanduser(os.path.join(registry.get_path("cache_root"), rel_path))
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def get_abs_path(rel_path):
|
| 51 |
+
return os.path.join(registry.get_path("library_root"), rel_path)
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def load_json(filename):
|
| 55 |
+
with open(filename, "r") as f:
|
| 56 |
+
return json.load(f)
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
# The following are adapted from torchvision and vissl
|
| 60 |
+
# torchvision: https://github.com/pytorch/vision
|
| 61 |
+
# vissl: https://github.com/facebookresearch/vissl/blob/main/vissl/utils/download.py
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
def makedir(dir_path):
|
| 65 |
+
"""
|
| 66 |
+
Create the directory if it does not exist.
|
| 67 |
+
"""
|
| 68 |
+
is_success = False
|
| 69 |
+
try:
|
| 70 |
+
if not g_pathmgr.exists(dir_path):
|
| 71 |
+
g_pathmgr.mkdirs(dir_path)
|
| 72 |
+
is_success = True
|
| 73 |
+
except BaseException:
|
| 74 |
+
print(f"Error creating directory: {dir_path}")
|
| 75 |
+
return is_success
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def get_redirected_url(url: str):
|
| 79 |
+
"""
|
| 80 |
+
Given a URL, returns the URL it redirects to or the
|
| 81 |
+
original URL in case of no indirection
|
| 82 |
+
"""
|
| 83 |
+
import requests
|
| 84 |
+
|
| 85 |
+
with requests.Session() as session:
|
| 86 |
+
with session.get(url, stream=True, allow_redirects=True) as response:
|
| 87 |
+
if response.history:
|
| 88 |
+
return response.url
|
| 89 |
+
else:
|
| 90 |
+
return url
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
def to_google_drive_download_url(view_url: str) -> str:
|
| 94 |
+
"""
|
| 95 |
+
Utility function to transform a view URL of google drive
|
| 96 |
+
to a download URL for google drive
|
| 97 |
+
Example input:
|
| 98 |
+
https://drive.google.com/file/d/137RyRjvTBkBiIfeYBNZBtViDHQ6_Ewsp/view
|
| 99 |
+
Example output:
|
| 100 |
+
https://drive.google.com/uc?export=download&id=137RyRjvTBkBiIfeYBNZBtViDHQ6_Ewsp
|
| 101 |
+
"""
|
| 102 |
+
splits = view_url.split("/")
|
| 103 |
+
assert splits[-1] == "view"
|
| 104 |
+
file_id = splits[-2]
|
| 105 |
+
return f"https://drive.google.com/uc?export=download&id={file_id}"
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
def download_google_drive_url(url: str, output_path: str, output_file_name: str):
|
| 109 |
+
"""
|
| 110 |
+
Download a file from google drive
|
| 111 |
+
Downloading an URL from google drive requires confirmation when
|
| 112 |
+
the file of the size is too big (google drive notifies that
|
| 113 |
+
anti-viral checks cannot be performed on such files)
|
| 114 |
+
"""
|
| 115 |
+
import requests
|
| 116 |
+
|
| 117 |
+
with requests.Session() as session:
|
| 118 |
+
|
| 119 |
+
# First get the confirmation token and append it to the URL
|
| 120 |
+
with session.get(url, stream=True, allow_redirects=True) as response:
|
| 121 |
+
for k, v in response.cookies.items():
|
| 122 |
+
if k.startswith("download_warning"):
|
| 123 |
+
url = url + "&confirm=" + v
|
| 124 |
+
|
| 125 |
+
# Then download the content of the file
|
| 126 |
+
with session.get(url, stream=True, verify=True) as response:
|
| 127 |
+
makedir(output_path)
|
| 128 |
+
path = os.path.join(output_path, output_file_name)
|
| 129 |
+
total_size = int(response.headers.get("Content-length", 0))
|
| 130 |
+
with open(path, "wb") as file:
|
| 131 |
+
from tqdm import tqdm
|
| 132 |
+
|
| 133 |
+
with tqdm(total=total_size) as progress_bar:
|
| 134 |
+
for block in response.iter_content(
|
| 135 |
+
chunk_size=io.DEFAULT_BUFFER_SIZE
|
| 136 |
+
):
|
| 137 |
+
file.write(block)
|
| 138 |
+
progress_bar.update(len(block))
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
def _get_google_drive_file_id(url: str) -> Optional[str]:
|
| 142 |
+
parts = urlparse(url)
|
| 143 |
+
|
| 144 |
+
if re.match(r"(drive|docs)[.]google[.]com", parts.netloc) is None:
|
| 145 |
+
return None
|
| 146 |
+
|
| 147 |
+
match = re.match(r"/file/d/(?P<id>[^/]*)", parts.path)
|
| 148 |
+
if match is None:
|
| 149 |
+
return None
|
| 150 |
+
|
| 151 |
+
return match.group("id")
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
def _urlretrieve(url: str, filename: str, chunk_size: int = 1024) -> None:
|
| 155 |
+
with open(filename, "wb") as fh:
|
| 156 |
+
with urllib.request.urlopen(
|
| 157 |
+
urllib.request.Request(url, headers={"User-Agent": "vissl"})
|
| 158 |
+
) as response:
|
| 159 |
+
with tqdm(total=response.length) as pbar:
|
| 160 |
+
for chunk in iter(lambda: response.read(chunk_size), ""):
|
| 161 |
+
if not chunk:
|
| 162 |
+
break
|
| 163 |
+
pbar.update(chunk_size)
|
| 164 |
+
fh.write(chunk)
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
def download_url(
|
| 168 |
+
url: str,
|
| 169 |
+
root: str,
|
| 170 |
+
filename: Optional[str] = None,
|
| 171 |
+
md5: Optional[str] = None,
|
| 172 |
+
) -> None:
|
| 173 |
+
"""Download a file from a url and place it in root.
|
| 174 |
+
Args:
|
| 175 |
+
url (str): URL to download file from
|
| 176 |
+
root (str): Directory to place downloaded file in
|
| 177 |
+
filename (str, optional): Name to save the file under.
|
| 178 |
+
If None, use the basename of the URL.
|
| 179 |
+
md5 (str, optional): MD5 checksum of the download. If None, do not check
|
| 180 |
+
"""
|
| 181 |
+
root = os.path.expanduser(root)
|
| 182 |
+
if not filename:
|
| 183 |
+
filename = os.path.basename(url)
|
| 184 |
+
fpath = os.path.join(root, filename)
|
| 185 |
+
|
| 186 |
+
makedir(root)
|
| 187 |
+
|
| 188 |
+
# check if file is already present locally
|
| 189 |
+
if check_integrity(fpath, md5):
|
| 190 |
+
print("Using downloaded and verified file: " + fpath)
|
| 191 |
+
return
|
| 192 |
+
|
| 193 |
+
# expand redirect chain if needed
|
| 194 |
+
url = get_redirected_url(url)
|
| 195 |
+
|
| 196 |
+
# check if file is located on Google Drive
|
| 197 |
+
file_id = _get_google_drive_file_id(url)
|
| 198 |
+
if file_id is not None:
|
| 199 |
+
return download_file_from_google_drive(file_id, root, filename, md5)
|
| 200 |
+
|
| 201 |
+
# download the file
|
| 202 |
+
try:
|
| 203 |
+
print("Downloading " + url + " to " + fpath)
|
| 204 |
+
_urlretrieve(url, fpath)
|
| 205 |
+
except (urllib.error.URLError, IOError) as e: # type: ignore[attr-defined]
|
| 206 |
+
if url[:5] == "https":
|
| 207 |
+
url = url.replace("https:", "http:")
|
| 208 |
+
print(
|
| 209 |
+
"Failed download. Trying https -> http instead."
|
| 210 |
+
" Downloading " + url + " to " + fpath
|
| 211 |
+
)
|
| 212 |
+
_urlretrieve(url, fpath)
|
| 213 |
+
else:
|
| 214 |
+
raise e
|
| 215 |
+
|
| 216 |
+
# check integrity of downloaded file
|
| 217 |
+
if not check_integrity(fpath, md5):
|
| 218 |
+
raise RuntimeError("File not found or corrupted.")
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
def download_and_extract_archive(
|
| 222 |
+
url: str,
|
| 223 |
+
download_root: str,
|
| 224 |
+
extract_root: Optional[str] = None,
|
| 225 |
+
filename: Optional[str] = None,
|
| 226 |
+
md5: Optional[str] = None,
|
| 227 |
+
remove_finished: bool = False,
|
| 228 |
+
) -> None:
|
| 229 |
+
download_root = os.path.expanduser(download_root)
|
| 230 |
+
if extract_root is None:
|
| 231 |
+
extract_root = download_root
|
| 232 |
+
if not filename:
|
| 233 |
+
filename = os.path.basename(url)
|
| 234 |
+
|
| 235 |
+
download_url(url, download_root, filename, md5)
|
| 236 |
+
|
| 237 |
+
archive = os.path.join(download_root, filename)
|
| 238 |
+
print("Extracting {} to {}".format(archive, extract_root))
|
| 239 |
+
extract_archive(archive, extract_root, remove_finished)
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
def cache_url(url: str, cache_dir: str) -> str:
|
| 243 |
+
"""
|
| 244 |
+
This implementation downloads the remote resource and caches it locally.
|
| 245 |
+
The resource will only be downloaded if not previously requested.
|
| 246 |
+
"""
|
| 247 |
+
parsed_url = urlparse(url)
|
| 248 |
+
dirname = os.path.join(cache_dir, os.path.dirname(parsed_url.path.lstrip("/")))
|
| 249 |
+
makedir(dirname)
|
| 250 |
+
filename = url.split("/")[-1]
|
| 251 |
+
cached = os.path.join(dirname, filename)
|
| 252 |
+
with file_lock(cached):
|
| 253 |
+
if not os.path.isfile(cached):
|
| 254 |
+
logging.info(f"Downloading {url} to {cached} ...")
|
| 255 |
+
cached = download(url, dirname, filename=filename)
|
| 256 |
+
logging.info(f"URL {url} cached in {cached}")
|
| 257 |
+
return cached
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
# TODO (prigoyal): convert this into RAII-style API
|
| 261 |
+
def create_file_symlink(file1, file2):
|
| 262 |
+
"""
|
| 263 |
+
Simply create the symlinks for a given file1 to file2.
|
| 264 |
+
Useful during model checkpointing to symlinks to the
|
| 265 |
+
latest successful checkpoint.
|
| 266 |
+
"""
|
| 267 |
+
try:
|
| 268 |
+
if g_pathmgr.exists(file2):
|
| 269 |
+
g_pathmgr.rm(file2)
|
| 270 |
+
g_pathmgr.symlink(file1, file2)
|
| 271 |
+
except Exception as e:
|
| 272 |
+
logging.info(f"Could NOT create symlink. Error: {e}")
|
| 273 |
+
|
| 274 |
+
|
| 275 |
+
def save_file(data, filename, append_to_json=True, verbose=True):
|
| 276 |
+
"""
|
| 277 |
+
Common i/o utility to handle saving data to various file formats.
|
| 278 |
+
Supported:
|
| 279 |
+
.pkl, .pickle, .npy, .json
|
| 280 |
+
Specifically for .json, users have the option to either append (default)
|
| 281 |
+
or rewrite by passing in Boolean value to append_to_json.
|
| 282 |
+
"""
|
| 283 |
+
if verbose:
|
| 284 |
+
logging.info(f"Saving data to file: {filename}")
|
| 285 |
+
file_ext = os.path.splitext(filename)[1]
|
| 286 |
+
if file_ext in [".pkl", ".pickle"]:
|
| 287 |
+
with g_pathmgr.open(filename, "wb") as fopen:
|
| 288 |
+
pickle.dump(data, fopen, pickle.HIGHEST_PROTOCOL)
|
| 289 |
+
elif file_ext == ".npy":
|
| 290 |
+
with g_pathmgr.open(filename, "wb") as fopen:
|
| 291 |
+
np.save(fopen, data)
|
| 292 |
+
elif file_ext == ".json":
|
| 293 |
+
if append_to_json:
|
| 294 |
+
with g_pathmgr.open(filename, "a") as fopen:
|
| 295 |
+
fopen.write(json.dumps(data, sort_keys=True) + "\n")
|
| 296 |
+
fopen.flush()
|
| 297 |
+
else:
|
| 298 |
+
with g_pathmgr.open(filename, "w") as fopen:
|
| 299 |
+
fopen.write(json.dumps(data, sort_keys=True) + "\n")
|
| 300 |
+
fopen.flush()
|
| 301 |
+
elif file_ext == ".yaml":
|
| 302 |
+
with g_pathmgr.open(filename, "w") as fopen:
|
| 303 |
+
dump = yaml.dump(data)
|
| 304 |
+
fopen.write(dump)
|
| 305 |
+
fopen.flush()
|
| 306 |
+
else:
|
| 307 |
+
raise Exception(f"Saving {file_ext} is not supported yet")
|
| 308 |
+
|
| 309 |
+
if verbose:
|
| 310 |
+
logging.info(f"Saved data to file: {filename}")
|
| 311 |
+
|
| 312 |
+
|
| 313 |
+
def load_file(filename, mmap_mode=None, verbose=True, allow_pickle=False):
|
| 314 |
+
"""
|
| 315 |
+
Common i/o utility to handle loading data from various file formats.
|
| 316 |
+
Supported:
|
| 317 |
+
.pkl, .pickle, .npy, .json
|
| 318 |
+
For the npy files, we support reading the files in mmap_mode.
|
| 319 |
+
If the mmap_mode of reading is not successful, we load data without the
|
| 320 |
+
mmap_mode.
|
| 321 |
+
"""
|
| 322 |
+
if verbose:
|
| 323 |
+
logging.info(f"Loading data from file: {filename}")
|
| 324 |
+
|
| 325 |
+
file_ext = os.path.splitext(filename)[1]
|
| 326 |
+
if file_ext == ".txt":
|
| 327 |
+
with g_pathmgr.open(filename, "r") as fopen:
|
| 328 |
+
data = fopen.readlines()
|
| 329 |
+
elif file_ext in [".pkl", ".pickle"]:
|
| 330 |
+
with g_pathmgr.open(filename, "rb") as fopen:
|
| 331 |
+
data = pickle.load(fopen, encoding="latin1")
|
| 332 |
+
elif file_ext == ".npy":
|
| 333 |
+
if mmap_mode:
|
| 334 |
+
try:
|
| 335 |
+
with g_pathmgr.open(filename, "rb") as fopen:
|
| 336 |
+
data = np.load(
|
| 337 |
+
fopen,
|
| 338 |
+
allow_pickle=allow_pickle,
|
| 339 |
+
encoding="latin1",
|
| 340 |
+
mmap_mode=mmap_mode,
|
| 341 |
+
)
|
| 342 |
+
except ValueError as e:
|
| 343 |
+
logging.info(
|
| 344 |
+
f"Could not mmap {filename}: {e}. Trying without g_pathmgr"
|
| 345 |
+
)
|
| 346 |
+
data = np.load(
|
| 347 |
+
filename,
|
| 348 |
+
allow_pickle=allow_pickle,
|
| 349 |
+
encoding="latin1",
|
| 350 |
+
mmap_mode=mmap_mode,
|
| 351 |
+
)
|
| 352 |
+
logging.info("Successfully loaded without g_pathmgr")
|
| 353 |
+
except Exception:
|
| 354 |
+
logging.info("Could not mmap without g_pathmgr. Trying without mmap")
|
| 355 |
+
with g_pathmgr.open(filename, "rb") as fopen:
|
| 356 |
+
data = np.load(fopen, allow_pickle=allow_pickle, encoding="latin1")
|
| 357 |
+
else:
|
| 358 |
+
with g_pathmgr.open(filename, "rb") as fopen:
|
| 359 |
+
data = np.load(fopen, allow_pickle=allow_pickle, encoding="latin1")
|
| 360 |
+
elif file_ext == ".json":
|
| 361 |
+
with g_pathmgr.open(filename, "r") as fopen:
|
| 362 |
+
data = json.load(fopen)
|
| 363 |
+
elif file_ext == ".yaml":
|
| 364 |
+
with g_pathmgr.open(filename, "r") as fopen:
|
| 365 |
+
data = yaml.load(fopen, Loader=yaml.FullLoader)
|
| 366 |
+
elif file_ext == ".csv":
|
| 367 |
+
with g_pathmgr.open(filename, "r") as fopen:
|
| 368 |
+
data = pd.read_csv(fopen)
|
| 369 |
+
else:
|
| 370 |
+
raise Exception(f"Reading from {file_ext} is not supported yet")
|
| 371 |
+
return data
|
| 372 |
+
|
| 373 |
+
|
| 374 |
+
def abspath(resource_path: str):
|
| 375 |
+
"""
|
| 376 |
+
Make a path absolute, but take into account prefixes like
|
| 377 |
+
"http://" or "manifold://"
|
| 378 |
+
"""
|
| 379 |
+
regex = re.compile(r"^\w+://")
|
| 380 |
+
if regex.match(resource_path) is None:
|
| 381 |
+
return os.path.abspath(resource_path)
|
| 382 |
+
else:
|
| 383 |
+
return resource_path
|
| 384 |
+
|
| 385 |
+
|
| 386 |
+
def makedir(dir_path):
|
| 387 |
+
"""
|
| 388 |
+
Create the directory if it does not exist.
|
| 389 |
+
"""
|
| 390 |
+
is_success = False
|
| 391 |
+
try:
|
| 392 |
+
if not g_pathmgr.exists(dir_path):
|
| 393 |
+
g_pathmgr.mkdirs(dir_path)
|
| 394 |
+
is_success = True
|
| 395 |
+
except BaseException:
|
| 396 |
+
logging.info(f"Error creating directory: {dir_path}")
|
| 397 |
+
return is_success
|
| 398 |
+
|
| 399 |
+
|
| 400 |
+
def is_url(input_url):
|
| 401 |
+
"""
|
| 402 |
+
Check if an input string is a url. look for http(s):// and ignoring the case
|
| 403 |
+
"""
|
| 404 |
+
is_url = re.match(r"^(?:http)s?://", input_url, re.IGNORECASE) is not None
|
| 405 |
+
return is_url
|
| 406 |
+
|
| 407 |
+
|
| 408 |
+
def cleanup_dir(dir):
|
| 409 |
+
"""
|
| 410 |
+
Utility for deleting a directory. Useful for cleaning the storage space
|
| 411 |
+
that contains various training artifacts like checkpoints, data etc.
|
| 412 |
+
"""
|
| 413 |
+
if os.path.exists(dir):
|
| 414 |
+
logging.info(f"Deleting directory: {dir}")
|
| 415 |
+
shutil.rmtree(dir)
|
| 416 |
+
logging.info(f"Deleted contents of directory: {dir}")
|
| 417 |
+
|
| 418 |
+
|
| 419 |
+
def get_file_size(filename):
|
| 420 |
+
"""
|
| 421 |
+
Given a file, get the size of file in MB
|
| 422 |
+
"""
|
| 423 |
+
size_in_mb = os.path.getsize(filename) / float(1024**2)
|
| 424 |
+
return size_in_mb
|
hawk/configs/datasets/instruct/llava_instruct.yaml
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
datasets:
|
| 2 |
+
llava_instruct:
|
| 3 |
+
data_type: image
|
| 4 |
+
build_info:
|
| 5 |
+
anno_dir: /path/llava_instruct_150k.json
|
| 6 |
+
videos_dir: /path/train2014/train2014/
|
hawk/configs/datasets/instruct/webvid_instruct.yaml
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
datasets:
|
| 2 |
+
webvid_instruct:
|
| 3 |
+
data_type: image
|
| 4 |
+
build_info:
|
| 5 |
+
anno_dir: /path/webvid_align/videochat_instruct_11k.json
|
| 6 |
+
videos_dir: /path/webvid_align/videos/
|
hawk/configs/datasets/webvid/defaults.yaml
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
datasets:
|
| 2 |
+
webvid:
|
| 3 |
+
data_type: video
|
| 4 |
+
build_info:
|
| 5 |
+
anno_dir: path/webvid/webvid_tain_data/annotations/
|
| 6 |
+
videos_dir: path//webvid/webvid_tain_data/videos/
|
hawk/configs/default.yaml
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
env:
|
| 2 |
+
# For default users
|
| 3 |
+
# cache_root: "cache"
|
| 4 |
+
# For internal use with persistent storage
|
| 5 |
+
cache_root: "/export/home/.cache/minigpt4"
|
hawk/configs/models/minigpt4.yaml
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model:
|
| 2 |
+
arch: mini_gpt4
|
| 3 |
+
|
| 4 |
+
# vit encoder
|
| 5 |
+
image_size: 224
|
| 6 |
+
drop_path_rate: 0
|
| 7 |
+
use_grad_checkpoint: False
|
| 8 |
+
vit_precision: "fp16"
|
| 9 |
+
freeze_vit: True
|
| 10 |
+
freeze_qformer: True
|
| 11 |
+
|
| 12 |
+
# Q-Former
|
| 13 |
+
num_query_token: 32
|
| 14 |
+
|
| 15 |
+
# Vicuna
|
| 16 |
+
llama_model: "ckpt/vicuna-13b/"
|
| 17 |
+
|
| 18 |
+
# generation configs
|
| 19 |
+
prompt: ""
|
| 20 |
+
|
| 21 |
+
preprocess:
|
| 22 |
+
vis_processor:
|
| 23 |
+
train:
|
| 24 |
+
name: "blip2_image_train"
|
| 25 |
+
image_size: 224
|
| 26 |
+
eval:
|
| 27 |
+
name: "blip2_image_eval"
|
| 28 |
+
image_size: 224
|
| 29 |
+
text_processor:
|
| 30 |
+
train:
|
| 31 |
+
name: "blip_caption"
|
| 32 |
+
eval:
|
| 33 |
+
name: "blip_caption"
|
hawk/configs/models/video_llama.yaml
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model:
|
| 2 |
+
arch: video_llama
|
| 3 |
+
|
| 4 |
+
# vit encoder
|
| 5 |
+
image_size: 224
|
| 6 |
+
drop_path_rate: 0
|
| 7 |
+
use_grad_checkpoint: False
|
| 8 |
+
vit_precision: "fp16"
|
| 9 |
+
freeze_vit: True
|
| 10 |
+
freeze_qformer: True
|
| 11 |
+
|
| 12 |
+
# Q-Former
|
| 13 |
+
num_query_token: 32
|
| 14 |
+
|
| 15 |
+
# Vicuna
|
| 16 |
+
llama_model: "ckpt/vicuna-7b/"
|
| 17 |
+
|
| 18 |
+
# generation configs
|
| 19 |
+
prompt: ""
|
| 20 |
+
|
| 21 |
+
preprocess:
|
| 22 |
+
vis_processor:
|
| 23 |
+
train:
|
| 24 |
+
name: "alpro_video_train"
|
| 25 |
+
image_size: 224
|
| 26 |
+
n_frms: 8
|
| 27 |
+
eval:
|
| 28 |
+
name: "alpro_video_eval"
|
| 29 |
+
image_size: 224
|
| 30 |
+
n_frms: 8
|
| 31 |
+
text_processor:
|
| 32 |
+
train:
|
| 33 |
+
name: "blip_caption"
|
| 34 |
+
eval:
|
| 35 |
+
name: "blip_caption"
|
| 36 |
+
|
hawk/conversation/__init__.py
ADDED
|
File without changes
|
hawk/conversation/conversation_video.py
ADDED
|
@@ -0,0 +1,362 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Conversation prompt template of Video-LLaMA.
|
| 3 |
+
Adapted from: https://github.com/Vision-CAIR/MiniGPT-4/blob/main/minigpt4/conversation/conversation.py
|
| 4 |
+
"""
|
| 5 |
+
import argparse
|
| 6 |
+
import time
|
| 7 |
+
from PIL import Image
|
| 8 |
+
import sys
|
| 9 |
+
import os
|
| 10 |
+
import torch
|
| 11 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaTokenizer
|
| 12 |
+
from transformers import StoppingCriteria, StoppingCriteriaList
|
| 13 |
+
|
| 14 |
+
import dataclasses
|
| 15 |
+
from enum import auto, Enum
|
| 16 |
+
from typing import List, Tuple, Any
|
| 17 |
+
import os
|
| 18 |
+
from hawk.common.registry import registry
|
| 19 |
+
from hawk.processors.video_processor import ToTHWC,ToUint8,load_video,load_video_motion
|
| 20 |
+
from hawk.processors import Blip2ImageEvalProcessor
|
| 21 |
+
|
| 22 |
+
from hawk.models.ImageBind.data import load_and_transform_audio_data
|
| 23 |
+
class SeparatorStyle(Enum):
|
| 24 |
+
"""Different separator style."""
|
| 25 |
+
SINGLE = auto()
|
| 26 |
+
TWO = auto()
|
| 27 |
+
LLAMA_2 = auto()
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
@dataclasses.dataclass
|
| 31 |
+
class Conversation:
|
| 32 |
+
"""A class that keeps all conversation history."""
|
| 33 |
+
system: str
|
| 34 |
+
roles: List[str]
|
| 35 |
+
messages: List[List[str]]
|
| 36 |
+
offset: int
|
| 37 |
+
# system_img: List[Image.Image] = []
|
| 38 |
+
sep_style: SeparatorStyle = SeparatorStyle.SINGLE
|
| 39 |
+
sep: str = "###"
|
| 40 |
+
sep2: str = None
|
| 41 |
+
|
| 42 |
+
skip_next: bool = False
|
| 43 |
+
conv_id: Any = None
|
| 44 |
+
|
| 45 |
+
def get_prompt(self):
|
| 46 |
+
if self.sep_style == SeparatorStyle.SINGLE:
|
| 47 |
+
ret = self.system + self.sep
|
| 48 |
+
for role, message in self.messages:
|
| 49 |
+
if message:
|
| 50 |
+
ret += role + ": " + message + self.sep
|
| 51 |
+
else:
|
| 52 |
+
ret += role + ":"
|
| 53 |
+
return ret
|
| 54 |
+
elif self.sep_style == SeparatorStyle.TWO:
|
| 55 |
+
seps = [self.sep, self.sep2]
|
| 56 |
+
ret = self.system + seps[0]
|
| 57 |
+
for i, (role, message) in enumerate(self.messages):
|
| 58 |
+
if message:
|
| 59 |
+
ret += role + ": " + message + seps[i % 2]
|
| 60 |
+
else:
|
| 61 |
+
ret += role + ":"
|
| 62 |
+
return ret
|
| 63 |
+
elif self.sep_style == SeparatorStyle.LLAMA_2:
|
| 64 |
+
wrap_sys = lambda msg: f"<<SYS>>\n{msg}\n<</SYS>>\n\n"
|
| 65 |
+
wrap_inst = lambda msg: f"[INST] {msg} [/INST]"
|
| 66 |
+
ret = ""
|
| 67 |
+
|
| 68 |
+
for i, (role, message) in enumerate(self.messages):
|
| 69 |
+
if i == 0:
|
| 70 |
+
assert message, "first message should not be none"
|
| 71 |
+
assert role == self.roles[0], "first message should come from user"
|
| 72 |
+
if message:
|
| 73 |
+
if type(message) is tuple:
|
| 74 |
+
message, _, _ = message
|
| 75 |
+
if i == 0: message = wrap_sys(self.system) + message
|
| 76 |
+
if i % 2 == 0:
|
| 77 |
+
message = wrap_inst(message)
|
| 78 |
+
ret += self.sep + message
|
| 79 |
+
else:
|
| 80 |
+
ret += " " + message + " " + self.sep2
|
| 81 |
+
else:
|
| 82 |
+
ret += ""
|
| 83 |
+
ret = ret.lstrip(self.sep)
|
| 84 |
+
return ret
|
| 85 |
+
else:
|
| 86 |
+
raise ValueError(f"Invalid style: {self.sep_style}")
|
| 87 |
+
|
| 88 |
+
def append_message(self, role, message):
|
| 89 |
+
self.messages.append([role, message])
|
| 90 |
+
|
| 91 |
+
def to_gradio_chatbot(self):
|
| 92 |
+
ret = []
|
| 93 |
+
for i, (role, msg) in enumerate(self.messages[self.offset:]):
|
| 94 |
+
if i % 2 == 0:
|
| 95 |
+
ret.append([msg, None])
|
| 96 |
+
else:
|
| 97 |
+
ret[-1][-1] = msg
|
| 98 |
+
return ret
|
| 99 |
+
|
| 100 |
+
def copy(self):
|
| 101 |
+
return Conversation(
|
| 102 |
+
system=self.system,
|
| 103 |
+
# system_img=self.system_img,
|
| 104 |
+
roles=self.roles,
|
| 105 |
+
messages=[[x, y] for x, y in self.messages],
|
| 106 |
+
offset=self.offset,
|
| 107 |
+
sep_style=self.sep_style,
|
| 108 |
+
sep=self.sep,
|
| 109 |
+
sep2=self.sep2,
|
| 110 |
+
conv_id=self.conv_id)
|
| 111 |
+
|
| 112 |
+
def dict(self):
|
| 113 |
+
return {
|
| 114 |
+
"system": self.system,
|
| 115 |
+
# "system_img": self.system_img,
|
| 116 |
+
"roles": self.roles,
|
| 117 |
+
"messages": self.messages,
|
| 118 |
+
"offset": self.offset,
|
| 119 |
+
"sep": self.sep,
|
| 120 |
+
"sep2": self.sep2,
|
| 121 |
+
"conv_id": self.conv_id,
|
| 122 |
+
}
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
class StoppingCriteriaSub(StoppingCriteria):
|
| 126 |
+
|
| 127 |
+
def __init__(self, stops=[], encounters=1):
|
| 128 |
+
super().__init__()
|
| 129 |
+
self.stops = stops
|
| 130 |
+
|
| 131 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
|
| 132 |
+
for stop in self.stops:
|
| 133 |
+
if torch.all((stop == input_ids[0][-len(stop):])).item():
|
| 134 |
+
return True
|
| 135 |
+
|
| 136 |
+
return False
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
CONV_VISION = Conversation(
|
| 140 |
+
system="Give the following image: <Img>ImageContent</Img>. "
|
| 141 |
+
"You will be able to see the image once I provide it to you. Please answer my questions.",
|
| 142 |
+
roles=("Human", "Assistant"),
|
| 143 |
+
messages=[],
|
| 144 |
+
offset=0,
|
| 145 |
+
sep_style=SeparatorStyle.SINGLE,
|
| 146 |
+
sep="###",
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
default_conversation = Conversation(
|
| 150 |
+
system="",
|
| 151 |
+
roles=("Human", "Assistant"),
|
| 152 |
+
messages=[],
|
| 153 |
+
offset=0,
|
| 154 |
+
sep_style=SeparatorStyle.SINGLE,
|
| 155 |
+
sep="###",
|
| 156 |
+
)
|
| 157 |
+
conv_llava_llama_2 = Conversation(
|
| 158 |
+
system="You are a helpful language and vision assistant. "
|
| 159 |
+
"You are able to understand the visual content that the user provides, "
|
| 160 |
+
"and assist the user with a variety of tasks using natural language.",
|
| 161 |
+
roles=("USER", "ASSISTANT"),
|
| 162 |
+
messages=(),
|
| 163 |
+
offset=0,
|
| 164 |
+
sep_style=SeparatorStyle.LLAMA_2,
|
| 165 |
+
sep="<s>",
|
| 166 |
+
sep2="</s>",
|
| 167 |
+
)
|
| 168 |
+
class Chat:
|
| 169 |
+
def __init__(self, model, vis_processor, device='cuda:0'):
|
| 170 |
+
self.device = device
|
| 171 |
+
self.model = model
|
| 172 |
+
self.vis_processor = vis_processor
|
| 173 |
+
self.image_vis_processor = Blip2ImageEvalProcessor()
|
| 174 |
+
# stop_words_ids = [torch.tensor([835]).to(self.device),
|
| 175 |
+
# torch.tensor([2277, 29937]).to(self.device)] # '###' can be encoded in two different ways.
|
| 176 |
+
# self.stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])
|
| 177 |
+
|
| 178 |
+
def ask(self, text, conv):
|
| 179 |
+
if len(conv.messages) > 0 and conv.messages[-1][0] == conv.roles[0] \
|
| 180 |
+
and ('</Video>' in conv.messages[-1][1] or '</Image>' in conv.messages[-1][1]): # last message is image.
|
| 181 |
+
conv.messages[-1][1] = ' '.join([conv.messages[-1][1], text])
|
| 182 |
+
else:
|
| 183 |
+
conv.append_message(conv.roles[0], text)
|
| 184 |
+
|
| 185 |
+
def answer(self, conv, img_list, max_new_tokens=300, num_beams=1, min_length=1, top_p=0.9,
|
| 186 |
+
repetition_penalty=1.0, length_penalty=1, temperature=1.0, max_length=2000):
|
| 187 |
+
conv.append_message(conv.roles[1], None)
|
| 188 |
+
embs = self.get_context_emb(conv, img_list) #torch.Size([1, 312, 4096])
|
| 189 |
+
|
| 190 |
+
current_max_len = embs.shape[1] + max_new_tokens
|
| 191 |
+
if current_max_len - max_length > 0:
|
| 192 |
+
print('Warning: The number of tokens in current conversation exceeds the max length. '
|
| 193 |
+
'The model will not see the contexts outside the range.')
|
| 194 |
+
begin_idx = max(0, current_max_len - max_length)
|
| 195 |
+
|
| 196 |
+
embs = embs[:, begin_idx:]
|
| 197 |
+
if conv.sep =="###":
|
| 198 |
+
stop_words_ids = [torch.tensor([835]).to(self.device),
|
| 199 |
+
torch.tensor([2277, 29937]).to(self.device)] # '###' can be encoded in two different ways.
|
| 200 |
+
stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])
|
| 201 |
+
else:
|
| 202 |
+
stop_words_ids = [torch.tensor([2]).to(self.device)]
|
| 203 |
+
stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])
|
| 204 |
+
|
| 205 |
+
# stopping_criteria
|
| 206 |
+
outputs = self.model.llama_model.generate(
|
| 207 |
+
inputs_embeds=embs, #torch.Size([1, 312, 4096])
|
| 208 |
+
max_new_tokens=max_new_tokens,
|
| 209 |
+
stopping_criteria=stopping_criteria,
|
| 210 |
+
num_beams=num_beams,
|
| 211 |
+
do_sample=True,
|
| 212 |
+
min_length=min_length,
|
| 213 |
+
top_p=top_p,
|
| 214 |
+
repetition_penalty=repetition_penalty,
|
| 215 |
+
length_penalty=length_penalty,
|
| 216 |
+
temperature=temperature,
|
| 217 |
+
)
|
| 218 |
+
output_token = outputs[0]
|
| 219 |
+
if output_token[0] == 0: # the model might output a unknow token <unk> at the beginning. remove it
|
| 220 |
+
output_token = output_token[1:]
|
| 221 |
+
if output_token[0] == 1: # some users find that there is a start token <s> at the beginning. remove it
|
| 222 |
+
output_token = output_token[1:]
|
| 223 |
+
output_text = self.model.llama_tokenizer.decode(output_token, add_special_tokens=False)
|
| 224 |
+
# TODO: add saving file
|
| 225 |
+
|
| 226 |
+
if conv.sep =="###":
|
| 227 |
+
output_text = output_text.split('###')[0] # remove the stop sign '###'
|
| 228 |
+
output_text = output_text.split('Assistant:')[-1].strip()
|
| 229 |
+
else:
|
| 230 |
+
output_text = output_text.split(conv.sep2)[0] # remove the stop sign '###'
|
| 231 |
+
output_text = output_text.split(conv.roles[1]+':')[-1].strip()
|
| 232 |
+
conv.messages[-1][1] = output_text
|
| 233 |
+
return output_text, output_token.cpu().numpy()
|
| 234 |
+
|
| 235 |
+
def upload_video(self, video_path, conv, img_list):
|
| 236 |
+
|
| 237 |
+
msg = ""
|
| 238 |
+
if isinstance(video_path, str): # is a video path
|
| 239 |
+
ext = os.path.splitext(video_path)[-1].lower()
|
| 240 |
+
print(video_path)
|
| 241 |
+
# image = self.vis_processor(image).unsqueeze(0).to(self.device)
|
| 242 |
+
video, msg = load_video(
|
| 243 |
+
video_path=video_path,
|
| 244 |
+
n_frms=32,
|
| 245 |
+
height=224,
|
| 246 |
+
width=224,
|
| 247 |
+
sampling ="uniform", return_msg = True
|
| 248 |
+
)
|
| 249 |
+
video = self.vis_processor.transform(video)
|
| 250 |
+
video = video.unsqueeze(0).to(self.device)
|
| 251 |
+
# print(image)
|
| 252 |
+
else:
|
| 253 |
+
raise NotImplementedError
|
| 254 |
+
|
| 255 |
+
try:
|
| 256 |
+
audio_flag = 1
|
| 257 |
+
audio = load_and_transform_audio_data([video_path],"cpu", clips_per_video=8)
|
| 258 |
+
audio = audio.to(self.device)
|
| 259 |
+
except :
|
| 260 |
+
print('no audio is found')
|
| 261 |
+
audio_flag = 0
|
| 262 |
+
finally:
|
| 263 |
+
if audio_flag == 1:
|
| 264 |
+
# image_emb, _ = self.model.encode_videoQformer_audiovideo(video,audio)
|
| 265 |
+
image_emb, _ = self.model.encode_videoQformer_visual(video)
|
| 266 |
+
audio_emb,_ = self.model.encode_audioQformer(audio)
|
| 267 |
+
img_list.append(audio_emb)
|
| 268 |
+
img_list.append(image_emb)
|
| 269 |
+
conv.system = ""
|
| 270 |
+
# conv.append_message(conv.roles[0], "The audio of this video is <Video><ImageHere></Video> ")
|
| 271 |
+
conv.append_message(conv.roles[0], "Close your eyes, open your ears and you imagine only based on the sound that: <ImageHere>. \
|
| 272 |
+
Close your ears, open your eyes and you see that <Video><ImageHere></Video>. \
|
| 273 |
+
Now answer my question based on what you have just seen and heard.")
|
| 274 |
+
|
| 275 |
+
else: # only vison no audio
|
| 276 |
+
# conv.system = "You can understand the video that the user provides. Follow the instructions carefully and explain your answers in detail."
|
| 277 |
+
image_emb, _ = self.model.encode_videoQformer_visual(video)
|
| 278 |
+
img_list.append(image_emb)
|
| 279 |
+
conv.append_message(conv.roles[0], "<Video><ImageHere></Video> "+ msg)
|
| 280 |
+
return "Received."
|
| 281 |
+
|
| 282 |
+
def upload_video_without_audio(self, video_path, conv, img_list):
|
| 283 |
+
msg = ""
|
| 284 |
+
if isinstance(video_path, str): # is a video path
|
| 285 |
+
ext = os.path.splitext(video_path)[-1].lower()
|
| 286 |
+
print(video_path)
|
| 287 |
+
# image = self.vis_processor(image).unsqueeze(0).to(self.device)
|
| 288 |
+
video, msg = load_video(
|
| 289 |
+
video_path=video_path,
|
| 290 |
+
n_frms=32,
|
| 291 |
+
height=224,
|
| 292 |
+
width=224,
|
| 293 |
+
sampling ="uniform", return_msg = True
|
| 294 |
+
)
|
| 295 |
+
video_motion, msg_motion = load_video_motion(
|
| 296 |
+
video_path=video_path,
|
| 297 |
+
n_frms=32,
|
| 298 |
+
height=224,
|
| 299 |
+
width=224,
|
| 300 |
+
sampling ="uniform", return_msg = True
|
| 301 |
+
)
|
| 302 |
+
video = self.vis_processor.transform(video)
|
| 303 |
+
video_motion = self.vis_processor.transform(video_motion)
|
| 304 |
+
|
| 305 |
+
video = video.unsqueeze(0).to(self.device)
|
| 306 |
+
video_motion = video_motion.unsqueeze(0).to(self.device)
|
| 307 |
+
# print(image)
|
| 308 |
+
else:
|
| 309 |
+
raise NotImplementedError
|
| 310 |
+
|
| 311 |
+
|
| 312 |
+
# conv.system = "You can understand the video that the user provides. Follow the instructions carefully and explain your answers in detail."
|
| 313 |
+
image_emb, _, _ = self.model.encode_videoQformer_visual(video) # 1,32,4096
|
| 314 |
+
image_motion_emb, _, _ = self.model.encode_videoQformer_visual(video_motion, motion=True) # 1,32,4096
|
| 315 |
+
img_list.append(torch.cat((image_emb, image_motion_emb), dim=1))
|
| 316 |
+
# img_list.append(image_motion_emb)
|
| 317 |
+
conv.append_message(conv.roles[0], "<Video><ImageHere></Video> ")
|
| 318 |
+
return "Received."
|
| 319 |
+
|
| 320 |
+
def upload_img(self, image, conv, img_list):
|
| 321 |
+
|
| 322 |
+
msg = ""
|
| 323 |
+
if isinstance(image, str): # is a image path
|
| 324 |
+
raw_image = Image.open(image).convert('RGB') # 增加一个时间维度
|
| 325 |
+
image = self.image_vis_processor(raw_image).unsqueeze(0).unsqueeze(2).to(self.device)
|
| 326 |
+
elif isinstance(image, Image.Image):
|
| 327 |
+
raw_image = image
|
| 328 |
+
image = self.image_vis_processor(raw_image).unsqueeze(0).unsqueeze(2).to(self.device)
|
| 329 |
+
elif isinstance(image, torch.Tensor):
|
| 330 |
+
if len(image.shape) == 3:
|
| 331 |
+
image = image.unsqueeze(0)
|
| 332 |
+
image = image.to(self.device)
|
| 333 |
+
else:
|
| 334 |
+
raise NotImplementedError
|
| 335 |
+
|
| 336 |
+
image_emb, _ = self.model.encode_videoQformer_visual(image)
|
| 337 |
+
img_list.append(image_emb)
|
| 338 |
+
# Todo msg=""
|
| 339 |
+
conv.append_message(conv.roles[0], "<Image><ImageHere></Image> "+ msg)
|
| 340 |
+
|
| 341 |
+
return "Received."
|
| 342 |
+
|
| 343 |
+
def get_context_emb(self, conv, img_list):
|
| 344 |
+
prompt = conv.get_prompt()
|
| 345 |
+
prompt_segs = prompt.split('<ImageHere>')
|
| 346 |
+
assert len(prompt_segs) == len(img_list) + 1, "Unmatched numbers of image placeholders and images."
|
| 347 |
+
seg_tokens = [
|
| 348 |
+
self.model.llama_tokenizer(
|
| 349 |
+
seg, return_tensors="pt", add_special_tokens=i == 0).to(self.device).input_ids
|
| 350 |
+
# only add bos to the first seg
|
| 351 |
+
for i, seg in enumerate(prompt_segs)
|
| 352 |
+
]
|
| 353 |
+
seg_embs = [self.model.llama_model.model.embed_tokens(seg_t) for seg_t in seg_tokens] #torch.Size([1, 44, 4096]), torch.Size([1, 204, 4096])
|
| 354 |
+
mixed_embs = [emb for pair in zip(seg_embs[:-1], img_list) for emb in pair] + [seg_embs[-1]] #torch.Size([1, 64, 4096])
|
| 355 |
+
mixed_embs = torch.cat(mixed_embs, dim=1)
|
| 356 |
+
return mixed_embs
|
| 357 |
+
|
| 358 |
+
if __name__ =='__main__':
|
| 359 |
+
video_path = '/mnt/workspace/videoGPT/Video-LLaMA/examples/applausing.mp4'
|
| 360 |
+
# import torch.classes.torchaudio.ffmpeg_StreamReader
|
| 361 |
+
# ffmpeg_StreamReader(video_path)
|
| 362 |
+
load_and_transform_audio_data([video_path],"cpu", clips_per_video=8)
|
hawk/datasets/__init__.py
ADDED
|
File without changes
|
hawk/datasets/builders/__init__.py
ADDED
|
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Copyright (c) 2022, salesforce.com, inc.
|
| 3 |
+
All rights reserved.
|
| 4 |
+
SPDX-License-Identifier: BSD-3-Clause
|
| 5 |
+
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
from hawk.datasets.builders.base_dataset_builder import load_dataset_config
|
| 9 |
+
# from hawk.datasets.builders.image_text_pair_builder import (
|
| 10 |
+
# CCSBUBuilder,
|
| 11 |
+
# LaionBuilder,
|
| 12 |
+
# CCSBUAlignBuilder
|
| 13 |
+
# )
|
| 14 |
+
from hawk.datasets.builders.video_caption_builder import WebvidBuilder
|
| 15 |
+
from hawk.common.registry import registry
|
| 16 |
+
from hawk.datasets.builders.instruct_builder import WebvidInstruct_Builder
|
| 17 |
+
__all__ = [
|
| 18 |
+
# "CCSBUBuilder",
|
| 19 |
+
# "LaionBuilder",
|
| 20 |
+
# "CCSBUAlignBuilder",
|
| 21 |
+
"WebvidBuilder",
|
| 22 |
+
# "LlavaInstruct_Builder",
|
| 23 |
+
"WebvidInstruct_Builder"
|
| 24 |
+
|
| 25 |
+
]
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def load_dataset(name, cfg_path=None, vis_path=None, data_type=None):
|
| 29 |
+
"""
|
| 30 |
+
Example
|
| 31 |
+
|
| 32 |
+
>>> dataset = load_dataset("coco_caption", cfg=None)
|
| 33 |
+
>>> splits = dataset.keys()
|
| 34 |
+
>>> print([len(dataset[split]) for split in splits])
|
| 35 |
+
|
| 36 |
+
"""
|
| 37 |
+
if cfg_path is None:
|
| 38 |
+
cfg = None
|
| 39 |
+
else:
|
| 40 |
+
cfg = load_dataset_config(cfg_path)
|
| 41 |
+
|
| 42 |
+
try:
|
| 43 |
+
builder = registry.get_builder_class(name)(cfg)
|
| 44 |
+
except TypeError:
|
| 45 |
+
print(
|
| 46 |
+
f"Dataset {name} not found. Available datasets:\n"
|
| 47 |
+
+ ", ".join([str(k) for k in dataset_zoo.get_names()])
|
| 48 |
+
)
|
| 49 |
+
exit(1)
|
| 50 |
+
|
| 51 |
+
if vis_path is not None:
|
| 52 |
+
if data_type is None:
|
| 53 |
+
# use default data type in the config
|
| 54 |
+
data_type = builder.config.data_type
|
| 55 |
+
|
| 56 |
+
assert (
|
| 57 |
+
data_type in builder.config.build_info
|
| 58 |
+
), f"Invalid data_type {data_type} for {name}."
|
| 59 |
+
|
| 60 |
+
builder.config.build_info.get(data_type).storage = vis_path
|
| 61 |
+
|
| 62 |
+
dataset = builder.build_datasets()
|
| 63 |
+
return dataset
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
class DatasetZoo:
|
| 67 |
+
def __init__(self) -> None:
|
| 68 |
+
self.dataset_zoo = {
|
| 69 |
+
k: list(v.DATASET_CONFIG_DICT.keys())
|
| 70 |
+
for k, v in sorted(registry.mapping["builder_name_mapping"].items())
|
| 71 |
+
}
|
| 72 |
+
|
| 73 |
+
def get_names(self):
|
| 74 |
+
return list(self.dataset_zoo.keys())
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
dataset_zoo = DatasetZoo()
|
hawk/datasets/builders/base_dataset_builder.py
ADDED
|
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
This file is from
|
| 3 |
+
Copyright (c) 2022, salesforce.com, inc.
|
| 4 |
+
All rights reserved.
|
| 5 |
+
SPDX-License-Identifier: BSD-3-Clause
|
| 6 |
+
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
import logging
|
| 10 |
+
import os
|
| 11 |
+
import shutil
|
| 12 |
+
import warnings
|
| 13 |
+
|
| 14 |
+
from omegaconf import OmegaConf
|
| 15 |
+
import torch.distributed as dist
|
| 16 |
+
from torchvision.datasets.utils import download_url
|
| 17 |
+
|
| 18 |
+
import hawk.common.utils as utils
|
| 19 |
+
from hawk.common.dist_utils import is_dist_avail_and_initialized, is_main_process
|
| 20 |
+
from hawk.common.registry import registry
|
| 21 |
+
from hawk.processors.base_processor import BaseProcessor
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class BaseDatasetBuilder:
|
| 26 |
+
train_dataset_cls, eval_dataset_cls = None, None
|
| 27 |
+
|
| 28 |
+
def __init__(self, cfg=None):
|
| 29 |
+
super().__init__()
|
| 30 |
+
|
| 31 |
+
if cfg is None:
|
| 32 |
+
# help to create datasets from default config.
|
| 33 |
+
self.config = load_dataset_config(self.default_config_path())
|
| 34 |
+
elif isinstance(cfg, str):
|
| 35 |
+
self.config = load_dataset_config(cfg)
|
| 36 |
+
else:
|
| 37 |
+
# when called from task.build_dataset()
|
| 38 |
+
self.config = cfg
|
| 39 |
+
|
| 40 |
+
self.data_type = self.config.data_type
|
| 41 |
+
|
| 42 |
+
self.vis_processors = {"train": BaseProcessor(), "eval": BaseProcessor()}
|
| 43 |
+
self.text_processors = {"train": BaseProcessor(), "eval": BaseProcessor()}
|
| 44 |
+
|
| 45 |
+
def build_datasets(self):
|
| 46 |
+
# download, split, etc...
|
| 47 |
+
# only called on 1 GPU/TPU in distributed
|
| 48 |
+
|
| 49 |
+
if is_main_process():
|
| 50 |
+
self._download_data()
|
| 51 |
+
|
| 52 |
+
if is_dist_avail_and_initialized():
|
| 53 |
+
dist.barrier()
|
| 54 |
+
|
| 55 |
+
# at this point, all the annotations and image/videos should be all downloaded to the specified locations.
|
| 56 |
+
logging.info("Building datasets...")
|
| 57 |
+
datasets = self.build() # dataset['train'/'val'/'test']
|
| 58 |
+
|
| 59 |
+
return datasets
|
| 60 |
+
|
| 61 |
+
def build_processors(self):
|
| 62 |
+
vis_proc_cfg = self.config.get("vis_processor")
|
| 63 |
+
txt_proc_cfg = self.config.get("text_processor")
|
| 64 |
+
|
| 65 |
+
if vis_proc_cfg is not None:
|
| 66 |
+
vis_train_cfg = vis_proc_cfg.get("train")
|
| 67 |
+
vis_eval_cfg = vis_proc_cfg.get("eval")
|
| 68 |
+
|
| 69 |
+
self.vis_processors["train"] = self._build_proc_from_cfg(vis_train_cfg)
|
| 70 |
+
self.vis_processors["eval"] = self._build_proc_from_cfg(vis_eval_cfg)
|
| 71 |
+
|
| 72 |
+
if txt_proc_cfg is not None:
|
| 73 |
+
txt_train_cfg = txt_proc_cfg.get("train")
|
| 74 |
+
txt_eval_cfg = txt_proc_cfg.get("eval")
|
| 75 |
+
|
| 76 |
+
self.text_processors["train"] = self._build_proc_from_cfg(txt_train_cfg)
|
| 77 |
+
self.text_processors["eval"] = self._build_proc_from_cfg(txt_eval_cfg)
|
| 78 |
+
|
| 79 |
+
@staticmethod
|
| 80 |
+
def _build_proc_from_cfg(cfg):
|
| 81 |
+
return (
|
| 82 |
+
registry.get_processor_class(cfg.name).from_config(cfg)
|
| 83 |
+
if cfg is not None
|
| 84 |
+
else None
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
@classmethod
|
| 88 |
+
def default_config_path(cls, type="default"):
|
| 89 |
+
return utils.get_abs_path(cls.DATASET_CONFIG_DICT[type])
|
| 90 |
+
|
| 91 |
+
def _download_data(self):
|
| 92 |
+
self._download_ann()
|
| 93 |
+
self._download_vis()
|
| 94 |
+
|
| 95 |
+
def _download_ann(self):
|
| 96 |
+
"""
|
| 97 |
+
Download annotation files if necessary.
|
| 98 |
+
All the vision-language datasets should have annotations of unified format.
|
| 99 |
+
|
| 100 |
+
storage_path can be:
|
| 101 |
+
(1) relative/absolute: will be prefixed with env.cache_root to make full path if relative.
|
| 102 |
+
(2) basename/dirname: will be suffixed with base name of URL if dirname is provided.
|
| 103 |
+
|
| 104 |
+
Local annotation paths should be relative.
|
| 105 |
+
"""
|
| 106 |
+
anns = self.config.build_info.annotations
|
| 107 |
+
|
| 108 |
+
splits = anns.keys()
|
| 109 |
+
|
| 110 |
+
cache_root = registry.get_path("cache_root")
|
| 111 |
+
|
| 112 |
+
for split in splits:
|
| 113 |
+
info = anns[split]
|
| 114 |
+
|
| 115 |
+
urls, storage_paths = info.get("url", None), info.storage
|
| 116 |
+
|
| 117 |
+
if isinstance(urls, str):
|
| 118 |
+
urls = [urls]
|
| 119 |
+
if isinstance(storage_paths, str):
|
| 120 |
+
storage_paths = [storage_paths]
|
| 121 |
+
|
| 122 |
+
assert len(urls) == len(storage_paths)
|
| 123 |
+
|
| 124 |
+
for url_or_filename, storage_path in zip(urls, storage_paths):
|
| 125 |
+
# if storage_path is relative, make it full by prefixing with cache_root.
|
| 126 |
+
if not os.path.isabs(storage_path):
|
| 127 |
+
storage_path = os.path.join(cache_root, storage_path)
|
| 128 |
+
|
| 129 |
+
dirname = os.path.dirname(storage_path)
|
| 130 |
+
if not os.path.exists(dirname):
|
| 131 |
+
os.makedirs(dirname)
|
| 132 |
+
|
| 133 |
+
if os.path.isfile(url_or_filename):
|
| 134 |
+
src, dst = url_or_filename, storage_path
|
| 135 |
+
if not os.path.exists(dst):
|
| 136 |
+
shutil.copyfile(src=src, dst=dst)
|
| 137 |
+
else:
|
| 138 |
+
logging.info("Using existing file {}.".format(dst))
|
| 139 |
+
else:
|
| 140 |
+
if os.path.isdir(storage_path):
|
| 141 |
+
# if only dirname is provided, suffix with basename of URL.
|
| 142 |
+
raise ValueError(
|
| 143 |
+
"Expecting storage_path to be a file path, got directory {}".format(
|
| 144 |
+
storage_path
|
| 145 |
+
)
|
| 146 |
+
)
|
| 147 |
+
else:
|
| 148 |
+
filename = os.path.basename(storage_path)
|
| 149 |
+
|
| 150 |
+
download_url(url=url_or_filename, root=dirname, filename=filename)
|
| 151 |
+
|
| 152 |
+
def _download_vis(self):
|
| 153 |
+
|
| 154 |
+
storage_path = self.config.build_info.get(self.data_type).storage
|
| 155 |
+
storage_path = utils.get_cache_path(storage_path)
|
| 156 |
+
|
| 157 |
+
if not os.path.exists(storage_path):
|
| 158 |
+
warnings.warn(
|
| 159 |
+
f"""
|
| 160 |
+
The specified path {storage_path} for visual inputs does not exist.
|
| 161 |
+
Please provide a correct path to the visual inputs or
|
| 162 |
+
refer to datasets/download_scripts/README.md for downloading instructions.
|
| 163 |
+
"""
|
| 164 |
+
)
|
| 165 |
+
|
| 166 |
+
def build(self):
|
| 167 |
+
"""
|
| 168 |
+
Create by split datasets inheriting torch.utils.data.Datasets.
|
| 169 |
+
|
| 170 |
+
# build() can be dataset-specific. Overwrite to customize.
|
| 171 |
+
"""
|
| 172 |
+
self.build_processors()
|
| 173 |
+
|
| 174 |
+
build_info = self.config.build_info
|
| 175 |
+
|
| 176 |
+
ann_info = build_info.annotations
|
| 177 |
+
vis_info = build_info.get(self.data_type)
|
| 178 |
+
|
| 179 |
+
datasets = dict()
|
| 180 |
+
for split in ann_info.keys():
|
| 181 |
+
if split not in ["train", "val", "test"]:
|
| 182 |
+
continue
|
| 183 |
+
|
| 184 |
+
is_train = split == "train"
|
| 185 |
+
|
| 186 |
+
# processors
|
| 187 |
+
vis_processor = (
|
| 188 |
+
self.vis_processors["train"]
|
| 189 |
+
if is_train
|
| 190 |
+
else self.vis_processors["eval"]
|
| 191 |
+
)
|
| 192 |
+
text_processor = (
|
| 193 |
+
self.text_processors["train"]
|
| 194 |
+
if is_train
|
| 195 |
+
else self.text_processors["eval"]
|
| 196 |
+
)
|
| 197 |
+
|
| 198 |
+
# annotation path
|
| 199 |
+
ann_paths = ann_info.get(split).storage
|
| 200 |
+
if isinstance(ann_paths, str):
|
| 201 |
+
ann_paths = [ann_paths]
|
| 202 |
+
|
| 203 |
+
abs_ann_paths = []
|
| 204 |
+
for ann_path in ann_paths:
|
| 205 |
+
if not os.path.isabs(ann_path):
|
| 206 |
+
ann_path = utils.get_cache_path(ann_path)
|
| 207 |
+
abs_ann_paths.append(ann_path)
|
| 208 |
+
ann_paths = abs_ann_paths
|
| 209 |
+
|
| 210 |
+
# visual data storage path
|
| 211 |
+
vis_path = os.path.join(vis_info.storage, split)
|
| 212 |
+
|
| 213 |
+
if not os.path.isabs(vis_path):
|
| 214 |
+
# vis_path = os.path.join(utils.get_cache_path(), vis_path)
|
| 215 |
+
vis_path = utils.get_cache_path(vis_path)
|
| 216 |
+
|
| 217 |
+
if not os.path.exists(vis_path):
|
| 218 |
+
warnings.warn("storage path {} does not exist.".format(vis_path))
|
| 219 |
+
|
| 220 |
+
# create datasets
|
| 221 |
+
dataset_cls = self.train_dataset_cls if is_train else self.eval_dataset_cls
|
| 222 |
+
datasets[split] = dataset_cls(
|
| 223 |
+
vis_processor=vis_processor,
|
| 224 |
+
text_processor=text_processor,
|
| 225 |
+
ann_paths=ann_paths,
|
| 226 |
+
vis_root=vis_path,
|
| 227 |
+
)
|
| 228 |
+
|
| 229 |
+
return datasets
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
def load_dataset_config(cfg_path):
|
| 233 |
+
cfg = OmegaConf.load(cfg_path).datasets
|
| 234 |
+
cfg = cfg[list(cfg.keys())[0]]
|
| 235 |
+
|
| 236 |
+
return cfg
|
hawk/datasets/builders/image_text_pair_builder.py
ADDED
|
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import logging
|
| 3 |
+
import warnings
|
| 4 |
+
|
| 5 |
+
from hawk.common.registry import registry
|
| 6 |
+
from hawk.datasets.builders.base_dataset_builder import BaseDatasetBuilder
|
| 7 |
+
# from hawk.datasets.datasets.laion_dataset import LaionDataset
|
| 8 |
+
# from hawk.datasets.datasets.cc_sbu_dataset import CCSBUDataset, CCSBUAlignDataset
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
# @registry.register_builder("cc_sbu")
|
| 12 |
+
# class CCSBUBuilder(BaseDatasetBuilder):
|
| 13 |
+
# train_dataset_cls = CCSBUDataset
|
| 14 |
+
|
| 15 |
+
# DATASET_CONFIG_DICT = {"default": "configs/datasets/cc_sbu/defaults.yaml"}
|
| 16 |
+
|
| 17 |
+
# def _download_ann(self):
|
| 18 |
+
# pass
|
| 19 |
+
|
| 20 |
+
# def _download_vis(self):
|
| 21 |
+
# pass
|
| 22 |
+
|
| 23 |
+
# def build(self):
|
| 24 |
+
# self.build_processors()
|
| 25 |
+
|
| 26 |
+
# build_info = self.config.build_info
|
| 27 |
+
|
| 28 |
+
# datasets = dict()
|
| 29 |
+
# split = "train"
|
| 30 |
+
|
| 31 |
+
# # create datasets
|
| 32 |
+
# # [NOTE] return inner_datasets (wds.DataPipeline)
|
| 33 |
+
# dataset_cls = self.train_dataset_cls
|
| 34 |
+
# datasets[split] = dataset_cls(
|
| 35 |
+
# vis_processor=self.vis_processors[split],
|
| 36 |
+
# text_processor=self.text_processors[split],
|
| 37 |
+
# location=build_info.storage,
|
| 38 |
+
# ).inner_dataset
|
| 39 |
+
|
| 40 |
+
# return datasets
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
# @registry.register_builder("laion")
|
| 44 |
+
# class LaionBuilder(BaseDatasetBuilder):
|
| 45 |
+
# train_dataset_cls = LaionDataset
|
| 46 |
+
|
| 47 |
+
# DATASET_CONFIG_DICT = {"default": "configs/datasets/laion/defaults.yaml"}
|
| 48 |
+
|
| 49 |
+
# def _download_ann(self):
|
| 50 |
+
# pass
|
| 51 |
+
|
| 52 |
+
# def _download_vis(self):
|
| 53 |
+
# pass
|
| 54 |
+
|
| 55 |
+
# def build(self):
|
| 56 |
+
# self.build_processors()
|
| 57 |
+
|
| 58 |
+
# build_info = self.config.build_info
|
| 59 |
+
|
| 60 |
+
# datasets = dict()
|
| 61 |
+
# split = "train"
|
| 62 |
+
|
| 63 |
+
# # create datasets
|
| 64 |
+
# # [NOTE] return inner_datasets (wds.DataPipeline)
|
| 65 |
+
# dataset_cls = self.train_dataset_cls
|
| 66 |
+
# datasets[split] = dataset_cls(
|
| 67 |
+
# vis_processor=self.vis_processors[split],
|
| 68 |
+
# text_processor=self.text_processors[split],
|
| 69 |
+
# location=build_info.storage,
|
| 70 |
+
# ).inner_dataset
|
| 71 |
+
|
| 72 |
+
# return datasets
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
# @registry.register_builder("cc_sbu_align")
|
| 76 |
+
# class CCSBUAlignBuilder(BaseDatasetBuilder):
|
| 77 |
+
# train_dataset_cls = CCSBUAlignDataset
|
| 78 |
+
|
| 79 |
+
# DATASET_CONFIG_DICT = {
|
| 80 |
+
# "default": "configs/datasets/cc_sbu/align.yaml",
|
| 81 |
+
# }
|
| 82 |
+
|
| 83 |
+
# def build_datasets(self):
|
| 84 |
+
# # at this point, all the annotations and image/videos should be all downloaded to the specified locations.
|
| 85 |
+
# logging.info("Building datasets...")
|
| 86 |
+
# self.build_processors()
|
| 87 |
+
|
| 88 |
+
# build_info = self.config.build_info
|
| 89 |
+
# storage_path = build_info.storage
|
| 90 |
+
|
| 91 |
+
# datasets = dict()
|
| 92 |
+
|
| 93 |
+
# if not os.path.exists(storage_path):
|
| 94 |
+
# warnings.warn("storage path {} does not exist.".format(storage_path))
|
| 95 |
+
|
| 96 |
+
# # create datasets
|
| 97 |
+
# dataset_cls = self.train_dataset_cls
|
| 98 |
+
# datasets['train'] = dataset_cls(
|
| 99 |
+
# vis_processor=self.vis_processors["train"],
|
| 100 |
+
# text_processor=self.text_processors["train"],
|
| 101 |
+
# ann_paths=[os.path.join(storage_path, 'filter_cap.json')],
|
| 102 |
+
# vis_root=os.path.join(storage_path, 'image'),
|
| 103 |
+
# )
|
| 104 |
+
|
| 105 |
+
# return datasets
|
| 106 |
+
|
hawk/datasets/builders/instruct_builder.py
ADDED
|
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import logging
|
| 3 |
+
import warnings
|
| 4 |
+
|
| 5 |
+
from hawk.common.registry import registry
|
| 6 |
+
from hawk.datasets.builders.base_dataset_builder import BaseDatasetBuilder
|
| 7 |
+
# from hawk.datasets.datasets.laion_dataset import LaionDataset
|
| 8 |
+
from hawk.datasets.datasets.llava_instruct_dataset import Instruct_Dataset
|
| 9 |
+
from hawk.datasets.datasets.video_instruct_dataset import Video_Instruct_Dataset
|
| 10 |
+
|
| 11 |
+
@registry.register_builder("instruct")
|
| 12 |
+
class Instruct_Builder(BaseDatasetBuilder):
|
| 13 |
+
train_dataset_cls = Instruct_Dataset
|
| 14 |
+
|
| 15 |
+
DATASET_CONFIG_DICT = {"default": "configs/datasets/instruct/defaults.yaml"}
|
| 16 |
+
|
| 17 |
+
def _download_ann(self):
|
| 18 |
+
pass
|
| 19 |
+
|
| 20 |
+
def _download_vis(self):
|
| 21 |
+
pass
|
| 22 |
+
|
| 23 |
+
def build(self):
|
| 24 |
+
self.build_processors()
|
| 25 |
+
datasets = dict()
|
| 26 |
+
split = "train"
|
| 27 |
+
|
| 28 |
+
build_info = self.config.build_info
|
| 29 |
+
dataset_cls = self.train_dataset_cls
|
| 30 |
+
if self.config.num_video_query_token:
|
| 31 |
+
num_video_query_token = self.config.num_video_query_token
|
| 32 |
+
else:
|
| 33 |
+
num_video_query_token = 32
|
| 34 |
+
|
| 35 |
+
if self.config.tokenizer_name:
|
| 36 |
+
tokenizer_name = self.config.tokenizer_name
|
| 37 |
+
else:
|
| 38 |
+
tokenizer_name = '/mnt/workspace/ckpt/vicuna-13b/'
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
datasets[split] = dataset_cls(
|
| 42 |
+
vis_processor=self.vis_processors[split],
|
| 43 |
+
text_processor=self.text_processors[split],
|
| 44 |
+
vis_root=build_info.videos_dir,
|
| 45 |
+
ann_root=build_info.anno_dir,
|
| 46 |
+
num_video_query_token = num_video_query_token,
|
| 47 |
+
tokenizer_name = tokenizer_name,
|
| 48 |
+
data_type = self.config.data_type,
|
| 49 |
+
model_type = self.config.model_type
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
return datasets
|
| 53 |
+
|
| 54 |
+
@registry.register_builder("webvid_instruct")
|
| 55 |
+
class WebvidInstruct_Builder(Instruct_Builder):
|
| 56 |
+
train_dataset_cls = Video_Instruct_Dataset
|
| 57 |
+
|
| 58 |
+
DATASET_CONFIG_DICT = {
|
| 59 |
+
"default": "configs/datasets/instruct/webvid_instruct.yaml",
|
| 60 |
+
}
|
| 61 |
+
|
| 62 |
+
# @registry.register_builder("webvid_instruct_zh")
|
| 63 |
+
# class WebvidInstruct_zh_Builder(Instruct_Builder):
|
| 64 |
+
# train_dataset_cls = Video_Instruct_Dataset
|
| 65 |
+
|
| 66 |
+
# DATASET_CONFIG_DICT = {
|
| 67 |
+
# "default": "configs/datasets/instruct/webvid_instruct.yaml",
|
| 68 |
+
# }
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
# @registry.register_builder("llava_instruct")
|
| 73 |
+
# class LlavaInstruct_Builder(Instruct_Builder):
|
| 74 |
+
# train_dataset_cls = Instruct_Dataset
|
| 75 |
+
|
| 76 |
+
# DATASET_CONFIG_DICT = {
|
| 77 |
+
# "default": "configs/datasets/instruct/llava_instruct.yaml",
|
| 78 |
+
# }
|
| 79 |
+
|
hawk/datasets/builders/video_caption_builder.py
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import logging
|
| 3 |
+
import warnings
|
| 4 |
+
|
| 5 |
+
from hawk.common.registry import registry
|
| 6 |
+
from hawk.datasets.builders.base_dataset_builder import BaseDatasetBuilder
|
| 7 |
+
from hawk.datasets.datasets.webvid_datasets import WebvidDataset
|
| 8 |
+
|
| 9 |
+
@registry.register_builder("webvid")
|
| 10 |
+
class WebvidBuilder(BaseDatasetBuilder):
|
| 11 |
+
train_dataset_cls = WebvidDataset
|
| 12 |
+
DATASET_CONFIG_DICT = {"default": "configs/datasets/webvid/defaults.yaml"}
|
| 13 |
+
|
| 14 |
+
def _download_ann(self):
|
| 15 |
+
pass
|
| 16 |
+
|
| 17 |
+
def _download_vis(self):
|
| 18 |
+
pass
|
| 19 |
+
|
| 20 |
+
def build(self):
|
| 21 |
+
self.build_processors()
|
| 22 |
+
datasets = dict()
|
| 23 |
+
split = "train"
|
| 24 |
+
|
| 25 |
+
build_info = self.config.build_info
|
| 26 |
+
dataset_cls = self.train_dataset_cls
|
| 27 |
+
datasets[split] = dataset_cls(
|
| 28 |
+
vis_processor=self.vis_processors[split],
|
| 29 |
+
text_processor=self.text_processors[split],
|
| 30 |
+
vis_root=build_info.videos_dir,
|
| 31 |
+
ann_root=build_info.anno_dir
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
return datasets
|
hawk/datasets/data_utils.py
ADDED
|
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Copyright (c) 2022, salesforce.com, inc.
|
| 3 |
+
All rights reserved.
|
| 4 |
+
SPDX-License-Identifier: BSD-3-Clause
|
| 5 |
+
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import gzip
|
| 9 |
+
import logging
|
| 10 |
+
import os
|
| 11 |
+
import random as rnd
|
| 12 |
+
import tarfile
|
| 13 |
+
import zipfile
|
| 14 |
+
import random
|
| 15 |
+
from typing import List
|
| 16 |
+
from tqdm import tqdm
|
| 17 |
+
|
| 18 |
+
import decord
|
| 19 |
+
from decord import VideoReader
|
| 20 |
+
import webdataset as wds
|
| 21 |
+
import numpy as np
|
| 22 |
+
import torch
|
| 23 |
+
from torch.utils.data.dataset import IterableDataset
|
| 24 |
+
|
| 25 |
+
from hawk.common.registry import registry
|
| 26 |
+
from hawk.datasets.datasets.base_dataset import ConcatDataset
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
decord.bridge.set_bridge("torch")
|
| 30 |
+
MAX_INT = registry.get("MAX_INT")
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
class ChainDataset(wds.DataPipeline):
|
| 34 |
+
r"""Dataset for chaining multiple :class:`DataPipeline` s.
|
| 35 |
+
|
| 36 |
+
This class is useful to assemble different existing dataset streams. The
|
| 37 |
+
chaining operation is done on-the-fly, so concatenating large-scale
|
| 38 |
+
datasets with this class will be efficient.
|
| 39 |
+
|
| 40 |
+
Args:
|
| 41 |
+
datasets (iterable of IterableDataset): datasets to be chained together
|
| 42 |
+
"""
|
| 43 |
+
def __init__(self, datasets: List[wds.DataPipeline]) -> None:
|
| 44 |
+
super().__init__()
|
| 45 |
+
self.datasets = datasets
|
| 46 |
+
self.prob = []
|
| 47 |
+
self.names = []
|
| 48 |
+
for dataset in self.datasets:
|
| 49 |
+
if hasattr(dataset, 'name'):
|
| 50 |
+
self.names.append(dataset.name)
|
| 51 |
+
else:
|
| 52 |
+
self.names.append('Unknown')
|
| 53 |
+
if hasattr(dataset, 'sample_ratio'):
|
| 54 |
+
self.prob.append(dataset.sample_ratio)
|
| 55 |
+
else:
|
| 56 |
+
self.prob.append(1)
|
| 57 |
+
logging.info("One of the datapipeline doesn't define ratio and set to 1 automatically.")
|
| 58 |
+
|
| 59 |
+
def __iter__(self):
|
| 60 |
+
datastreams = [iter(dataset) for dataset in self.datasets]
|
| 61 |
+
while True:
|
| 62 |
+
select_datastream = random.choices(datastreams, weights=self.prob, k=1)[0]
|
| 63 |
+
yield next(select_datastream)
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def apply_to_sample(f, sample):
|
| 67 |
+
if len(sample) == 0:
|
| 68 |
+
return {}
|
| 69 |
+
|
| 70 |
+
def _apply(x):
|
| 71 |
+
if torch.is_tensor(x):
|
| 72 |
+
return f(x)
|
| 73 |
+
elif isinstance(x, dict):
|
| 74 |
+
return {key: _apply(value) for key, value in x.items()}
|
| 75 |
+
elif isinstance(x, list):
|
| 76 |
+
return [_apply(x) for x in x]
|
| 77 |
+
else:
|
| 78 |
+
return x
|
| 79 |
+
|
| 80 |
+
return _apply(sample)
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def move_to_cuda(sample):
|
| 84 |
+
def _move_to_cuda(tensor):
|
| 85 |
+
return tensor.cuda()
|
| 86 |
+
|
| 87 |
+
return apply_to_sample(_move_to_cuda, sample)
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
def prepare_sample(samples, cuda_enabled=True):
|
| 91 |
+
if cuda_enabled:
|
| 92 |
+
samples = move_to_cuda(samples)
|
| 93 |
+
|
| 94 |
+
# TODO fp16 support
|
| 95 |
+
|
| 96 |
+
return samples
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
def reorg_datasets_by_split(datasets):
|
| 100 |
+
"""
|
| 101 |
+
Organizes datasets by split.
|
| 102 |
+
|
| 103 |
+
Args:
|
| 104 |
+
datasets: dict of torch.utils.data.Dataset objects by name.
|
| 105 |
+
|
| 106 |
+
Returns:
|
| 107 |
+
Dict of datasets by split {split_name: List[Datasets]}.
|
| 108 |
+
"""
|
| 109 |
+
# if len(datasets) == 1:
|
| 110 |
+
# return datasets[list(datasets.keys())[0]]
|
| 111 |
+
# else:
|
| 112 |
+
reorg_datasets = dict()
|
| 113 |
+
|
| 114 |
+
# reorganize by split
|
| 115 |
+
for _, dataset in datasets.items():
|
| 116 |
+
for split_name, dataset_split in dataset.items():
|
| 117 |
+
if split_name not in reorg_datasets:
|
| 118 |
+
reorg_datasets[split_name] = [dataset_split]
|
| 119 |
+
else:
|
| 120 |
+
reorg_datasets[split_name].append(dataset_split)
|
| 121 |
+
|
| 122 |
+
return reorg_datasets
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
def concat_datasets(datasets):
|
| 126 |
+
"""
|
| 127 |
+
Concatenates multiple datasets into a single dataset.
|
| 128 |
+
|
| 129 |
+
It supports may-style datasets and DataPipeline from WebDataset. Currently, does not support
|
| 130 |
+
generic IterableDataset because it requires creating separate samplers.
|
| 131 |
+
|
| 132 |
+
Now only supports conctenating training datasets and assuming validation and testing
|
| 133 |
+
have only a single dataset. This is because metrics should not be computed on the concatenated
|
| 134 |
+
datasets.
|
| 135 |
+
|
| 136 |
+
Args:
|
| 137 |
+
datasets: dict of torch.utils.data.Dataset objects by split.
|
| 138 |
+
|
| 139 |
+
Returns:
|
| 140 |
+
Dict of concatenated datasets by split, "train" is the concatenation of multiple datasets,
|
| 141 |
+
"val" and "test" remain the same.
|
| 142 |
+
|
| 143 |
+
If the input training datasets contain both map-style and DataPipeline datasets, returns
|
| 144 |
+
a tuple, where the first element is a concatenated map-style dataset and the second
|
| 145 |
+
element is a chained DataPipeline dataset.
|
| 146 |
+
|
| 147 |
+
"""
|
| 148 |
+
# concatenate datasets in the same split
|
| 149 |
+
for split_name in datasets:
|
| 150 |
+
if split_name != "train":
|
| 151 |
+
assert (
|
| 152 |
+
len(datasets[split_name]) == 1
|
| 153 |
+
), "Do not support multiple {} datasets.".format(split_name)
|
| 154 |
+
datasets[split_name] = datasets[split_name][0]
|
| 155 |
+
else:
|
| 156 |
+
iterable_datasets, map_datasets = [], []
|
| 157 |
+
for dataset in datasets[split_name]:
|
| 158 |
+
if isinstance(dataset, wds.DataPipeline):
|
| 159 |
+
logging.info(
|
| 160 |
+
"Dataset {} is IterableDataset, can't be concatenated.".format(
|
| 161 |
+
dataset
|
| 162 |
+
)
|
| 163 |
+
)
|
| 164 |
+
iterable_datasets.append(dataset)
|
| 165 |
+
elif isinstance(dataset, IterableDataset):
|
| 166 |
+
raise NotImplementedError(
|
| 167 |
+
"Do not support concatenation of generic IterableDataset."
|
| 168 |
+
)
|
| 169 |
+
else:
|
| 170 |
+
map_datasets.append(dataset)
|
| 171 |
+
|
| 172 |
+
# if len(iterable_datasets) > 0:
|
| 173 |
+
# concatenate map-style datasets and iterable-style datasets separately
|
| 174 |
+
if len(iterable_datasets) > 1:
|
| 175 |
+
chained_datasets = (
|
| 176 |
+
ChainDataset(iterable_datasets)
|
| 177 |
+
)
|
| 178 |
+
elif len(iterable_datasets) == 1:
|
| 179 |
+
chained_datasets = iterable_datasets[0]
|
| 180 |
+
else:
|
| 181 |
+
chained_datasets = None
|
| 182 |
+
|
| 183 |
+
concat_datasets = (
|
| 184 |
+
ConcatDataset(map_datasets) if len(map_datasets) > 0 else None
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
train_datasets = concat_datasets, chained_datasets
|
| 188 |
+
train_datasets = tuple([x for x in train_datasets if x is not None])
|
| 189 |
+
train_datasets = (
|
| 190 |
+
train_datasets[0] if len(train_datasets) == 1 else train_datasets
|
| 191 |
+
)
|
| 192 |
+
|
| 193 |
+
datasets[split_name] = train_datasets
|
| 194 |
+
|
| 195 |
+
return datasets
|
| 196 |
+
|
hawk/datasets/datasets/__init__.py
ADDED
|
File without changes
|
hawk/datasets/datasets/base_dataset.py
ADDED
|
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Copyright (c) 2022, salesforce.com, inc.
|
| 3 |
+
All rights reserved.
|
| 4 |
+
SPDX-License-Identifier: BSD-3-Clause
|
| 5 |
+
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import json
|
| 9 |
+
from typing import Iterable
|
| 10 |
+
|
| 11 |
+
from torch.utils.data import Dataset, ConcatDataset
|
| 12 |
+
from torch.utils.data.dataloader import default_collate
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class BaseDataset(Dataset):
|
| 16 |
+
def __init__(
|
| 17 |
+
self, vis_processor=None, text_processor=None, vis_root=None, ann_paths=[]
|
| 18 |
+
):
|
| 19 |
+
"""
|
| 20 |
+
vis_root (string): Root directory of images (e.g. coco/images/)
|
| 21 |
+
ann_root (string): directory to store the annotation file
|
| 22 |
+
"""
|
| 23 |
+
self.vis_root = vis_root
|
| 24 |
+
|
| 25 |
+
self.annotation = []
|
| 26 |
+
for ann_path in ann_paths:
|
| 27 |
+
self.annotation.extend(json.load(open(ann_path, "r"))['annotations'])
|
| 28 |
+
|
| 29 |
+
self.vis_processor = vis_processor
|
| 30 |
+
self.text_processor = text_processor
|
| 31 |
+
|
| 32 |
+
self._add_instance_ids()
|
| 33 |
+
|
| 34 |
+
def __len__(self):
|
| 35 |
+
return len(self.annotation)
|
| 36 |
+
|
| 37 |
+
def collater(self, samples):
|
| 38 |
+
return default_collate(samples)
|
| 39 |
+
|
| 40 |
+
def set_processors(self, vis_processor, text_processor):
|
| 41 |
+
self.vis_processor = vis_processor
|
| 42 |
+
self.text_processor = text_processor
|
| 43 |
+
|
| 44 |
+
def _add_instance_ids(self, key="instance_id"):
|
| 45 |
+
for idx, ann in enumerate(self.annotation):
|
| 46 |
+
ann[key] = str(idx)
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
class ConcatDataset(ConcatDataset):
|
| 50 |
+
def __init__(self, datasets: Iterable[Dataset]) -> None:
|
| 51 |
+
super().__init__(datasets)
|
| 52 |
+
|
| 53 |
+
def collater(self, samples):
|
| 54 |
+
# TODO For now only supports datasets with same underlying collater implementations
|
| 55 |
+
|
| 56 |
+
all_keys = set()
|
| 57 |
+
for s in samples:
|
| 58 |
+
all_keys.update(s)
|
| 59 |
+
|
| 60 |
+
shared_keys = all_keys
|
| 61 |
+
for s in samples:
|
| 62 |
+
shared_keys = shared_keys & set(s.keys())
|
| 63 |
+
|
| 64 |
+
samples_shared_keys = []
|
| 65 |
+
for s in samples:
|
| 66 |
+
samples_shared_keys.append({k: s[k] for k in s.keys() if k in shared_keys})
|
| 67 |
+
|
| 68 |
+
return self.datasets[0].collater(samples_shared_keys)
|
hawk/datasets/datasets/caption_datasets.py
ADDED
|
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Copyright (c) 2022, salesforce.com, inc.
|
| 3 |
+
All rights reserved.
|
| 4 |
+
SPDX-License-Identifier: BSD-3-Clause
|
| 5 |
+
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import os
|
| 9 |
+
from collections import OrderedDict
|
| 10 |
+
|
| 11 |
+
from hawk.datasets.datasets.base_dataset import BaseDataset
|
| 12 |
+
from PIL import Image
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class __DisplMixin:
|
| 16 |
+
def displ_item(self, index):
|
| 17 |
+
sample, ann = self.__getitem__(index), self.annotation[index]
|
| 18 |
+
|
| 19 |
+
return OrderedDict(
|
| 20 |
+
{
|
| 21 |
+
"file": ann["image"],
|
| 22 |
+
"caption": ann["caption"],
|
| 23 |
+
"image": sample["image"],
|
| 24 |
+
}
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
class CaptionDataset(BaseDataset, __DisplMixin):
|
| 29 |
+
def __init__(self, vis_processor, text_processor, vis_root, ann_paths):
|
| 30 |
+
"""
|
| 31 |
+
vis_root (string): Root directory of images (e.g. coco/images/)
|
| 32 |
+
ann_root (string): directory to store the annotation file
|
| 33 |
+
"""
|
| 34 |
+
super().__init__(vis_processor, text_processor, vis_root, ann_paths)
|
| 35 |
+
|
| 36 |
+
self.img_ids = {}
|
| 37 |
+
n = 0
|
| 38 |
+
for ann in self.annotation:
|
| 39 |
+
img_id = ann["image_id"]
|
| 40 |
+
if img_id not in self.img_ids.keys():
|
| 41 |
+
self.img_ids[img_id] = n
|
| 42 |
+
n += 1
|
| 43 |
+
|
| 44 |
+
def __getitem__(self, index):
|
| 45 |
+
|
| 46 |
+
# TODO this assumes image input, not general enough
|
| 47 |
+
ann = self.annotation[index]
|
| 48 |
+
|
| 49 |
+
img_file = '{:0>12}.jpg'.format(ann["image_id"])
|
| 50 |
+
image_path = os.path.join(self.vis_root, img_file)
|
| 51 |
+
image = Image.open(image_path).convert("RGB")
|
| 52 |
+
|
| 53 |
+
image = self.vis_processor(image)
|
| 54 |
+
caption = self.text_processor(ann["caption"])
|
| 55 |
+
|
| 56 |
+
return {
|
| 57 |
+
"image": image,
|
| 58 |
+
"text_input": caption,
|
| 59 |
+
"image_id": self.img_ids[ann["image_id"]],
|
| 60 |
+
}
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
class CaptionEvalDataset(BaseDataset, __DisplMixin):
|
| 64 |
+
def __init__(self, vis_processor, text_processor, vis_root, ann_paths):
|
| 65 |
+
"""
|
| 66 |
+
vis_root (string): Root directory of images (e.g. coco/images/)
|
| 67 |
+
ann_root (string): directory to store the annotation file
|
| 68 |
+
split (string): val or test
|
| 69 |
+
"""
|
| 70 |
+
super().__init__(vis_processor, text_processor, vis_root, ann_paths)
|
| 71 |
+
|
| 72 |
+
def __getitem__(self, index):
|
| 73 |
+
|
| 74 |
+
ann = self.annotation[index]
|
| 75 |
+
|
| 76 |
+
image_path = os.path.join(self.vis_root, ann["image"])
|
| 77 |
+
image = Image.open(image_path).convert("RGB")
|
| 78 |
+
|
| 79 |
+
image = self.vis_processor(image)
|
| 80 |
+
|
| 81 |
+
return {
|
| 82 |
+
"image": image,
|
| 83 |
+
"image_id": ann["image_id"],
|
| 84 |
+
"instance_id": ann["instance_id"],
|
| 85 |
+
}
|
hawk/datasets/datasets/dataloader_utils.py
ADDED
|
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Copyright (c) 2022, salesforce.com, inc.
|
| 3 |
+
All rights reserved.
|
| 4 |
+
SPDX-License-Identifier: BSD-3-Clause
|
| 5 |
+
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import time
|
| 9 |
+
import random
|
| 10 |
+
import torch
|
| 11 |
+
from hawk.datasets.data_utils import move_to_cuda
|
| 12 |
+
from torch.utils.data import DataLoader
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class MultiIterLoader:
|
| 16 |
+
"""
|
| 17 |
+
A simple wrapper for iterating over multiple iterators.
|
| 18 |
+
|
| 19 |
+
Args:
|
| 20 |
+
loaders (List[Loader]): List of Iterator loaders.
|
| 21 |
+
ratios (List[float]): List of ratios to sample from each loader. If None, all loaders are sampled uniformly.
|
| 22 |
+
"""
|
| 23 |
+
|
| 24 |
+
def __init__(self, loaders, ratios=None):
|
| 25 |
+
# assert all loaders has __next__ method
|
| 26 |
+
for loader in loaders:
|
| 27 |
+
assert hasattr(
|
| 28 |
+
loader, "__next__"
|
| 29 |
+
), "Loader {} has no __next__ method.".format(loader)
|
| 30 |
+
|
| 31 |
+
if ratios is None:
|
| 32 |
+
ratios = [1.0] * len(loaders)
|
| 33 |
+
else:
|
| 34 |
+
assert len(ratios) == len(loaders)
|
| 35 |
+
ratios = [float(ratio) / sum(ratios) for ratio in ratios]
|
| 36 |
+
|
| 37 |
+
self.loaders = loaders
|
| 38 |
+
self.ratios = ratios
|
| 39 |
+
|
| 40 |
+
def __next__(self):
|
| 41 |
+
# random sample from each loader by ratio
|
| 42 |
+
loader_idx = random.choices(range(len(self.loaders)), self.ratios, k=1)[0]
|
| 43 |
+
return next(self.loaders[loader_idx])
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
class PrefetchLoader(object):
|
| 47 |
+
"""
|
| 48 |
+
Modified from https://github.com/ChenRocks/UNITER.
|
| 49 |
+
|
| 50 |
+
overlap compute and cuda data transfer
|
| 51 |
+
(copied and then modified from nvidia apex)
|
| 52 |
+
"""
|
| 53 |
+
|
| 54 |
+
def __init__(self, loader):
|
| 55 |
+
self.loader = loader
|
| 56 |
+
self.stream = torch.cuda.Stream()
|
| 57 |
+
|
| 58 |
+
def __iter__(self):
|
| 59 |
+
loader_it = iter(self.loader)
|
| 60 |
+
self.preload(loader_it)
|
| 61 |
+
batch = self.next(loader_it)
|
| 62 |
+
while batch is not None:
|
| 63 |
+
is_tuple = isinstance(batch, tuple)
|
| 64 |
+
if is_tuple:
|
| 65 |
+
task, batch = batch
|
| 66 |
+
|
| 67 |
+
if is_tuple:
|
| 68 |
+
yield task, batch
|
| 69 |
+
else:
|
| 70 |
+
yield batch
|
| 71 |
+
batch = self.next(loader_it)
|
| 72 |
+
|
| 73 |
+
def __len__(self):
|
| 74 |
+
return len(self.loader)
|
| 75 |
+
|
| 76 |
+
def preload(self, it):
|
| 77 |
+
try:
|
| 78 |
+
self.batch = next(it)
|
| 79 |
+
except StopIteration:
|
| 80 |
+
self.batch = None
|
| 81 |
+
return
|
| 82 |
+
# if record_stream() doesn't work, another option is to make sure
|
| 83 |
+
# device inputs are created on the main stream.
|
| 84 |
+
# self.next_input_gpu = torch.empty_like(self.next_input,
|
| 85 |
+
# device='cuda')
|
| 86 |
+
# self.next_target_gpu = torch.empty_like(self.next_target,
|
| 87 |
+
# device='cuda')
|
| 88 |
+
# Need to make sure the memory allocated for next_* is not still in use
|
| 89 |
+
# by the main stream at the time we start copying to next_*:
|
| 90 |
+
# self.stream.wait_stream(torch.cuda.current_stream())
|
| 91 |
+
with torch.cuda.stream(self.stream):
|
| 92 |
+
self.batch = move_to_cuda(self.batch)
|
| 93 |
+
# more code for the alternative if record_stream() doesn't work:
|
| 94 |
+
# copy_ will record the use of the pinned source tensor in this
|
| 95 |
+
# side stream.
|
| 96 |
+
# self.next_input_gpu.copy_(self.next_input, non_blocking=True)
|
| 97 |
+
# self.next_target_gpu.copy_(self.next_target, non_blocking=True)
|
| 98 |
+
# self.next_input = self.next_input_gpu
|
| 99 |
+
# self.next_target = self.next_target_gpu
|
| 100 |
+
|
| 101 |
+
def next(self, it):
|
| 102 |
+
torch.cuda.current_stream().wait_stream(self.stream)
|
| 103 |
+
batch = self.batch
|
| 104 |
+
if batch is not None:
|
| 105 |
+
record_cuda_stream(batch)
|
| 106 |
+
self.preload(it)
|
| 107 |
+
return batch
|
| 108 |
+
|
| 109 |
+
def __getattr__(self, name):
|
| 110 |
+
method = self.loader.__getattribute__(name)
|
| 111 |
+
return method
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
def record_cuda_stream(batch):
|
| 115 |
+
if isinstance(batch, torch.Tensor):
|
| 116 |
+
batch.record_stream(torch.cuda.current_stream())
|
| 117 |
+
elif isinstance(batch, list) or isinstance(batch, tuple):
|
| 118 |
+
for t in batch:
|
| 119 |
+
record_cuda_stream(t)
|
| 120 |
+
elif isinstance(batch, dict):
|
| 121 |
+
for t in batch.values():
|
| 122 |
+
record_cuda_stream(t)
|
| 123 |
+
else:
|
| 124 |
+
pass
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
class IterLoader:
|
| 128 |
+
"""
|
| 129 |
+
A wrapper to convert DataLoader as an infinite iterator.
|
| 130 |
+
|
| 131 |
+
Modified from:
|
| 132 |
+
https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/iter_based_runner.py
|
| 133 |
+
"""
|
| 134 |
+
|
| 135 |
+
def __init__(self, dataloader: DataLoader, use_distributed: bool = False):
|
| 136 |
+
self._dataloader = dataloader
|
| 137 |
+
self.iter_loader = iter(self._dataloader)
|
| 138 |
+
self._use_distributed = use_distributed
|
| 139 |
+
self._epoch = 0
|
| 140 |
+
|
| 141 |
+
@property
|
| 142 |
+
def epoch(self) -> int:
|
| 143 |
+
return self._epoch
|
| 144 |
+
|
| 145 |
+
def __next__(self):
|
| 146 |
+
try:
|
| 147 |
+
data = next(self.iter_loader)
|
| 148 |
+
except StopIteration:
|
| 149 |
+
self._epoch += 1
|
| 150 |
+
if hasattr(self._dataloader.sampler, "set_epoch") and self._use_distributed:
|
| 151 |
+
self._dataloader.sampler.set_epoch(self._epoch)
|
| 152 |
+
time.sleep(2) # Prevent possible deadlock during epoch transition
|
| 153 |
+
self.iter_loader = iter(self._dataloader)
|
| 154 |
+
data = next(self.iter_loader)
|
| 155 |
+
|
| 156 |
+
return data
|
| 157 |
+
|
| 158 |
+
def __iter__(self):
|
| 159 |
+
return self
|
| 160 |
+
|
| 161 |
+
def __len__(self):
|
| 162 |
+
return len(self._dataloader)
|
hawk/datasets/datasets/llava_instruct_dataset.py
ADDED
|
@@ -0,0 +1,312 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from hawk.datasets.datasets.base_dataset import BaseDataset
|
| 3 |
+
from hawk.datasets.datasets.caption_datasets import CaptionDataset
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import decord
|
| 6 |
+
from decord import VideoReader
|
| 7 |
+
import random
|
| 8 |
+
import torch
|
| 9 |
+
from torch.utils.data.dataloader import default_collate
|
| 10 |
+
from PIL import Image
|
| 11 |
+
from typing import Dict, Optional, Sequence
|
| 12 |
+
import transformers
|
| 13 |
+
import pathlib
|
| 14 |
+
import json
|
| 15 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaTokenizer
|
| 16 |
+
from hawk.conversation.conversation_video import Conversation,SeparatorStyle
|
| 17 |
+
DEFAULT_IMAGE_PATCH_TOKEN = '<ImageHere>'
|
| 18 |
+
DEFAULT_IMAGE_TOKEN = "<image>"
|
| 19 |
+
import copy
|
| 20 |
+
from hawk.processors import transforms_video,AlproVideoTrainProcessor
|
| 21 |
+
IGNORE_INDEX = -100
|
| 22 |
+
image_conversation = Conversation(
|
| 23 |
+
system="",
|
| 24 |
+
roles=("Human", "Assistant"),
|
| 25 |
+
messages=[],
|
| 26 |
+
offset=0,
|
| 27 |
+
sep_style=SeparatorStyle.SINGLE,
|
| 28 |
+
sep="###",
|
| 29 |
+
)
|
| 30 |
+
llama_v2_image_conversation = Conversation(
|
| 31 |
+
system=" ",
|
| 32 |
+
roles=("USER", "ASSISTANT"),
|
| 33 |
+
messages=(),
|
| 34 |
+
offset=0,
|
| 35 |
+
sep_style=SeparatorStyle.LLAMA_2,
|
| 36 |
+
sep="<s>",
|
| 37 |
+
sep2="</s>",
|
| 38 |
+
)
|
| 39 |
+
IGNORE_INDEX = -100
|
| 40 |
+
|
| 41 |
+
class Instruct_Dataset(BaseDataset):
|
| 42 |
+
def __init__(self, vis_processor, text_processor, vis_root, ann_root,num_video_query_token=32,tokenizer_name = '/mnt/workspace/ckpt/vicuna-13b/',data_type = 'image', model_type='vicuna'):
|
| 43 |
+
"""
|
| 44 |
+
vis_root (string): Root directory of Llava images (e.g. webvid_eval/video/)
|
| 45 |
+
ann_root (string): Root directory of video (e.g. webvid_eval/annotations/)
|
| 46 |
+
split (string): val or test
|
| 47 |
+
"""
|
| 48 |
+
super().__init__(vis_processor=vis_processor, text_processor=text_processor)
|
| 49 |
+
|
| 50 |
+
data_path = pathlib.Path(ann_root)
|
| 51 |
+
with data_path.open(encoding='utf-8') as f:
|
| 52 |
+
self.annotation = json.load(f)
|
| 53 |
+
|
| 54 |
+
self.vis_root = vis_root
|
| 55 |
+
self.resize_size = 224
|
| 56 |
+
self.num_frm = 8
|
| 57 |
+
self.tokenizer = LlamaTokenizer.from_pretrained(tokenizer_name, use_fast=False)
|
| 58 |
+
self.tokenizer.pad_token = self.tokenizer.unk_token
|
| 59 |
+
self.tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
|
| 60 |
+
self.num_video_query_token = num_video_query_token
|
| 61 |
+
self.IMAGE_PATCH_TOKEN_ID = self.tokenizer.get_vocab()[DEFAULT_IMAGE_PATCH_TOKEN]
|
| 62 |
+
|
| 63 |
+
self.transform = AlproVideoTrainProcessor(
|
| 64 |
+
image_size=self.resize_size, n_frms = self.num_frm
|
| 65 |
+
).transform
|
| 66 |
+
self.data_type = data_type
|
| 67 |
+
self.model_type = model_type
|
| 68 |
+
|
| 69 |
+
def _get_image_path(self, sample):
|
| 70 |
+
rel_video_fp ='COCO_train2014_' + sample['image']
|
| 71 |
+
full_video_fp = os.path.join(self.vis_root, rel_video_fp)
|
| 72 |
+
return full_video_fp
|
| 73 |
+
|
| 74 |
+
def __getitem__(self, index):
|
| 75 |
+
num_retries = 10 # skip error videos
|
| 76 |
+
for _ in range(num_retries):
|
| 77 |
+
try:
|
| 78 |
+
sample = self.annotation[index]
|
| 79 |
+
|
| 80 |
+
image_path = self._get_image_path(sample)
|
| 81 |
+
conversation_list = sample['conversations']
|
| 82 |
+
image = Image.open(image_path).convert("RGB")
|
| 83 |
+
|
| 84 |
+
image = self.vis_processor(image)
|
| 85 |
+
# text = self.text_processor(text)
|
| 86 |
+
sources = preprocess_multimodal(copy.deepcopy(conversation_list), None, cur_token_len=self.num_video_query_token)
|
| 87 |
+
if self.model_type =='vicuna':
|
| 88 |
+
data_dict = preprocess(
|
| 89 |
+
sources,
|
| 90 |
+
self.tokenizer)
|
| 91 |
+
elif self.model_type =='llama_v2':
|
| 92 |
+
data_dict = preprocess_for_llama_v2(
|
| 93 |
+
sources,
|
| 94 |
+
self.tokenizer)
|
| 95 |
+
else:
|
| 96 |
+
print('not support')
|
| 97 |
+
raise('not support')
|
| 98 |
+
data_dict = dict(input_ids=data_dict["input_ids"][0],
|
| 99 |
+
labels=data_dict["labels"][0])
|
| 100 |
+
|
| 101 |
+
# image exist in the data
|
| 102 |
+
data_dict['image'] = image
|
| 103 |
+
except:
|
| 104 |
+
print(f"Failed to load examples with image: {image_path}. "
|
| 105 |
+
f"Will randomly sample an example as a replacement.")
|
| 106 |
+
index = random.randint(0, len(self) - 1)
|
| 107 |
+
continue
|
| 108 |
+
break
|
| 109 |
+
else:
|
| 110 |
+
raise RuntimeError(f"Failed to fetch image after {num_retries} retries.")
|
| 111 |
+
# "image_id" is kept to stay compatible with the COCO evaluation format
|
| 112 |
+
return {
|
| 113 |
+
"image": image,
|
| 114 |
+
"text_input": data_dict["input_ids"],
|
| 115 |
+
"labels": data_dict["labels"],
|
| 116 |
+
"type":'image',
|
| 117 |
+
}
|
| 118 |
+
|
| 119 |
+
def __len__(self):
|
| 120 |
+
return len(self.annotation)
|
| 121 |
+
|
| 122 |
+
def collater(self, instances):
|
| 123 |
+
input_ids, labels = tuple([instance[key] for instance in instances]
|
| 124 |
+
for key in ("text_input", "labels"))
|
| 125 |
+
input_ids = torch.nn.utils.rnn.pad_sequence(
|
| 126 |
+
input_ids,
|
| 127 |
+
batch_first=True,
|
| 128 |
+
padding_value=self.tokenizer.pad_token_id)
|
| 129 |
+
labels = torch.nn.utils.rnn.pad_sequence(labels,
|
| 130 |
+
batch_first=True,
|
| 131 |
+
padding_value=IGNORE_INDEX)
|
| 132 |
+
batch = dict(
|
| 133 |
+
input_ids=input_ids,
|
| 134 |
+
labels=labels,
|
| 135 |
+
attention_mask=input_ids.ne(self.tokenizer.pad_token_id),
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
if 'image' in instances[0]:
|
| 139 |
+
images = [instance['image'] for instance in instances]
|
| 140 |
+
if all(x is not None and x.shape == images[0].shape for x in images):
|
| 141 |
+
batch['images'] = torch.stack(images)
|
| 142 |
+
else:
|
| 143 |
+
batch['images'] = images
|
| 144 |
+
batch['conv_type'] = 'multi'
|
| 145 |
+
return batch
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
def preprocess_multimodal(
|
| 149 |
+
conversation_list: Sequence[str],
|
| 150 |
+
multimodal_cfg: dict,
|
| 151 |
+
cur_token_len: int,
|
| 152 |
+
) -> Dict:
|
| 153 |
+
# 将conversational list中
|
| 154 |
+
is_multimodal = True
|
| 155 |
+
# image_token_len = multimodal_cfg['image_token_len']
|
| 156 |
+
image_token_len = cur_token_len
|
| 157 |
+
|
| 158 |
+
for sentence in conversation_list:
|
| 159 |
+
replace_token = '<Image>'+DEFAULT_IMAGE_PATCH_TOKEN * image_token_len+'</Image>'
|
| 160 |
+
sentence["value"] = sentence["value"].replace(DEFAULT_IMAGE_TOKEN, replace_token)
|
| 161 |
+
|
| 162 |
+
return [conversation_list]
|
| 163 |
+
|
| 164 |
+
def _add_speaker_and_signal(header, source, get_conversation=True):
|
| 165 |
+
"""Add speaker and start/end signal on each round."""
|
| 166 |
+
BEGIN_SIGNAL = "###"
|
| 167 |
+
END_SIGNAL = "\n"
|
| 168 |
+
conversation = header
|
| 169 |
+
for sentence in source:
|
| 170 |
+
from_str = sentence["from"]
|
| 171 |
+
if from_str.lower() == "human":
|
| 172 |
+
from_str = image_conversation.roles[0]
|
| 173 |
+
elif from_str.lower() == "gpt":
|
| 174 |
+
from_str = image_conversation.roles[1]
|
| 175 |
+
else:
|
| 176 |
+
from_str = 'unknown'
|
| 177 |
+
sentence["value"] = (BEGIN_SIGNAL + from_str + ": " +
|
| 178 |
+
sentence["value"] + END_SIGNAL)
|
| 179 |
+
if get_conversation:
|
| 180 |
+
conversation += sentence["value"]
|
| 181 |
+
conversation += BEGIN_SIGNAL
|
| 182 |
+
return conversation
|
| 183 |
+
|
| 184 |
+
def _tokenize_fn(strings: Sequence[str],
|
| 185 |
+
tokenizer: transformers.PreTrainedTokenizer) -> Dict:
|
| 186 |
+
"""Tokenize a list of strings."""
|
| 187 |
+
tokenized_list = [
|
| 188 |
+
tokenizer(
|
| 189 |
+
text,
|
| 190 |
+
return_tensors="pt",
|
| 191 |
+
padding="longest",
|
| 192 |
+
max_length=512,
|
| 193 |
+
truncation=True,
|
| 194 |
+
) for text in strings
|
| 195 |
+
]
|
| 196 |
+
input_ids = labels = [
|
| 197 |
+
tokenized.input_ids[0] for tokenized in tokenized_list
|
| 198 |
+
]
|
| 199 |
+
input_ids_lens = labels_lens = [
|
| 200 |
+
tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item()
|
| 201 |
+
for tokenized in tokenized_list
|
| 202 |
+
]
|
| 203 |
+
return dict(
|
| 204 |
+
input_ids=input_ids,
|
| 205 |
+
labels=labels,
|
| 206 |
+
input_ids_lens=input_ids_lens,
|
| 207 |
+
labels_lens=labels_lens,
|
| 208 |
+
)
|
| 209 |
+
|
| 210 |
+
def preprocess(
|
| 211 |
+
sources: Sequence[str],
|
| 212 |
+
tokenizer: transformers.PreTrainedTokenizer,
|
| 213 |
+
) -> Dict:
|
| 214 |
+
"""
|
| 215 |
+
Given a list of sources, each is a conversation list. This transform:
|
| 216 |
+
1. Add signal '### ' at the beginning each sentence, with end signal '\n';
|
| 217 |
+
2. Concatenate conversations together;
|
| 218 |
+
3. Tokenize the concatenated conversation;
|
| 219 |
+
4. Make a deepcopy as the target. Mask human words with IGNORE_INDEX.
|
| 220 |
+
"""
|
| 221 |
+
# add end signal and concatenate together
|
| 222 |
+
conversations = []
|
| 223 |
+
for source in sources:
|
| 224 |
+
header = f"{image_conversation.system}\n\n"
|
| 225 |
+
conversation = _add_speaker_and_signal(header, source)
|
| 226 |
+
conversations.append(conversation)
|
| 227 |
+
# tokenize conversations
|
| 228 |
+
conversations_tokenized = _tokenize_fn(conversations, tokenizer)
|
| 229 |
+
input_ids = conversations_tokenized["input_ids"]
|
| 230 |
+
targets = copy.deepcopy(input_ids)
|
| 231 |
+
for target, source in zip(targets, sources):
|
| 232 |
+
tokenized_lens = _tokenize_fn([header] + [s["value"] for s in source],
|
| 233 |
+
tokenizer)["input_ids_lens"]
|
| 234 |
+
speakers = [sentence["from"] for sentence in source]
|
| 235 |
+
_mask_targets(target, tokenized_lens, speakers)
|
| 236 |
+
|
| 237 |
+
return dict(input_ids=input_ids, labels=targets)
|
| 238 |
+
|
| 239 |
+
def preprocess_for_llama_v2(
|
| 240 |
+
sources: Sequence[str],
|
| 241 |
+
tokenizer: transformers.PreTrainedTokenizer,
|
| 242 |
+
) -> Dict:
|
| 243 |
+
"""
|
| 244 |
+
Given a list of sources, each is a conversation list. This transform:
|
| 245 |
+
1. Add signal '### ' at the beginning each sentence, with end signal '\n';
|
| 246 |
+
2. Concatenate conversations together;
|
| 247 |
+
3. Tokenize the concatenated conversation;
|
| 248 |
+
4. Make a deepcopy as the target. Mask human words with IGNORE_INDEX.
|
| 249 |
+
"""
|
| 250 |
+
# add end signal and concatenate together
|
| 251 |
+
conversations = []
|
| 252 |
+
conv = copy.deepcopy(llama_v2_image_conversation.copy())
|
| 253 |
+
roles = {"human": conv.roles[0], "gpt": conv.roles[1]}
|
| 254 |
+
for source in sources:
|
| 255 |
+
# <s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n
|
| 256 |
+
header = f"<s>[INST] <<SYS>>\n{conv.system}\n</SYS>>\n\n"
|
| 257 |
+
|
| 258 |
+
if roles[source[0]["from"]] != conv.roles[0]:
|
| 259 |
+
# Skip the first one if it is not from human
|
| 260 |
+
source = source[1:]
|
| 261 |
+
conv.messages = []
|
| 262 |
+
for j, sentence in enumerate(source):
|
| 263 |
+
role = roles[sentence["from"]]
|
| 264 |
+
assert role == conv.roles[j % 2]
|
| 265 |
+
conv.append_message(role, sentence["value"])
|
| 266 |
+
conversations.append(conv.get_prompt())
|
| 267 |
+
|
| 268 |
+
input_ids = tokenizer(
|
| 269 |
+
conversations,
|
| 270 |
+
return_tensors="pt",
|
| 271 |
+
padding="longest",
|
| 272 |
+
max_length=512,
|
| 273 |
+
truncation=True,
|
| 274 |
+
).input_ids
|
| 275 |
+
targets = copy.deepcopy(input_ids)
|
| 276 |
+
|
| 277 |
+
|
| 278 |
+
sep = "[/INST] "
|
| 279 |
+
for conversation, target in zip(conversations, targets):
|
| 280 |
+
# total_len = int(target.ne(tokenizer.pad_token_id).sum())
|
| 281 |
+
rounds = conversation.split(conv.sep2)
|
| 282 |
+
cur_len = 1
|
| 283 |
+
target[:cur_len] = IGNORE_INDEX
|
| 284 |
+
for i, rou in enumerate(rounds):
|
| 285 |
+
if rou == "":
|
| 286 |
+
break
|
| 287 |
+
|
| 288 |
+
parts = rou.split(sep)
|
| 289 |
+
if len(parts) != 2:
|
| 290 |
+
break
|
| 291 |
+
parts[0] += sep
|
| 292 |
+
|
| 293 |
+
|
| 294 |
+
round_len = len(tokenizer(rou).input_ids)
|
| 295 |
+
instruction_len = len(tokenizer(parts[0]).input_ids) - 2 # 为什么减去2,speical token 的数目
|
| 296 |
+
|
| 297 |
+
target[cur_len : cur_len + instruction_len] = IGNORE_INDEX
|
| 298 |
+
|
| 299 |
+
cur_len += round_len
|
| 300 |
+
target[cur_len:] = IGNORE_INDEX
|
| 301 |
+
|
| 302 |
+
return dict(input_ids=input_ids, labels=targets)
|
| 303 |
+
|
| 304 |
+
def _mask_targets(target, tokenized_lens, speakers):
|
| 305 |
+
# cur_idx = 0
|
| 306 |
+
cur_idx = tokenized_lens[0]
|
| 307 |
+
tokenized_lens = tokenized_lens[1:]
|
| 308 |
+
target[:cur_idx] = IGNORE_INDEX
|
| 309 |
+
for tokenized_len, speaker in zip(tokenized_lens, speakers):
|
| 310 |
+
if speaker == "human":
|
| 311 |
+
target[cur_idx+2:cur_idx + tokenized_len] = IGNORE_INDEX
|
| 312 |
+
cur_idx += tokenized_len
|
hawk/datasets/datasets/video_instruct_dataset.py
ADDED
|
@@ -0,0 +1,426 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from hawk.datasets.datasets.base_dataset import BaseDataset
|
| 3 |
+
from hawk.datasets.datasets.caption_datasets import CaptionDataset
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import decord
|
| 6 |
+
from decord import VideoReader
|
| 7 |
+
import random
|
| 8 |
+
import torch
|
| 9 |
+
from torch.utils.data.dataloader import default_collate
|
| 10 |
+
from PIL import Image
|
| 11 |
+
from typing import Dict, Optional, Sequence
|
| 12 |
+
import transformers
|
| 13 |
+
import pathlib
|
| 14 |
+
import json
|
| 15 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaTokenizer
|
| 16 |
+
import copy
|
| 17 |
+
from hawk.processors import transforms_video,AlproVideoTrainProcessor
|
| 18 |
+
from torchvision import transforms
|
| 19 |
+
from hawk.processors.video_processor import ToTHWC,ToUint8,load_video,load_video_motion
|
| 20 |
+
from hawk.conversation.conversation_video import Conversation,SeparatorStyle
|
| 21 |
+
import numpy as np
|
| 22 |
+
|
| 23 |
+
#提取Motion+Entity
|
| 24 |
+
import spacy
|
| 25 |
+
|
| 26 |
+
# 加载SpaCy英文模型
|
| 27 |
+
nlp = spacy.load("en_core_web_sm")
|
| 28 |
+
|
| 29 |
+
# Define the list of questions
|
| 30 |
+
Question = [
|
| 31 |
+
"Can you describe the anomaly in the video?",
|
| 32 |
+
"How would you detail the anomaly found in the video?",
|
| 33 |
+
"What anomaly can you identify in the video?",
|
| 34 |
+
"Could you explain the anomaly observed in the video?",
|
| 35 |
+
"Can you point out the anomaly in the video?",
|
| 36 |
+
"What's the anomaly depicted in the video?",
|
| 37 |
+
"Could you specify the anomaly present in the video?",
|
| 38 |
+
"How do you perceive the anomaly in the video?",
|
| 39 |
+
"Can you highlight the anomaly within the video?",
|
| 40 |
+
"What anomaly is noticeable in the video?",
|
| 41 |
+
"Could you characterize the anomaly seen in the video?",
|
| 42 |
+
"Can you detail the specific anomaly encountered in the video?",
|
| 43 |
+
"How would you describe the particular anomaly in the video?",
|
| 44 |
+
"What details can you provide about the anomaly in the video?",
|
| 45 |
+
"Could you elucidate on the anomaly detected in the video?",
|
| 46 |
+
"Can you illustrate the nature of the anomaly in the video?",
|
| 47 |
+
"What features of the anomaly in the video can you describe?",
|
| 48 |
+
"Could you outline the anomaly observed in the video?",
|
| 49 |
+
"How does the anomaly in the video manifest?",
|
| 50 |
+
"Can you clarify the aspects of the anomaly in the video?"
|
| 51 |
+
]
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def setup_seed(seed):
|
| 55 |
+
torch.manual_seed(seed)
|
| 56 |
+
torch.cuda.manual_seed_all(seed)
|
| 57 |
+
np.random.seed(seed)
|
| 58 |
+
random.seed(seed)
|
| 59 |
+
torch.backends.cudnn.deterministic = True
|
| 60 |
+
|
| 61 |
+
def extract_actions_and_entities_sentence(sentence):
|
| 62 |
+
doc = nlp(sentence)
|
| 63 |
+
action_sentences = []
|
| 64 |
+
|
| 65 |
+
for token in doc:
|
| 66 |
+
# 检查是否为动词
|
| 67 |
+
if token.pos_ == "VERB":
|
| 68 |
+
subjects = ' and '.join(child.text for child in token.children if child.dep_ in ["nsubj", "nsubjpass"]) #主语
|
| 69 |
+
objects = ' and '.join(child.text for child in token.children if child.dep_ in ["dobj", "pobj", "obj"]) #宾语
|
| 70 |
+
|
| 71 |
+
# 构建包含动作和实体的句子
|
| 72 |
+
action_sentence = f"{subjects} {token.text} {objects}".strip()
|
| 73 |
+
action_sentences.append(action_sentence)
|
| 74 |
+
|
| 75 |
+
return ', '.join(action_sentences)
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
DEFAULT_IMAGE_PATCH_TOKEN = '<ImageHere>'
|
| 79 |
+
video_conversation = Conversation(
|
| 80 |
+
system="",
|
| 81 |
+
roles=("Human", "Assistant"),
|
| 82 |
+
messages=[],
|
| 83 |
+
offset=0,
|
| 84 |
+
sep_style=SeparatorStyle.SINGLE,
|
| 85 |
+
sep="###",
|
| 86 |
+
)
|
| 87 |
+
llama_v2_video_conversation = Conversation(
|
| 88 |
+
system=" ",
|
| 89 |
+
roles=("USER", "ASSISTANT"),
|
| 90 |
+
messages=(),
|
| 91 |
+
offset=0,
|
| 92 |
+
sep_style=SeparatorStyle.LLAMA_2,
|
| 93 |
+
sep="<s>",
|
| 94 |
+
sep2="</s>",
|
| 95 |
+
)
|
| 96 |
+
IGNORE_INDEX = -100
|
| 97 |
+
|
| 98 |
+
class Video_Instruct_Dataset(BaseDataset):
|
| 99 |
+
def __init__(self, vis_processor, text_processor, vis_root, ann_root,num_video_query_token=32,tokenizer_name = '/mnt/workspace/ckpt/vicuna-13b/',data_type = 'video', model_type='vicuna'):
|
| 100 |
+
"""
|
| 101 |
+
vis_root (string): Root directory of Llava images (e.g. webvid_eval/video/)
|
| 102 |
+
ann_root (string): Root directory of video (e.g. webvid_eval/annotations/)
|
| 103 |
+
split (string): val or test
|
| 104 |
+
"""
|
| 105 |
+
super().__init__(vis_processor=vis_processor, text_processor=text_processor)
|
| 106 |
+
|
| 107 |
+
data_path = pathlib.Path(ann_root)
|
| 108 |
+
with data_path.open(encoding='utf-8') as f:
|
| 109 |
+
self.annotation = json.load(f)
|
| 110 |
+
|
| 111 |
+
self.num_video_query_token = num_video_query_token
|
| 112 |
+
self.vis_root = vis_root
|
| 113 |
+
self.resize_size = 224
|
| 114 |
+
self.num_frm = 32
|
| 115 |
+
self.tokenizer = LlamaTokenizer.from_pretrained(tokenizer_name, use_fast=False)
|
| 116 |
+
self.tokenizer.pad_token = self.tokenizer.unk_token
|
| 117 |
+
self.tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
|
| 118 |
+
self.IMAGE_PATCH_TOKEN_ID = self.tokenizer.get_vocab()[DEFAULT_IMAGE_PATCH_TOKEN]
|
| 119 |
+
|
| 120 |
+
self.transform = AlproVideoTrainProcessor(
|
| 121 |
+
image_size=self.resize_size, n_frms = self.num_frm
|
| 122 |
+
).transform
|
| 123 |
+
self.data_type = data_type
|
| 124 |
+
self.model_type = model_type
|
| 125 |
+
|
| 126 |
+
def _get_video_path(self, sample):
|
| 127 |
+
rel_video_fp = sample['video']
|
| 128 |
+
full_video_fp = os.path.join(self.vis_root, rel_video_fp)
|
| 129 |
+
return full_video_fp
|
| 130 |
+
|
| 131 |
+
def __getitem__(self, index):
|
| 132 |
+
num_retries = 10 # skip error videos
|
| 133 |
+
for _ in range(num_retries):
|
| 134 |
+
try:
|
| 135 |
+
sample = self.annotation[index]
|
| 136 |
+
|
| 137 |
+
video_path = self._get_video_path(sample)
|
| 138 |
+
# print(video_path)
|
| 139 |
+
conversation_list = sample['QA']
|
| 140 |
+
|
| 141 |
+
#替换为GPT的回答
|
| 142 |
+
conversation_answer = sample['description']
|
| 143 |
+
|
| 144 |
+
#提取Language Motion
|
| 145 |
+
# conversation_answer = extract_actions_and_entities_sentence(conversation_answer)
|
| 146 |
+
|
| 147 |
+
random_number = random.choice([0, 1])
|
| 148 |
+
if random_number == 1:
|
| 149 |
+
conversation_list[0]["q"] = random.choice(Question)
|
| 150 |
+
conversation_list[0]["a"] = conversation_answer
|
| 151 |
+
|
| 152 |
+
video, msg = load_video(
|
| 153 |
+
video_path=video_path,
|
| 154 |
+
n_frms=self.num_frm,
|
| 155 |
+
height=self.resize_size,
|
| 156 |
+
width=self.resize_size,
|
| 157 |
+
sampling ="uniform", return_msg = True
|
| 158 |
+
)
|
| 159 |
+
#读入动作视频
|
| 160 |
+
video_motion, msg_motion = load_video_motion(
|
| 161 |
+
video_path=video_path,
|
| 162 |
+
n_frms=self.num_frm,
|
| 163 |
+
height=self.resize_size,
|
| 164 |
+
width=self.resize_size,
|
| 165 |
+
sampling ="uniform", return_msg = True
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
random_seed = random.randint(0, 2**32 - 1)
|
| 169 |
+
setup_seed(random_seed)
|
| 170 |
+
video = self.transform(video)
|
| 171 |
+
video_motion = self.transform(video_motion)
|
| 172 |
+
|
| 173 |
+
if 'cn' in self.data_type:
|
| 174 |
+
msg = ""
|
| 175 |
+
# 添加视频<DEFAULT_IMAGE_PATCH_TOKEN>,以及msg到convsation list 0
|
| 176 |
+
sources = preprocess_multimodal(copy.deepcopy(conversation_list), None, cur_token_len=self.num_video_query_token,msg = msg)
|
| 177 |
+
new_sources = convert_source_vicuna_format(sources)
|
| 178 |
+
|
| 179 |
+
if self.model_type =='vicuna':
|
| 180 |
+
data_dict = preprocess(
|
| 181 |
+
new_sources,
|
| 182 |
+
self.tokenizer)
|
| 183 |
+
elif self.model_type =='llama_v2':
|
| 184 |
+
data_dict = preprocess_for_llama_v2(
|
| 185 |
+
new_sources,
|
| 186 |
+
self.tokenizer)
|
| 187 |
+
else:
|
| 188 |
+
print('not support')
|
| 189 |
+
raise('not support')
|
| 190 |
+
data_dict = dict(input_ids=data_dict["input_ids"][0],
|
| 191 |
+
labels=data_dict["labels"][0])
|
| 192 |
+
# image exist in the data
|
| 193 |
+
data_dict['image'] = video
|
| 194 |
+
data_dict['image_motion'] = video_motion
|
| 195 |
+
except:
|
| 196 |
+
print(f"Failed to load examples with video: {video_path}. "
|
| 197 |
+
f"Will randomly sample an example as a replacement.")
|
| 198 |
+
index = random.randint(0, len(self) - 1)
|
| 199 |
+
continue
|
| 200 |
+
break
|
| 201 |
+
else:
|
| 202 |
+
raise RuntimeError(f"Failed to fetch video after {num_retries} retries.")
|
| 203 |
+
# "image_id" is kept to stay compatible with the COCO evaluation format
|
| 204 |
+
return {
|
| 205 |
+
"image": video,
|
| 206 |
+
"image_motion": video_motion,
|
| 207 |
+
"text_input": data_dict["input_ids"],
|
| 208 |
+
"labels": data_dict["labels"],
|
| 209 |
+
"type":'video',
|
| 210 |
+
}
|
| 211 |
+
|
| 212 |
+
def __len__(self):
|
| 213 |
+
return len(self.annotation)
|
| 214 |
+
|
| 215 |
+
def collater(self, instances):
|
| 216 |
+
input_ids, labels = tuple([instance[key] for instance in instances]
|
| 217 |
+
for key in ("text_input", "labels"))
|
| 218 |
+
input_ids = torch.nn.utils.rnn.pad_sequence(
|
| 219 |
+
input_ids,
|
| 220 |
+
batch_first=True,
|
| 221 |
+
padding_value=self.tokenizer.pad_token_id) # 该函数用于将这些列表中的张量填充到相同的长度。这里使用了batch_first=True参数来指定批次维度的位置,以便在后续计算中更容易处理。填充值是self.tokenizer.pad_token_id,它是用于填充输入序列的特殊标记。
|
| 222 |
+
labels = torch.nn.utils.rnn.pad_sequence(labels,
|
| 223 |
+
batch_first=True,
|
| 224 |
+
padding_value=IGNORE_INDEX) #
|
| 225 |
+
batch = dict(
|
| 226 |
+
input_ids=input_ids,
|
| 227 |
+
labels=labels,
|
| 228 |
+
attention_mask=input_ids.ne(self.tokenizer.pad_token_id), #input_ids.ne方法,它返回一个布尔张量,指示输入张量中哪些元素不等于指定值。
|
| 229 |
+
)
|
| 230 |
+
|
| 231 |
+
if 'image' in instances[0]:
|
| 232 |
+
images = [instance['image'] for instance in instances]
|
| 233 |
+
if all(x is not None and x.shape == images[0].shape for x in images):
|
| 234 |
+
batch['images'] = torch.stack(images)
|
| 235 |
+
else:
|
| 236 |
+
batch['images'] = images
|
| 237 |
+
|
| 238 |
+
if 'image_motion' in instances[0]:
|
| 239 |
+
images_motion = [instance['image_motion'] for instance in instances]
|
| 240 |
+
if all(x is not None and x.shape == images_motion[0].shape for x in images_motion):
|
| 241 |
+
batch['images_motion'] = torch.stack(images_motion)
|
| 242 |
+
else:
|
| 243 |
+
batch['images_motion'] = images_motion
|
| 244 |
+
|
| 245 |
+
batch['conv_type'] = 'multi'
|
| 246 |
+
return batch
|
| 247 |
+
|
| 248 |
+
def convert_source_vicuna_format(sources):
|
| 249 |
+
new_sources = []
|
| 250 |
+
for source in sources:
|
| 251 |
+
new_source = []
|
| 252 |
+
for i, sentence in enumerate(source):
|
| 253 |
+
role_0_msg = sentence['q']
|
| 254 |
+
role_1_msg = sentence['a']
|
| 255 |
+
new_source.append({
|
| 256 |
+
'from':'human',
|
| 257 |
+
'value': role_0_msg,
|
| 258 |
+
})
|
| 259 |
+
new_source.append({
|
| 260 |
+
'from':'gpt',
|
| 261 |
+
'value': role_1_msg,
|
| 262 |
+
})
|
| 263 |
+
new_sources.append(new_source)
|
| 264 |
+
return new_sources
|
| 265 |
+
|
| 266 |
+
def preprocess_multimodal(
|
| 267 |
+
conversation_list: Sequence[str],
|
| 268 |
+
multimodal_cfg: dict,
|
| 269 |
+
cur_token_len: int,
|
| 270 |
+
msg=''
|
| 271 |
+
) -> Dict:
|
| 272 |
+
# 将conversational list中
|
| 273 |
+
is_multimodal = True
|
| 274 |
+
# image_token_len = multimodal_cfg['image_token_len']
|
| 275 |
+
image_token_len = cur_token_len * 2
|
| 276 |
+
conversation_list[0]["q"] = "<Video>"+DEFAULT_IMAGE_PATCH_TOKEN * image_token_len +"</Video> " + msg + conversation_list[0]["q"]
|
| 277 |
+
return [conversation_list]
|
| 278 |
+
|
| 279 |
+
def _add_speaker_and_signal(header, source, get_conversation=True):
|
| 280 |
+
"""Add speaker and start/end signal on each round."""
|
| 281 |
+
BEGIN_SIGNAL = "###"
|
| 282 |
+
END_SIGNAL = "\n"
|
| 283 |
+
conversation = header
|
| 284 |
+
for sentence in source:
|
| 285 |
+
from_str = sentence["from"]
|
| 286 |
+
if from_str.lower() == "human":
|
| 287 |
+
from_str = video_conversation.roles[0]
|
| 288 |
+
elif from_str.lower() == "gpt":
|
| 289 |
+
from_str = video_conversation.roles[1]
|
| 290 |
+
else:
|
| 291 |
+
from_str = 'unknown'
|
| 292 |
+
sentence["value"] = (BEGIN_SIGNAL + from_str + ": " +
|
| 293 |
+
sentence["value"] + END_SIGNAL)
|
| 294 |
+
if get_conversation:
|
| 295 |
+
conversation += sentence["value"]
|
| 296 |
+
conversation += BEGIN_SIGNAL
|
| 297 |
+
return conversation
|
| 298 |
+
|
| 299 |
+
def _tokenize_fn(strings: Sequence[str],
|
| 300 |
+
tokenizer: transformers.PreTrainedTokenizer) -> Dict:
|
| 301 |
+
"""Tokenize a list of strings."""
|
| 302 |
+
tokenized_list = [
|
| 303 |
+
tokenizer(
|
| 304 |
+
text,
|
| 305 |
+
return_tensors="pt",
|
| 306 |
+
padding="longest",
|
| 307 |
+
max_length=512,
|
| 308 |
+
truncation=True,
|
| 309 |
+
) for text in strings
|
| 310 |
+
]
|
| 311 |
+
input_ids = labels = [
|
| 312 |
+
tokenized.input_ids[0] for tokenized in tokenized_list
|
| 313 |
+
]
|
| 314 |
+
input_ids_lens = labels_lens = [
|
| 315 |
+
tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item()
|
| 316 |
+
for tokenized in tokenized_list
|
| 317 |
+
]
|
| 318 |
+
return dict(
|
| 319 |
+
input_ids=input_ids,
|
| 320 |
+
labels=labels,
|
| 321 |
+
input_ids_lens=input_ids_lens,
|
| 322 |
+
labels_lens=labels_lens,
|
| 323 |
+
)
|
| 324 |
+
|
| 325 |
+
def preprocess(
|
| 326 |
+
sources: Sequence[str],
|
| 327 |
+
tokenizer: transformers.PreTrainedTokenizer,
|
| 328 |
+
) -> Dict:
|
| 329 |
+
"""
|
| 330 |
+
Given a list of sources, each is a conversation list. This transform:
|
| 331 |
+
1. Add signal '### ' at the beginning each sentence, with end signal '\n';
|
| 332 |
+
2. Concatenate conversations together;
|
| 333 |
+
3. Tokenize the concatenated conversation;
|
| 334 |
+
4. Make a deepcopy as the target. Mask human words with IGNORE_INDEX.
|
| 335 |
+
"""
|
| 336 |
+
# add end signal and concatenate together
|
| 337 |
+
conversations = []
|
| 338 |
+
for source in sources:
|
| 339 |
+
header = f"{video_conversation.system}\n\n"
|
| 340 |
+
conversation = _add_speaker_and_signal(header, source)
|
| 341 |
+
conversations.append(conversation)
|
| 342 |
+
# tokenize conversations
|
| 343 |
+
conversations_tokenized = _tokenize_fn(conversations, tokenizer)
|
| 344 |
+
input_ids = conversations_tokenized["input_ids"]
|
| 345 |
+
targets = copy.deepcopy(input_ids)
|
| 346 |
+
for target, source in zip(targets, sources):
|
| 347 |
+
tokenized_lens = _tokenize_fn([header] + [s["value"] for s in source],
|
| 348 |
+
tokenizer)["input_ids_lens"]
|
| 349 |
+
speakers = [sentence["from"] for sentence in source]
|
| 350 |
+
_mask_targets(target, tokenized_lens, speakers)
|
| 351 |
+
|
| 352 |
+
return dict(input_ids=input_ids, labels=targets)
|
| 353 |
+
|
| 354 |
+
def preprocess_for_llama_v2(
|
| 355 |
+
sources: Sequence[str],
|
| 356 |
+
tokenizer: transformers.PreTrainedTokenizer,
|
| 357 |
+
) -> Dict:
|
| 358 |
+
"""
|
| 359 |
+
Given a list of sources, each is a conversation list. This transform:
|
| 360 |
+
1. Add signal '### ' at the beginning each sentence, with end signal '\n';
|
| 361 |
+
2. Concatenate conversations together;
|
| 362 |
+
3. Tokenize the concatenated conversation;
|
| 363 |
+
4. Make a deepcopy as the target. Mask human words with IGNORE_INDEX.
|
| 364 |
+
"""
|
| 365 |
+
# add end signal and concatenate together
|
| 366 |
+
conversations = []
|
| 367 |
+
conv = copy.deepcopy(llama_v2_video_conversation.copy())
|
| 368 |
+
roles = {"human": conv.roles[0], "gpt": conv.roles[1]}
|
| 369 |
+
for source in sources:
|
| 370 |
+
# <s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n
|
| 371 |
+
header = f"<s>[INST] <<SYS>>\n{conv.system}\n</SYS>>\n\n"
|
| 372 |
+
|
| 373 |
+
if roles[source[0]["from"]] != conv.roles[0]:
|
| 374 |
+
# Skip the first one if it is not from human
|
| 375 |
+
source = source[1:]
|
| 376 |
+
conv.messages = []
|
| 377 |
+
for j, sentence in enumerate(source):
|
| 378 |
+
role = roles[sentence["from"]]
|
| 379 |
+
assert role == conv.roles[j % 2]
|
| 380 |
+
conv.append_message(role, sentence["value"])
|
| 381 |
+
conversations.append(conv.get_prompt())
|
| 382 |
+
|
| 383 |
+
input_ids = tokenizer(
|
| 384 |
+
conversations,
|
| 385 |
+
return_tensors="pt",
|
| 386 |
+
padding="longest",
|
| 387 |
+
max_length=512,
|
| 388 |
+
truncation=True,
|
| 389 |
+
).input_ids
|
| 390 |
+
targets = copy.deepcopy(input_ids)
|
| 391 |
+
|
| 392 |
+
|
| 393 |
+
sep = "[/INST] "
|
| 394 |
+
for conversation, target in zip(conversations, targets):
|
| 395 |
+
# total_len = int(target.ne(tokenizer.pad_token_id).sum())
|
| 396 |
+
rounds = conversation.split(conv.sep2)
|
| 397 |
+
cur_len = 1
|
| 398 |
+
target[:cur_len] = IGNORE_INDEX
|
| 399 |
+
for i, rou in enumerate(rounds):
|
| 400 |
+
if rou == "":
|
| 401 |
+
break
|
| 402 |
+
|
| 403 |
+
parts = rou.split(sep)
|
| 404 |
+
if len(parts) != 2:
|
| 405 |
+
break
|
| 406 |
+
parts[0] += sep
|
| 407 |
+
|
| 408 |
+
|
| 409 |
+
round_len = len(tokenizer(rou).input_ids)
|
| 410 |
+
instruction_len = len(tokenizer(parts[0]).input_ids) - 2 # 为什么减去2,speical token 的数目
|
| 411 |
+
|
| 412 |
+
target[cur_len : cur_len + instruction_len] = IGNORE_INDEX
|
| 413 |
+
|
| 414 |
+
cur_len += round_len
|
| 415 |
+
target[cur_len:] = IGNORE_INDEX
|
| 416 |
+
|
| 417 |
+
return dict(input_ids=input_ids, labels=targets)
|
| 418 |
+
def _mask_targets(target, tokenized_lens, speakers):
|
| 419 |
+
# cur_idx = 0
|
| 420 |
+
cur_idx = tokenized_lens[0]
|
| 421 |
+
tokenized_lens = tokenized_lens[1:]
|
| 422 |
+
target[:cur_idx] = IGNORE_INDEX
|
| 423 |
+
for tokenized_len, speaker in zip(tokenized_lens, speakers):
|
| 424 |
+
if speaker == "human":
|
| 425 |
+
target[cur_idx+2:cur_idx + tokenized_len] = IGNORE_INDEX
|
| 426 |
+
cur_idx += tokenized_len
|
hawk/datasets/datasets/webvid_datasets.py
ADDED
|
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Copyright (c) 2022, salesforce.com, inc.
|
| 3 |
+
All rights reserved.
|
| 4 |
+
SPDX-License-Identifier: BSD-3-Clause
|
| 5 |
+
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import os
|
| 9 |
+
from hawk.datasets.datasets.base_dataset import BaseDataset
|
| 10 |
+
from hawk.datasets.datasets.caption_datasets import CaptionDataset
|
| 11 |
+
import pandas as pd
|
| 12 |
+
import decord
|
| 13 |
+
from decord import VideoReader
|
| 14 |
+
import random
|
| 15 |
+
import torch
|
| 16 |
+
from torch.utils.data.dataloader import default_collate
|
| 17 |
+
import spacy
|
| 18 |
+
import numpy as np
|
| 19 |
+
|
| 20 |
+
def setup_seed(seed):
|
| 21 |
+
torch.manual_seed(seed)
|
| 22 |
+
torch.cuda.manual_seed_all(seed)
|
| 23 |
+
np.random.seed(seed)
|
| 24 |
+
random.seed(seed)
|
| 25 |
+
torch.backends.cudnn.deterministic = True
|
| 26 |
+
|
| 27 |
+
# 加载SpaCy英文模型
|
| 28 |
+
nlp = spacy.load("en_core_web_sm")
|
| 29 |
+
|
| 30 |
+
def extract_actions_and_entities_sentence(sentence):
|
| 31 |
+
doc = nlp(sentence)
|
| 32 |
+
action_sentences = []
|
| 33 |
+
|
| 34 |
+
for token in doc:
|
| 35 |
+
# 检查是否为动词
|
| 36 |
+
if token.pos_ == "VERB":
|
| 37 |
+
subjects = ' and '.join(child.text for child in token.children if child.dep_ in ["nsubj", "nsubjpass"]) #主语
|
| 38 |
+
objects = ' and '.join(child.text for child in token.children if child.dep_ in ["dobj", "pobj", "obj"]) #宾语
|
| 39 |
+
|
| 40 |
+
# 构建包含动作和实体的句子
|
| 41 |
+
action_sentence = f"{subjects} {token.text} {objects}".strip()
|
| 42 |
+
action_sentences.append(action_sentence)
|
| 43 |
+
|
| 44 |
+
return ', '.join(action_sentences)
|
| 45 |
+
|
| 46 |
+
class WebvidDataset(BaseDataset):
|
| 47 |
+
def __init__(self, vis_processor, text_processor, vis_root, ann_root):
|
| 48 |
+
"""
|
| 49 |
+
vis_root (string): Root directory of video (e.g. webvid_eval/video/)
|
| 50 |
+
ann_root (string): Root directory of video (e.g. webvid_eval/annotations/)
|
| 51 |
+
split (string): val or test
|
| 52 |
+
"""
|
| 53 |
+
super().__init__(vis_processor=vis_processor, text_processor=text_processor)
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
# 读取一个路径下所有的
|
| 57 |
+
ts_df = []
|
| 58 |
+
for file_name in os.listdir(ann_root):
|
| 59 |
+
if file_name.endswith('.csv'):
|
| 60 |
+
df = pd.read_csv(os.path.join(ann_root, file_name))
|
| 61 |
+
ts_df.append(df)
|
| 62 |
+
|
| 63 |
+
print(ts_df)
|
| 64 |
+
merged_df = pd.concat(ts_df)
|
| 65 |
+
|
| 66 |
+
self.annotation = merged_df
|
| 67 |
+
self.vis_root = vis_root
|
| 68 |
+
self.resize_size = 224
|
| 69 |
+
self.num_frm = 32
|
| 70 |
+
self.frm_sampling_strategy = 'headtail'
|
| 71 |
+
|
| 72 |
+
def _get_video_path(self, sample):
|
| 73 |
+
rel_video_fp = os.path.join(str(sample['page_dir']), str(sample['videoid']) + '.mp4')
|
| 74 |
+
full_video_fp = os.path.join(self.vis_root, rel_video_fp)
|
| 75 |
+
return full_video_fp
|
| 76 |
+
|
| 77 |
+
def __getitem__(self, index):
|
| 78 |
+
num_retries = 10 # skip error videos
|
| 79 |
+
for _ in range(num_retries):
|
| 80 |
+
|
| 81 |
+
sample = self.annotation.iloc[index]
|
| 82 |
+
sample_dict = sample.to_dict()
|
| 83 |
+
# video_id = sample_dict['videoid']
|
| 84 |
+
# fetch video
|
| 85 |
+
video_path = self._get_video_path(sample_dict)
|
| 86 |
+
|
| 87 |
+
# while not os.path.exists(video_path):
|
| 88 |
+
# index = random.randint(0, len(self.annotation) - 1)
|
| 89 |
+
# sample = self.annotation.iloc[index]
|
| 90 |
+
# sample_dict = sample.to_dict()
|
| 91 |
+
# video_path = self._get_video_path(sample_dict)
|
| 92 |
+
|
| 93 |
+
while not os.path.exists(video_path) or (os.path.exists(video_path) and os.path.getsize(video_path) == 0):
|
| 94 |
+
index = random.randint(0, len(self.annotation) - 1)
|
| 95 |
+
sample = self.annotation.iloc[index]
|
| 96 |
+
sample_dict = sample.to_dict()
|
| 97 |
+
video_path = self._get_video_path(sample_dict)
|
| 98 |
+
|
| 99 |
+
if 'name' in sample_dict.keys():
|
| 100 |
+
text = sample_dict['name'].strip()
|
| 101 |
+
text_motion = extract_actions_and_entities_sentence(text)
|
| 102 |
+
else:
|
| 103 |
+
raise NotImplementedError("Un-supported text annotation format.")
|
| 104 |
+
|
| 105 |
+
# if os.path.exists(video_path):
|
| 106 |
+
try:
|
| 107 |
+
random_seed = random.randint(0, 2**32 - 1)
|
| 108 |
+
setup_seed(random_seed)
|
| 109 |
+
video, video_motion = self.vis_processor(video_path)
|
| 110 |
+
except:
|
| 111 |
+
print(f"for A Failed to load examples with video: {video_path}. "
|
| 112 |
+
f"Will randomly sample an example as a replacement.")
|
| 113 |
+
index = random.randint(0, len(self) - 1)
|
| 114 |
+
continue
|
| 115 |
+
|
| 116 |
+
# text = extract_actions_and_entities_sentence(text)
|
| 117 |
+
caption = self.text_processor(text)
|
| 118 |
+
caption_motion = self.text_processor(text_motion)
|
| 119 |
+
|
| 120 |
+
# print(video.size())
|
| 121 |
+
if video is None or caption is None or video.size()!=torch.Size([3,self.vis_processor.n_frms,224,224]):
|
| 122 |
+
print(f"for B Failed to load examples with video: {video_path}. "
|
| 123 |
+
f"Will randomly sample an example as a replacement.")
|
| 124 |
+
index = random.randint(0, len(self) - 1)
|
| 125 |
+
continue
|
| 126 |
+
else:
|
| 127 |
+
break
|
| 128 |
+
else:
|
| 129 |
+
raise RuntimeError(f"Failed to fetch video after {num_retries} retries.")
|
| 130 |
+
# "image_id" is kept to stay compatible with the COCO evaluation format
|
| 131 |
+
return {
|
| 132 |
+
"image": video, #torch.Size([3, 32, 224, 224])
|
| 133 |
+
"image_motion": video_motion, #torch.Size([3, 32, 224, 224])
|
| 134 |
+
"text_input": caption,
|
| 135 |
+
"text_input_motion": caption_motion,
|
| 136 |
+
"type":'video',
|
| 137 |
+
}
|
| 138 |
+
|
| 139 |
+
def __len__(self):
|
| 140 |
+
return len(self.annotation)
|
| 141 |
+
|
| 142 |
+
# def collater(self, samples):
|
| 143 |
+
# new_result = {}
|
| 144 |
+
# new_result['image'] = default_collate( [sample["image"] for sample in samples])
|
| 145 |
+
# new_result['image_motion'] = default_collate( [sample["image_motion"] for sample in samples])
|
| 146 |
+
# new_result['text_input'] = default_collate( [sample["text_input"] for sample in samples])
|
| 147 |
+
# return new_result
|
| 148 |
+
|
| 149 |
+
class WebvidDatasetEvalDataset(BaseDataset):
|
| 150 |
+
def __init__(self, vis_processor, text_processor, vis_root, ann_paths):
|
| 151 |
+
"""
|
| 152 |
+
vis_root (string): Root directory of images (e.g. coco/images/)
|
| 153 |
+
ann_root (string): directory to store the annotation file
|
| 154 |
+
split (string): val or test
|
| 155 |
+
"""
|
| 156 |
+
super().__init__(vis_processor, text_processor, vis_root, ann_paths)
|
| 157 |
+
|
| 158 |
+
def __getitem__(self, index):
|
| 159 |
+
|
| 160 |
+
ann = self.annotation[index]
|
| 161 |
+
|
| 162 |
+
vname = ann["video"]
|
| 163 |
+
video_path = os.path.join(self.vis_root, vname)
|
| 164 |
+
|
| 165 |
+
video = self.vis_processor(video_path)
|
| 166 |
+
|
| 167 |
+
return {
|
| 168 |
+
"video": video,
|
| 169 |
+
"image_id": ann["image_id"],
|
| 170 |
+
"instance_id": ann["instance_id"],
|
| 171 |
+
}
|
| 172 |
+
|
| 173 |
+
|
hawk/models/ImageBind/.assets/bird_audio.wav
ADDED
|
Binary file (882 kB). View file
|
|
|
hawk/models/ImageBind/.assets/bird_image.jpg
ADDED
|
hawk/models/ImageBind/.assets/car_audio.wav
ADDED
|
Binary file (441 kB). View file
|
|
|
hawk/models/ImageBind/.assets/car_image.jpg
ADDED
|
hawk/models/ImageBind/.assets/dog_audio.wav
ADDED
|
Binary file (461 kB). View file
|
|
|
hawk/models/ImageBind/.assets/dog_image.jpg
ADDED
|