Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import open_clip | |
| import torch | |
| import requests | |
| from PIL import Image | |
| from io import BytesIO | |
| import time | |
| import json | |
| import numpy as np | |
| import onnxruntime as ort | |
| from ultralytics import YOLO | |
| import cv2 | |
| import chromadb | |
| def load_clip_model(): | |
| model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionSigLIP') | |
| tokenizer = open_clip.get_tokenizer('hf-hub:Marqo/marqo-fashionSigLIP') | |
| # 파인튜닝한 모델의 state_dict 불러오기 | |
| #state_dict = torch.load('./accessory_clip.pt', map_location=torch.device('cpu')) | |
| #model.load_state_dict(state_dict) # 모델에 state_dict 적용 | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| model.to(device) | |
| return model, preprocess_val, tokenizer, device | |
| clip_model, preprocess_val, tokenizer, device = load_clip_model() | |
| def load_yolo_model(): | |
| return YOLO("./accessaries.pt") | |
| yolo_model = load_yolo_model() | |
| # URL에서 이미지 로드 | |
| def load_image_from_url(url, max_retries=3): | |
| for attempt in range(max_retries): | |
| try: | |
| response = requests.get(url, timeout=10) | |
| response.raise_for_status() | |
| img = Image.open(BytesIO(response.content)).convert('RGB') | |
| return img | |
| except (requests.RequestException, Image.UnidentifiedImageError) as e: | |
| if attempt < max_retries - 1: | |
| time.sleep(1) | |
| else: | |
| return None | |
| # ChromaDB 클라이언트 설정 | |
| client = chromadb.PersistentClient(path="./accessaryDB") | |
| collection = client.get_collection(name="accessary_items_ver2") | |
| def get_image_embedding(image): | |
| image_tensor = preprocess_val(image).unsqueeze(0).to(device) | |
| with torch.no_grad(): | |
| image_features = clip_model.encode_image(image_tensor) | |
| image_features /= image_features.norm(dim=-1, keepdim=True) | |
| return image_features.cpu().numpy() | |
| def get_text_embedding(text): | |
| text_tokens = tokenizer([text]).to(device) | |
| with torch.no_grad(): | |
| text_features = clip_model.encode_text(text_tokens) | |
| text_features /= text_features.norm(dim=-1, keepdim=True) | |
| return text_features.cpu().numpy() | |
| def get_all_embeddings_from_collection(collection): | |
| all_embeddings = collection.get(include=['embeddings'])['embeddings'] | |
| return np.array(all_embeddings) | |
| def get_metadata_from_ids(collection, ids): | |
| results = collection.get(ids=ids) | |
| return results['metadatas'] | |
| def find_similar_images(query_embedding, collection, top_k=5): | |
| database_embeddings = get_all_embeddings_from_collection(collection) | |
| similarities = np.dot(database_embeddings, query_embedding.T).squeeze() | |
| top_indices = np.argsort(similarities)[::-1][:top_k] | |
| all_data = collection.get(include=['metadatas'])['metadatas'] | |
| top_metadatas = [all_data[idx] for idx in top_indices] | |
| results = [] | |
| for idx, metadata in enumerate(top_metadatas): | |
| results.append({ | |
| 'info': metadata, | |
| 'similarity': similarities[top_indices[idx]] | |
| }) | |
| return results | |
| def detect_clothing(image): | |
| results = yolo_model(image) | |
| detections = results[0].boxes.data.cpu().numpy() | |
| categories = [] | |
| for detection in detections: | |
| x1, y1, x2, y2, conf, cls = detection | |
| category = yolo_model.names[int(cls)] | |
| if category in ['Bracelets', 'Broches', 'bag', 'belt', 'earring', 'maangtika', 'necklace', 'nose ring', 'ring', 'tiara']: | |
| categories.append({ | |
| 'category': category, | |
| 'bbox': [int(x1), int(y1), int(x2), int(y2)], | |
| 'confidence': conf | |
| }) | |
| return categories | |
| # 이미지 자르기 | |
| def crop_image(image, bbox): | |
| return image.crop((bbox[0], bbox[1], bbox[2], bbox[3])) | |
| # 세션 상태 초기화 | |
| if 'step' not in st.session_state: | |
| st.session_state.step = 'input' | |
| if 'query_image_url' not in st.session_state: | |
| st.session_state.query_image_url = '' | |
| if 'detections' not in st.session_state: | |
| st.session_state.detections = [] | |
| if 'selected_category' not in st.session_state: | |
| st.session_state.selected_category = None | |
| # Streamlit app | |
| st.title("Accessary Search App") | |
| # 단계별 처리 | |
| if st.session_state.step == 'input': | |
| st.session_state.query_image_url = st.text_input("Enter image URL:", st.session_state.query_image_url) | |
| if st.button("Detect accesseary"): | |
| if st.session_state.query_image_url: | |
| query_image = load_image_from_url(st.session_state.query_image_url) | |
| if query_image is not None: | |
| st.session_state.query_image = query_image | |
| st.session_state.detections = detect_clothing(query_image) | |
| if st.session_state.detections: | |
| st.session_state.step = 'select_category' | |
| else: | |
| st.warning("No items detected in the image.") | |
| else: | |
| st.error("Failed to load the image. Please try another URL.") | |
| else: | |
| st.warning("Please enter an image URL.") | |
| elif st.session_state.step == 'select_category': | |
| st.image(st.session_state.query_image, caption="Query Image", use_column_width=True) | |
| st.subheader("Detected Clothing Items:") | |
| for detection in st.session_state.detections: | |
| col1, col2 = st.columns([1, 3]) | |
| with col1: | |
| st.write(f"{detection['category']} (Confidence: {detection['confidence']:.2f})") | |
| with col2: | |
| cropped_image = crop_image(st.session_state.query_image, detection['bbox']) | |
| st.image(cropped_image, caption=detection['category'], use_column_width=True) | |
| options = [f"{d['category']} (Confidence: {d['confidence']:.2f})" for d in st.session_state.detections] | |
| selected_option = st.selectbox("Select a category to search:", options) | |
| if st.button("Search Similar Items"): | |
| st.session_state.selected_category = selected_option | |
| st.session_state.step = 'show_results' | |
| elif st.session_state.step == 'show_results': | |
| st.image(st.session_state.query_image, caption="Query Image", use_column_width=True) | |
| selected_detection = next(d for d in st.session_state.detections | |
| if f"{d['category']} (Confidence: {d['confidence']:.2f})" == st.session_state.selected_category) | |
| cropped_image = crop_image(st.session_state.query_image, selected_detection['bbox']) | |
| st.image(cropped_image, caption="Cropped Image", use_column_width=True) | |
| query_embedding = get_image_embedding(cropped_image) | |
| similar_images = find_similar_images(query_embedding, collection) | |
| st.subheader("Similar Items:") | |
| for img in similar_images: | |
| col1, col2 = st.columns(2) | |
| with col1: | |
| st.image(img['info']['image_url'], use_column_width=True) | |
| with col2: | |
| st.write(f"Name: {img['info']['name']}") | |
| st.write(f"Brand: {img['info']['brand']}") | |
| category = img['info'].get('category') | |
| if category: | |
| st.write(f"Category: {category}") | |
| st.write(f"Price: {img['info']['price']}") | |
| st.write(f"Discount: {img['info']['discount']}%") | |
| st.write(f"Similarity: {img['similarity']:.2f}") | |
| if st.button("Start New Search"): | |
| st.session_state.step = 'input' | |
| st.session_state.query_image_url = '' | |
| st.session_state.detections = [] | |
| st.session_state.selected_category = None | |
| else: # Text search | |
| query_text = st.text_input("Enter search text:") | |
| if st.button("Search by Text"): | |
| if query_text: | |
| text_embedding = get_text_embedding(query_text) | |
| similar_images = find_similar_images(text_embedding, collection) | |
| st.subheader("Similar Items:") | |
| for img in similar_images: | |
| col1, col2 = st.columns(2) | |
| with col1: | |
| st.image(img['info']['image_url'], use_column_width=True) | |
| with col2: | |
| st.write(f"Name: {img['info']['name']}") | |
| st.write(f"Brand: {img['info']['brand']}") | |
| category = img['info'].get('category') | |
| if category: | |
| st.write(f"Category: {category}") | |
| st.write(f"Price: {img['info']['price']}") | |
| st.write(f"Discount: {img['info']['discount']}%") | |
| st.write(f"Similarity: {img['similarity']:.2f}") | |
| else: | |
| st.warning("Please enter a search text.") |