Spaces:
Sleeping
Sleeping
File size: 146,274 Bytes
1034e15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 |
"""
app.py
------
Main application entry point for the modular AI agent system. Handles UI (Gradio), agent orchestration, knowledge loading, and chat interface logic.
- Initializes logging and structlog for consistent, timestamped logs.
- Loads and manages agent configurations and RAG retriever.
- Provides chat, knowledge ingestion, and agent builder functions.
- Integrates with OpenAI via llm_connector and supports streaming responses.
- Designed for extensibility and future integration with Model Context Protocol (MCP) and Agent-to-Agent (A2A) standards.
"""
# --- Imports ---
import gradio as gr
import json
import re
import os
import asyncio
import logging
from typing import Dict, Optional, Any, cast
# Try to import authentication components
try:
from auth_manager import create_auth_interface, check_user_permission, get_user_limits, auth_manager
AUTH_AVAILABLE = True
print("β
Authentication system loaded")
except ImportError as e:
print(f"β οΈ Authentication system not available: {e}")
AUTH_AVAILABLE = False
# Create dummy functions for compatibility
def create_auth_interface():
return None, None
def check_user_permission(session_id, permission):
return True
def get_user_limits(session_id):
return {}
auth_manager = None
# Try to import OpenAI
try:
import openai
from openai import RateLimitError, APIError, APIConnectionError, OpenAI
OPENAI_AVAILABLE = True
print("β
OpenAI client loaded")
except ImportError as e:
print(f"β οΈ OpenAI not available: {e}")
OPENAI_AVAILABLE = False
# Try to import core modules
try:
from core.utils.rag import KnowledgeLoader, SimpleRAGRetriever
from core.utils.skills_registry import tool_registry, get_tool_by_name
from core.utils.llm_connector import AgentLLMConnector
from core.agents.agent_utils import linkify_citations, build_agent, load_prefilled, prepare_download, preload_demo_chat, _safe_title, extract_clinical_variables_from_history
CORE_MODULES_AVAILABLE = True
print("β
Core modules loaded")
except ImportError as e:
print(f"β οΈ Core modules not available: {e}")
CORE_MODULES_AVAILABLE = False
# Create dummy functions
def build_agent(*args, **kwargs):
return json.dumps({"agent_name": "Demo Agent", "error": "Core modules not available"})
def extract_clinical_variables_from_history(*args, **kwargs):
return {}
# Try to import configuration
try:
from config import agents_config, skills_library, prefilled_agents
CONFIG_AVAILABLE = True
print("β
Configuration loaded")
except ImportError as e:
print(f"β οΈ Configuration not available: {e}")
CONFIG_AVAILABLE = False
# Create dummy config
agents_config = {}
skills_library = {}
prefilled_agents = {"Demo Agent": {"agent_name": "Demo Agent"}}
# Try to import UI modules
try:
from core.ui.ui import show_landing, show_builder, show_chat, refresh_active_agents_widgets
UI_MODULES_AVAILABLE = True
print("β
UI modules loaded")
except ImportError as e:
print(f"β οΈ UI modules not available: {e}")
UI_MODULES_AVAILABLE = False
# Create dummy functions
def show_landing():
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
def show_builder():
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
def show_chat():
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
def refresh_active_agents_widgets():
return "No agents available", []
# Try to import tools
try:
import tools
TOOLS_AVAILABLE = True
print("β
Tools loaded")
except ImportError as e:
print(f"β οΈ Tools not available: {e}")
TOOLS_AVAILABLE = False
# Try to import pandas
try:
import pandas as pd
PANDAS_AVAILABLE = True
except ImportError:
PANDAS_AVAILABLE = False
print("β οΈ Pandas not available")
# Try to import structlog
try:
import structlog
from structlog.stdlib import LoggerFactory, BoundLogger
STRUCTLOG_AVAILABLE = True
print("β
Structured logging loaded")
except ImportError:
STRUCTLOG_AVAILABLE = False
print("β οΈ Structured logging not available")
# Logging setup
logging.basicConfig(filename="app.log", level=logging.INFO, format="%(message)s")
if STRUCTLOG_AVAILABLE:
structlog.configure(logger_factory=LoggerFactory())
logger: BoundLogger = structlog.get_logger()
# Structlog config
structlog.configure(
processors=[
structlog.processors.TimeStamper(fmt="iso"),
structlog.dev.ConsoleRenderer()
],
logger_factory=LoggerFactory(),
wrapper_class=structlog.make_filtering_bound_logger(logging.INFO),
cache_logger_on_first_use=True,
)
else:
# Fallback to basic logging
logger = logging.getLogger(__name__)
# OpenAI API Key Check
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
if not OPENAI_API_KEY:
raise RuntimeError("OPENAI_API_KEY environment variable is not set. Please set it before running the application.")
OPENAI_API_KEY = cast(str, OPENAI_API_KEY)
# initialize client once, pulling key from your environment
client = OpenAI(api_key=OPENAI_API_KEY)
# Gradio 4.20.0 compatibility function
def convert_messages_for_gradio(messages):
"""
Convert role/content format to list-of-lists format for Gradio 4.20.0 compatibility
Input: [{"role": "user/assistant", "content": "message"}, ...]
Output: [["user_message", "assistant_message"], ...]
"""
if not messages:
return []
result = []
current_pair = ["", ""]
for msg in messages:
if isinstance(msg, dict) and "role" in msg and "content" in msg:
if msg["role"] == "user":
current_pair[0] = msg["content"]
elif msg["role"] == "assistant":
current_pair[1] = msg["content"]
result.append(current_pair.copy())
current_pair = ["", ""]
elif isinstance(msg, list) and len(msg) == 2:
# Already in correct format
result.append(msg)
# Handle case where conversation ends with user message
if current_pair[0] and not current_pair[1]:
result.append(current_pair)
return result
def convert_gradio_to_messages(gradio_history):
"""
Convert Gradio list-of-lists format back to role/content format
Input: [["user_message", "assistant_message"], ...]
Output: [{"role": "user", "content": "message"}, {"role": "assistant", "content": "response"}, ...]
"""
if not gradio_history:
return []
result = []
for pair in gradio_history:
if isinstance(pair, list) and len(pair) >= 2:
if pair[0]: # user message
result.append({"role": "user", "content": pair[0]})
if pair[1]: # assistant message
result.append({"role": "assistant", "content": pair[1]})
return result
def simple_chat_response(user_message, history):
"""
A bare-bones GPT-3.5-turbo chat using the v1.0+ SDK.
- history is a list of dicts: [{"role":"user"|"assistant","content":...}, β¦]
- Returns (updated_history, "")
"""
if history is None:
history = []
# 1) record the userβs message
history.append({"role": "user", "content": user_message})
# 2) call the new chat endpoint
completion = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=history,
temperature=0.7,
) # :contentReference[oaicite:0]{index=0}
# 3) extract and record the assistant reply
reply_content = completion.choices[0].message.content
reply = reply_content.strip() if reply_content else ""
history.append({"role": "assistant", "content": reply})
# 4) Convert back to Gradio format and return
gradio_history = convert_messages_for_gradio(history)
return gradio_history, ""
# --- Chat orchestration logic is now in chat_orchestrator.py ---
from core.agents.chat_orchestrator import simulate_agent_response_stream, build_log, _stream_to_agent, MAX_HISTORY, orchestrators
def reset_chat(agent_json):
"""
Clears history, input, invocation log, and active_children state.
Also clears orchestrator state to prevent response persistence.
"""
# Clear orchestrator state to prevent persistence across conversations
from core.agents.chat_orchestrator import orchestrators
orchestrators.clear()
agent_data = json.loads(agent_json)
name = agent_data.get("agent_name", "Agent")
welcome = f"π Hello! I'm {name}. How can I assist you today?"
chat_history = [{"role":"assistant","content":welcome}]
gradio_history = convert_messages_for_gradio(chat_history)
invocation_log = ""
active_children= []
return gradio_history, "", invocation_log, active_children
def load_agent_to_builder(agent_name):
if agent_name in agents_config:
agent_data = json.loads(agents_config[agent_name])
return (
agent_data.get("agent_type", ""),
agent_data.get("agent_name", ""),
agent_data.get("agent_mission", ""),
agent_data.get("skills", [])
)
else:
return None, "", "", []
def remove_selected_agent(agent_name: str):
# 1) Remove from your in-memory store
if agent_name in agents_config:
del agents_config[agent_name]
# 2) Re-render the list of active agents
if agents_config:
active_md = "### π§ Active Agents\n" + "\n".join(f"- {name}" for name in agents_config)
else:
active_md = "### π§ Active Agents\n_(None yet)_"
# 3) Build the new dropdown state
new_choices = list(agents_config.keys())
# gr.update to reset selection (value=None) and update choices
dropdown_update = gr.update(choices=new_choices, value=None)
# Return in the same order you wired the outputs
return active_md, dropdown_update
def update_skills(selected_type: str):
"""Callback to repopulate the skills checkbox based on chosen agent type."""
return gr.update(choices=skills_library.get(selected_type, []))
def handle_uploaded_files(files):
"""
Callback for the File component: spin up (or reuse) your RAG retriever
and index any newly uploaded docs.
"""
global rag_retriever
rag_retriever = SimpleRAGRetriever(openai_api_key=os.getenv("OPENAI_API_KEY"))
if files:
for f in files:
rag_retriever.add_knowledge(f)
# Return a tuple of (visible-update, message) to your upload_alert Markdown
return gr.update(visible=True), "β
Files uploaded and indexed successfully!"
def populate_from_preset(prefilled_name):
if prefilled_name != "None":
at, an, am, sk = load_prefilled(prefilled_name, prefilled_agents)
return at, an, am, sk, True
return None, "", "", [], False
def on_agent_type_change(selected_type, was_prefilled):
# always refresh the skill choices
new_skills = skills_library.get(selected_type, [])
skill_update = gr.update(choices=new_skills, value=[])
if was_prefilled:
# consume the flag, but leave name & mission intact
return skill_update, gr.update(), gr.update(), False
# manual change: clear everything
return skill_update, gr.update(value=""), gr.update(value=""), False
def chat_selected_agent(agent_name):
agent_json = agents_config.get(agent_name, "")
if agent_json:
# reset_chat returns 4 values:
# (chat_history, cleared_input, invocation_log, active_children)
chat_history, cleared_input, invocation_log, active_children = reset_chat(agent_json)
return chat_history, cleared_input, invocation_log, active_children, agent_json
# If no agent is selected, clear everything
return [], "", "", [], ""
def load_history(agent_name, histories):
# if weβve never chatted, start with a greeting
if agent_name not in histories:
histories[agent_name] = [
{"role":"assistant","content":f"π Hello! I'm {agent_name}. How can I help?"}
]
# Convert to Gradio format before returning
gradio_history = convert_messages_for_gradio(histories[agent_name])
return gradio_history
def chatpanel_handle(agent_name, user_text, histories):
"""
Uses your simulate_agent_response_stream (tool-aware) in a blocking way,
so that tool invocations actually happen.
Returns (final_history, updated_histories, cleared_input).
"""
# 1) Look up the JSON you saved in agents_config
agent_json = agents_config.get(agent_name)
if not agent_json:
return [], histories, "", ""
# 2) Grab the prior history (or seed a greeting)
history = histories.get(agent_name, [])
if not history:
history = [{"role":"assistant",
"content":f"π Hello! I'm {agent_name}. How can I help?"}]
# 3) Call your streaming function synchronously
# simulate_agent_response_stream is async, so we need to run it in an event loop
import asyncio
async def run_stream():
async for updated_history, _, invocation_log, _, challenger_info in simulate_agent_response_stream(
agent_json=agent_json,
history=history,
user_input=user_text,
debug_flag=False,
active_children=[]
):
yield updated_history, invocation_log
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
gen = run_stream()
final_history = history
final_invocation_log = ""
try:
while True:
updated_history, invocation_log = loop.run_until_complete(gen.__anext__())
final_history = updated_history
final_invocation_log = invocation_log
except StopAsyncIteration:
pass
# 4) Save back and clear the input box
histories[agent_name] = final_history
return final_history, histories, "", final_invocation_log
def refresh_chat_dropdown():
return gr.update(choices=list(agents_config.keys()), value=None)
def build_ui():
# --- App Layout ---
with gr.Blocks() as app:
# Separate chat histories for each panel
simple_chat_history = gr.State([])
builder_chat_histories = gr.State({})
deployed_chat_histories = gr.State({})
# --- Custom CSS ---
app.css = """
/* Futuristic color palette (lighter background) */
:root {
--futuristic-bg: #fcfdff; /* nearly white */
--futuristic-panel: #e8ecf7;
--futuristic-accent: #00ffe7;
--futuristic-accent2: #7f5cff;
--futuristic-card: #fafdff;
--futuristic-border: #c7d0e6;
--futuristic-text: #23263a;
--futuristic-muted: #7a7e8c;
}
body, .gradio-container, .gr-block, .gr-app {
background: var(--futuristic-bg) !important;
color: var(--futuristic-text) !important;
}
#landing_card,
#agent_form {
opacity: 1;
transition: opacity 0.5s ease;
}
.hidden {
opacity: 0 !important;
pointer-events: none;
}
/* Ensure the row containing the panels stretches and has a white background */
#agent_form .gr-row {
display: flex !important;
align-items: stretch !important;
background: #fff !important;
border-radius: 20px;
box-shadow: 0 4px 32px #7f5cff11, 0 1.5px 8px #00ffe711;
min-height: 600px;
padding: 0 0.5em;
}
/* Panels: remove min-height/height, keep original proportions */
#agent_form .left-panel,
#agent_form .right-panel {
display: flex !important;
flex-direction: column !important;
/* No height or min-height here */
}
/* Vibrant animated gradient for 'Get Started' button */
#start_button {
background: linear-gradient(90deg, #ff6b6b, #fddb3a, #00ffe7, #7f5cff);
background-size: 300% 300%;
color: #181c27 !important;
border: none;
border-radius: 8px;
font-weight: 700;
box-shadow: 0 0 16px #fddb3a88, 0 0 4px #ff6b6b88;
animation: gradient-move 3s ease-in-out infinite, pulse 2s infinite;
font-size: 18px;
padding: 12px 24px;
transition: background-position 0.5s;
}
/* Exciting but static look for 'Chat With the Agents You Deployed' button */
#to_chat_button {
background: linear-gradient(90deg, #7f5cff, #a259ff, #6e4cff, #c2a3ff);
background-size: 300% 300%;
color: #fff !important;
border: none;
border-radius: 8px;
font-weight: 700;
box-shadow: 0 0 16px #a259ff88, 0 0 4px #7f5cff88;
/* No animation here, just static gradient */
font-size: 18px;
padding: 12px 24px;
}
@keyframes gradient-move {
0% { background-position: 0% 50%; }
50% { background-position: 100% 50%; }
100% { background-position: 0% 50%; }
}
@keyframes pulse {
0% { box-shadow: 0 0 16px var(--futuristic-accent2), 0 0 4px var(--futuristic-accent); }
50% { box-shadow: 0 0 32px var(--futuristic-accent), 0 0 8px var(--futuristic-accent2); }
100% { box-shadow: 0 0 16px var(--futuristic-accent2), 0 0 4px var(--futuristic-accent); }
}
.left-panel {
background: linear-gradient(135deg, #e8ecf7 60%, #fafdff 100%);
padding: 15px;
border-radius: 16px;
border: 1px solid var(--futuristic-border);
box-shadow: 0 2px 16px #7f5cff22, 0 1.5px 8px #00ffe722;
}
.right-panel {
background: linear-gradient(135deg, #e8ecf7 60%, #fafdff 100%);
padding: 15px;
border-radius: 16px;
border: 1px solid var(--futuristic-border);
box-shadow: 0 2px 16px #7f5cff22, 0 1.5px 8px #00ffe722;
}
#chat_history {
height: 520px;
overflow: auto;
background: #181c27;
border-radius: 12px;
border: 1px solid var(--futuristic-border);
}
#chat_input {
width: 100%;
background: #23263a;
color: var(--futuristic-text);
border-radius: 8px;
border: 1px solid var(--futuristic-accent2);
}
#chat_buttons .gr-button {
width: 49%;
}
.right-panel {
display: flex;
flex-direction: column;
}
.landing-card {
background: linear-gradient(135deg, #23263a 60%, #1a1f2b 100%);
border: 1.5px solid var(--futuristic-accent2);
border-radius: 28px;
padding: 32px 36px 32px 36px;
margin-bottom: 40px;
box-shadow: 0 4px 32px #00ffe733, 0 1.5px 8px #7f5cff33;
box-sizing: border-box;
}
.landing-title {
text-align: center;
font-size: 2.1rem;
font-weight: 700;
margin-bottom: 0.5em;
}
.landing-subtitle {
text-align: center;
font-size: 1.15rem;
color: var(--futuristic-muted);
margin-bottom: 1.2em;
}
.steps-box {
background: var(--futuristic-card);
border: 1px solid var(--futuristic-border);
border-radius: 16px;
max-width: 840px;
margin: 0 auto 1.5em auto;
padding: 18px 28px 18px 28px;
box-shadow: 0 2px 12px #7f5cff22;
text-align: left;
}
.steps-box ul {
margin: 0;
padding-left: 1.2em;
}
.steps-box li {
margin-bottom: 0.5em;
font-size: 1.05em;
}
.animated-button {
animation: pulse 2s ease-out 1;
font-size: 18px;
padding: 12px 24px;
}
@keyframes pulse {
0% { transform: scale(1); box-shadow: 0 0 16px var(--futuristic-accent2); }
50% { transform: scale(1.05); box-shadow: 0 0 32px var(--futuristic-accent); }
100% { transform: scale(1); box-shadow: 0 0 16px var(--futuristic-accent2); }
}
#advanced_options .gr-accordion-content {
font-size: 0.85em;
line-height: 1.3;
padding-left: 1rem;
}
#chat_history,
#chat_input,
#chat_input textarea {
box-sizing: border-box;
}
button.generate-btn {
background: linear-gradient(90deg, var(--futuristic-accent2), var(--futuristic-accent));
color: #181c27 !important;
border: none !important;
font-weight: 600;
box-shadow: 0 4px 24px var(--futuristic-accent2), 0 2px 8px var(--futuristic-accent);
transition: transform 0.2s ease, box-shadow 0.2s ease;
}
button.generate-btn:hover {
transform: translateY(-2px) scale(1.03);
box-shadow: 0 8px 32px var(--futuristic-accent), 0 4px 16px var(--futuristic-accent2);
}
button.generate-btn:active {
transform: translateY(0) scale(0.98);
box-shadow: 0 3px 8px var(--futuristic-accent2);
}
.agent-controls {
display: inline-flex !important;
flex-wrap: nowrap !important;
align-items: center;
gap: 0.5rem;
}
.agent-controls .action-btn,
.agent-controls .agent-dropdown {
width: auto !important;
flex: none !important;
}
.agent-controls .agent-dropdown-column,
.agent-controls .agent-button-group {
background: var(--futuristic-panel) !important;
box-shadow: none !important;
padding: 0 !important;
}
.agent-controls > div,
.agent-controls > div > div,
.agent-controls > div > div > div {
background: transparent !important;
box-shadow: none !important;
padding: 0 !important;
margin: 0 !important;
}
/* Chatbot message bubbles */
.gr-chat-message.user {
background: linear-gradient(90deg, #23263a 60%, #181c27 100%);
color: var(--futuristic-accent);
border-radius: 12px 12px 4px 12px;
border: 1px solid var(--futuristic-accent2);
}
.gr-chat-message.assistant {
background: linear-gradient(90deg, #181c27 60%, #23263a 100%);
color: var(--futuristic-text);
border-radius: 12px 12px 12px 4px;
border: 1px solid var(--futuristic-accent);
}
/* Muted text */
.gr-markdown, .gradio-markdown, .gradio-container .gr-markdown {
color: var(--futuristic-muted) !important;
}
/* Patient Cards Section */
.patient-cards-section {
margin-top: 2rem !important;
padding-top: 1.5rem !important;
border-top: 2px solid #ffffff !important;
padding-bottom: 1rem !important;
background: var(--futuristic-panel) !important;
border-radius: 16px !important;
border: 1px solid var(--futuristic-border) !important;
box-shadow: 0 2px 12px rgba(127, 92, 255, 0.1) !important;
}
.patient-cards-header {
text-align: center !important;
margin-bottom: 1.5rem !important;
color: var(--futuristic-text) !important;
font-size: 1.1rem !important;
font-weight: 600 !important;
}
.patient-cards-row {
margin-bottom: 1rem !important;
gap: 1rem !important;
}
.patient-cards-row:last-child {
margin-bottom: 0 !important;
}
.patient-card {
background: linear-gradient(135deg, var(--futuristic-card) 60%, #ffffff 100%) !important;
border: 2px solid var(--futuristic-border) !important;
border-radius: 12px !important;
padding: 1rem !important;
cursor: pointer !important;
transition: all 0.3s ease !important;
box-shadow: 0 2px 8px rgba(127, 92, 255, 0.1) !important;
display: flex !important;
flex-direction: column !important;
justify-content: space-between !important;
min-height: 120px !important;
margin: 0.5rem !important;
}
.patient-card:hover {
transform: translateY(-3px) !important;
box-shadow: 0 6px 20px rgba(127, 92, 255, 0.2) !important;
border-color: var(--futuristic-accent2) !important;
background: linear-gradient(135deg, #f0f4ff 60%, #ffffff 100%) !important;
}
.patient-card.selected {
border-color: var(--futuristic-accent) !important;
box-shadow: 0 6px 24px rgba(0, 255, 231, 0.3) !important;
background: linear-gradient(135deg, var(--futuristic-accent) 5%, var(--futuristic-card) 60%, #ffffff 100%) !important;
}
.patient-card-btn {
background: transparent !important;
border: none !important;
padding: 0 !important;
width: 100% !important;
height: 100% !important;
text-align: left !important;
font-size: 0.85rem !important;
line-height: 1.3 !important;
color: var(--futuristic-text) !important;
cursor: pointer !important;
white-space: pre-line !important;
}
.patient-card-btn:hover {
background: transparent !important;
}
/* Hide chat panel elements globally by default */
.chat-only-btn {
display: none !important;
}
.chat-panel-buttons {
display: none !important;
}
.patient-cards-group {
display: none !important;
}
.patient-cards-section {
display: none !important;
}
.patient-cards-row {
display: none !important;
}
.patient-cards-grid {
display: none !important;
}
.chat-only-content {
display: none !important;
}
.patient-card-btn {
display: none !important;
}
.patient-cards-container {
display: none !important;
}
.chat-only-section {
display: none !important;
}
/* Hide chat panel elements in builder panel (redundant but explicit) */
#agent_form .chat-only-btn {
display: none !important;
}
#agent_form .chat-panel-buttons {
display: none !important;
}
#agent_form .patient-cards-group {
display: none !important;
}
#agent_form .patient-cards-section {
display: none !important;
}
#agent_form .patient-cards-row {
display: none !important;
}
#agent_form .patient-cards-grid {
display: none !important;
}
#agent_form .chat-only-content {
display: none !important;
}
#agent_form .patient-card-btn {
display: none !important;
}
#agent_form .patient-cards-container {
display: none !important;
}
#agent_form .chat-only-section {
display: none !important;
}
/* Show chat panel elements only in chat panel */
#agent_chat .chat-only-btn {
display: inline-block !important;
}
#agent_chat .chat-panel-buttons {
display: flex !important;
}
#agent_chat .patient-cards-group {
display: block !important;
}
#agent_chat .patient-cards-section {
display: block !important;
}
#agent_chat .patient-cards-row {
display: flex !important;
}
#agent_chat .patient-cards-grid {
display: grid !important;
}
#agent_chat .chat-only-content {
display: block !important;
}
#agent_chat .patient-card-btn {
display: block !important;
}
#agent_chat .patient-cards-container {
display: flex !important;
}
#agent_chat .chat-only-section {
display: block !important;
}
"""
# Helper functions for chat control state management
def show_initial_instruction_state():
"""Return initial state with instruction message and disabled controls"""
instruction_chat = [["", "π **Agent generated successfully!**\n\nTo start testing your agent:\n1. Select your agent from the dropdown menu above\n2. Click 'π¬ Chat with Selected Agent'\n3. Then you can type your questions in the chat box\n\n*Please select an agent from the dropdown to begin testing.*"]]
return (
instruction_chat, # builder_chatbot
gr.update(value="", interactive=False, placeholder="Please select an agent to start chatting..."), # chat_input
gr.update(interactive=False), # builder_send_button
gr.update(interactive=False), # reset_button
"", # invocation_log
[] # active_children
)
def enable_chat_controls_with_agent(agent_name):
"""Enable chat controls and show proper agent greeting when agent is selected"""
agent_json = agents_config.get(agent_name, "")
if agent_json:
# Get agent data for greeting
agent_data = json.loads(agent_json)
agent_display_name = agent_data.get("agent_name", agent_name)
# Create greeting message
greeting_chat = [["", f"π Hello! I'm {agent_display_name}. How can I assist you today?"]]
return (
greeting_chat, # builder_chatbot with agent greeting
gr.update(value="", interactive=True, placeholder="Type your question hereβ¦"), # chat_input enabled
gr.update(interactive=True), # builder_send_button enabled
gr.update(interactive=True), # reset_button enabled
"", # clear invocation_log
[], # clear active_children
agent_json # agent_output
)
else:
# No valid agent selected, return disabled state
return show_initial_instruction_state() + ("",) # Add empty agent_output
# Update instruction when agent is selected from dropdown
def update_instruction_on_dropdown_change(agent_name):
"""Update instruction message when agent is selected from dropdown"""
if agent_name:
instruction_msg = f"π **Agent '{agent_name}' selected!**\n\nTo start testing this agent:\nβ’ Click 'π¬ Chat with Selected Agent' button above\nβ’ Then you can type your questions in the chat box\n\n*Click the chat button to begin testing.*"
else:
instruction_msg = "π **Welcome to the Agent Builder!**\n\nTo start testing your agents:\n1. Generate an agent using the form on the left\n2. Select your agent from the dropdown menu above\n3. Click 'π¬ Chat with Selected Agent'\n4. Then you can type your questions in the chat box\n\n*Please create and select an agent to begin testing.*"
return [["", instruction_msg]]
# 1) HEADER & LANDING CARD
with gr.Group(elem_id="landing_card", elem_classes="landing-card", visible=True) as landing_panel:
gr.Markdown("<div class='landing-title'>π¦ Infectious Diseases Agent Builder</div>", elem_id=None, elem_classes=None)
gr.Markdown("<div class='landing-subtitle'>Build your own ID-focused chat agent in 5 easy steps β no coding required.</div>", elem_id=None, elem_classes=None)
gr.HTML("""
<div class='steps-box'>
<ul>
<li><b>Step 1:</b> Pick an agent template or start from scratch</li>
<li><b>Step 2:</b> Choose your agentβs focus (Stewardship, Research, Clinicalβ¦)</li>
<li><b>Step 3:</b> Select from prebuilt skills (PubMed search, guideline summariesβ¦)</li>
<li><b>Step 4:</b> (Optional) Upload your own documents or trusted URLs</li>
<li><b>Step 5:</b> Generate & start chatting live</li>
</ul>
</div>
""")
start_button = gr.Button(
"π Get Started",
elem_id="start_button",
elem_classes="animated-button"
)
gr.HTML("<div style='height: 32px;'></div>")
# Only the simple GPT-3.5 Chatbot (no active agents or builder UI)
gr.Markdown("### π¬ Try A Simple Chatbot Before You Build Your ID Agents")
simple_chatbot = gr.Chatbot(label="GPT-3.5 Chat")
simple_input = gr.Textbox(
placeholder="Ask anythingβ¦",
show_label=False,
lines=2,
max_lines=4,
)
simple_send = gr.Button("Send")
simple_reset = gr.Button("Reset")
# 2) AGENT FORM (HIDDEN UNTIL CLICK)
prefill_flag = gr.State(False)
with gr.Group(elem_id="agent_form", visible=False) as agent_form:
# Move Back to Home button to the very top
back_button = gr.Button("π Back to Home", elem_id="back_button")
# Steps box at the top of the builder panel for user guidance
gr.HTML("""
<div class='steps-box' style='margin-top: 0; margin-bottom: 1.5em;'>
<ul>
<li><b>Step 1:</b> Pick a prefilled agent template or start from scratch</li>
<li><b>Step 2:</b> Choose your agentβs focus (Stewardship, Research, Clinicalβ¦), name, and mission.</li>
<li><b>Step 3:</b> Select from prebuilt skills.</li>
<li><b>Step 4:</b> (Optional) Upload your own documents or trusted URLs</li>
<li><b>Step 5:</b> Generate & test & iterate & start chatting live with your deployed agents</li>
</ul>
</div>
""")
gr.Markdown("### ποΈ Infectious Diseases Agent Builder")
with gr.Row():
# Left panel
with gr.Column(scale=3, elem_classes="left-panel"):
prefilled = gr.Dropdown(choices=["None"] + list(prefilled_agents.keys()), label="Start with a prefilled agent?")
with gr.Accordion("π οΈ Basic Settings", open=True):
agent_type = gr.Radio(
choices=[
"π‘οΈ Antimicrobial Stewardship",
"π¦ Infection Prevention and Control",
"π¬ Research Assistant",
"π₯ Clinical Assistant",
"π Education Assistant",
"πΌ Orchestrator",
],
label="Select Agent Type",
elem_id="select_agent_type_radio"
)
agent_name = gr.Textbox(label="Agent Name", placeholder="e.g., SmartSteward", max_lines=1)
agent_mission = gr.Textbox(label="Agent Mission", placeholder="Describe what your agent should doβ¦", lines=4)
skills = gr.CheckboxGroup(choices=[], label="Select Skills")
with gr.Accordion("βοΈ Advanced Options", open=False):
link1, link2, link3, link4 = [
gr.Textbox(label=f"Trusted Source Link {i} (optional)")
for i in range(1,5)
]
web_access_toggle = gr.Checkbox(label="Allow Internet Search π", value=True, interactive=True)
allow_fallback_toggle = gr.Checkbox(label="Allow Fallback to LLM General Knowledge π€", value=True)
challenger_toggle = gr.Checkbox(label="Enable Adversarial AI Validation (Challenger)", value=False, info="If enabled, agent replies will be critiqued by an adversarial LLM before being shown to the user.")
# --- Auto-toggle logic for web_access_toggle ---
def update_web_access_toggle(l1, l2, l3, l4):
links = [l1, l2, l3, l4]
any_links = any(l.strip() for l in links if l)
if any_links:
# If any trusted link is present, force checked and disable
return gr.update(value=True, interactive=False)
else:
# If all empty, allow user to toggle
return gr.update(interactive=True)
# Wire up the logic: any change to link1-4 updates web_access_toggle
for link in [link1, link2, link3, link4]:
link.change(
fn=update_web_access_toggle,
inputs=[link1, link2, link3, link4],
outputs=[web_access_toggle]
)
generate_button = gr.Button("β¨ Generate Agent Config", elem_classes="generate-btn")
with gr.Accordion("π¦ Generated Agent Config", open=False):
agent_loader = gr.Markdown("")
agent_output = gr.Code(label="Configuration (JSON)", language="json")
download_button = gr.DownloadButton(label="Download Config")
# Move Upload Knowledge Files section below agent config
with gr.Accordion("π Upload Knowledge Files (Global)", open=False):
uploaded_files = gr.File(label="Upload Knowledge Files", file_count="multiple")
upload_alert = gr.Markdown("", visible=False)
# Right panel
with gr.Column(scale=9, elem_classes="right-panel"):
builder_active_agents = gr.Markdown("### π§ Active Agents\n_(None yet)_")
# dropdown + action buttons inline
with gr.Row(elem_classes="agent-controls"):
with gr.Column(scale=3, elem_classes="agent-dropdown-column"):
agent_remove_dropdown = gr.Dropdown(
label="Select an agent",
choices=[],
elem_classes="agent-dropdown"
)
with gr.Column(scale=1, elem_classes="agent-button-group"):
chat_agent_button = gr.Button(
"π¬ Chat with Selected Agent",
elem_classes="action-btn"
)
edit_agent_button = gr.Button(
"π Edit Selected Agent",
elem_classes="action-btn"
)
remove_agent_button = gr.Button(
"β Remove Selected Agent",
elem_classes="action-btn"
)
show_debug = gr.Checkbox(label="π Show tool reasoning", value=False)
# Only one chatbot in builder panel
builder_chatbot = gr.Chatbot(
label="π¬ Live Conversation with Your ID Agent",
value=[["", "π **Welcome to the Agent Builder!**\n\nTo start testing your agents:\n1. Generate an agent using the form on the left\n2. Select your agent from the dropdown menu above\n3. Click 'π¬ Chat with Selected Agent'\n4. Then you can type your questions in the chat box\n\n*Please create and select an agent to begin testing.*"]]
)
chat_input = gr.Textbox(
placeholder="Please select an agent to start chatting...",
show_label=False,
lines=3,
max_lines=5,
interactive=False
)
active_children = gr.State([]) # will hold a list of JSON-configs
# --- Builder panel clinical variable fields (hidden, but needed for wiring) ---
builder_deescalation_culture = gr.Textbox(visible=False)
builder_deescalation_meds = gr.Textbox(visible=False)
builder_stewardship_site = gr.Textbox(visible=False)
builder_stewardship_biofilm = gr.Textbox(visible=False)
builder_stewardship_response = gr.Textbox(visible=False)
builder_stewardship_crcl = gr.Textbox(visible=False)
builder_stewardship_severity = gr.Textbox(visible=False)
builder_stewardship_allergies = gr.Textbox(visible=False)
builder_empiric_age = gr.Textbox(visible=False)
builder_empiric_allergies = gr.Textbox(visible=False)
builder_empiric_labs = gr.Textbox(visible=False)
builder_empiric_culture = gr.Textbox(visible=False)
builder_empiric_meds = gr.Textbox(visible=False)
builder_empiric_site = gr.Textbox(visible=False)
builder_empiric_biofilm = gr.Textbox(visible=False)
builder_empiric_response = gr.Textbox(visible=False)
builder_empiric_crcl = gr.Textbox(visible=False)
builder_empiric_severity = gr.Textbox(visible=False)
# Add the builder send button under the chatbox
builder_send_button = gr.Button("Send", elem_id="builder_send_button", interactive=False)
reset_button = gr.Button("π Reset Chat", interactive=False)
invocation_log = gr.Markdown(
value="",
label="π Tool Invocation Log",
visible=True
)
gr.Markdown("---\nBuilt with β€οΈ for ID Week 2025 β Empowering Infectious Diseases Innovation")
# Move the Chat With the Agents You Deployed button to the bottom, below the disclaimer
to_chat_button = gr.Button("π¨οΈ Chat With the Agents You Deployed", elem_id="to_chat_button")
# --- Builder panel send button logic ---
def builderpanel_handle_with_dynamic_vars(
agent_name, user_text, histories,
deescalation_culture, deescalation_meds,
stewardship_site, stewardship_biofilm, stewardship_response, stewardship_crcl, stewardship_severity, stewardship_allergies,
empiric_age, empiric_allergies, empiric_labs, empiric_culture, empiric_meds, empiric_site, empiric_biofilm, empiric_response, empiric_crcl, empiric_severity
):
agent_json = agents_config.get(agent_name)
if agent_json:
agent_data = json.loads(agent_json)
skills = agent_data.get("skills", [])
history = histories.get(agent_name, [])
# --- Trusted links wiring ---
trusted_links = []
for k in ["trusted_links", "trusted_links_1", "trusted_links_2", "trusted_links_3", "trusted_links_4"]:
# Support both list and individual keys
if isinstance(agent_data.get(k), list):
trusted_links.extend([l for l in agent_data[k] if l])
elif isinstance(agent_data.get(k), str) and agent_data[k]:
trusted_links.append(agent_data[k])
# Also check for link1-link4 keys (legacy)
for k in ["link1", "link2", "link3", "link4"]:
if agent_data.get(k):
trusted_links.append(agent_data[k])
trusted_links = [l for l in trusted_links if l]
# Do not prepend trusted links to every user message; just keep them available for tools
# if trusted_links:
# links_str = ", ".join(trusted_links)
# user_text = f"Trusted sources for this agent: {links_str}\n\n" + user_text
# --- End trusted links wiring ---
# Deescalation tool
if "recommend_deescalation" in skills:
var_names = ["culture", "meds", "site_of_infection", "risk_of_biofilm", "current_response", "creatinine_clearance", "severity_of_infection", "known_allergies"]
user_vars = {
"culture": deescalation_culture,
"meds": deescalation_meds,
"site_of_infection": stewardship_site,
"risk_of_biofilm": stewardship_biofilm,
"current_response": stewardship_response,
"creatinine_clearance": stewardship_crcl,
"severity_of_infection": stewardship_severity,
"known_allergies": stewardship_allergies
}
extracted = extract_clinical_variables_from_history(history, var_names)
for k in var_names:
if not user_vars[k]:
user_vars[k] = extracted.get(k) or ""
# Only prepend if at least one field is non-empty
if any(user_vars[k] for k in var_names):
user_text = f"[DEESCALATION_TOOL_INPUT] {json.dumps(user_vars)}\n" + user_text
elif "alert_prolonged_antibiotic_use" in skills:
var_names = ["site_of_infection", "risk_of_biofilm", "current_response", "creatinine_clearance", "severity_of_infection", "known_allergies"]
user_vars = {
"site_of_infection": stewardship_site,
"risk_of_biofilm": stewardship_biofilm,
"current_response": stewardship_response,
"creatinine_clearance": stewardship_crcl,
"severity_of_infection": stewardship_severity,
"known_allergies": stewardship_allergies
}
extracted = extract_clinical_variables_from_history(history, var_names)
for k in var_names:
if not user_vars[k]:
user_vars[k] = extracted.get(k) or ""
if any(user_vars[k] for k in var_names):
user_text = f"[ALERT_PROLONGED_ABX_INPUT] {json.dumps(user_vars)}\n" + user_text
elif "recommend_empiric_therapy" in skills:
# Remove 'known_allergies' as a separate required field (it's covered by 'allergies')
var_names = [
"age", "allergies", "labs", "culture", "meds", "site_of_infection",
"risk_of_biofilm", "current_response", "creatinine_clearance", "severity_of_infection"
]
user_vars = {
"age": empiric_age,
"allergies": empiric_allergies,
"labs": empiric_labs,
"culture": empiric_culture,
"meds": empiric_meds,
"site_of_infection": empiric_site,
"risk_of_biofilm": empiric_biofilm,
"current_response": empiric_response,
"creatinine_clearance": empiric_crcl,
"severity_of_infection": empiric_severity
}
extracted = extract_clinical_variables_from_history(history, var_names)
for k in var_names:
if not user_vars[k]:
user_vars[k] = extracted.get(k) or ""
# If any required field is missing, prompt = ...
missing = [k.replace('_', ' ').capitalize() for k in var_names if not user_vars[k].strip()]
if missing:
prompt = f"Please provide the following required information for empiric therapy: {', '.join(missing)}."
# Show this as an assistant message and do not call the tool
history.append({"role": "assistant", "content": prompt})
gradio_history = convert_messages_for_gradio(history)
return gradio_history, histories, "", "", ""
# All required fields present, prepend tool input
user_text = f"[EMPIRIC_THERAPY_INPUT] {json.dumps(user_vars)}\n" + user_text
# Use the same chat handling logic, but ensure the builder_chatbot is updated and history is preserved
# Call chatpanel_handle, but get extra challenger info from simulate_agent_response_stream
import asyncio
from core.agents.chat_orchestrator import simulate_agent_response_stream
agent_json_val = agents_config.get(agent_name)
history_val = histories.get(agent_name, [])
result = None
async def run_stream():
gen = simulate_agent_response_stream(
agent_json=agent_json_val,
history=history_val,
user_input=user_text,
debug_flag=False,
active_children=[]
)
last_result = None
async for result in gen:
last_result = result
return last_result
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
try:
result = loop.run_until_complete(run_stream())
if result is not None and len(result) == 5:
final_history, _, invocation_log, _, challenger_info = result
else:
final_history, updated_histories, cleared_input, invocation_log = chatpanel_handle(agent_name, user_text, histories)
challenger_info = None
gradio_history = convert_messages_for_gradio(final_history)
return gradio_history, updated_histories, cleared_input, invocation_log, ""
except Exception:
# fallback to old behavior if error
final_history, updated_histories, cleared_input, invocation_log = chatpanel_handle(agent_name, user_text, histories)
challenger_info = None
gradio_history = convert_messages_for_gradio(final_history)
return gradio_history, updated_histories, cleared_input, invocation_log, ""
# Update histories
updated_histories = histories.copy()
updated_histories[agent_name] = final_history
# Prepare challenger markdown (debug log for builder panel)
challenger_md = ""
if isinstance(challenger_info, dict):
orig = challenger_info.get("original_reply", "")
crit = challenger_info.get("challenger_critique", "")
final = challenger_info.get("final_reply", "")
# Ensure critique is never None or empty in the UI
if not crit or str(crit).strip().lower() == "none":
crit = "OK"
# Only show the final (challenger-approved) answer in the chatbox
if final and final_history and isinstance(final_history, list):
final_history[-1]["content"] = final
# In the builder panel log, show the critique, but in the chatbox, only show the final answer
# If the challenger changed the answer, only show the suggested revision as the final answer, not the critique text
if final != orig and crit != "OK":
challenger_md = f"**Original Agent Answer:**\n\n{orig}\n\n**Challenger Critique:**\n\n{crit}\n\n**Final Answer Shown to User:**\n\n{final}"
else:
challenger_md = f"**Original Agent Answer:**\n\n{orig}\n\n**Final Answer Shown to User:**\n\n{final}"
# Convert final_history to Gradio format before returning
gradio_history = convert_messages_for_gradio(final_history)
return gradio_history, updated_histories, "", invocation_log, challenger_md
# Add a Markdown for challenger debug info under the invocation log, only in the builder panel
challenger_debug_md = gr.Markdown("", visible=True)
# Place the Markdown visually under the invocation log in the builder panel only
builder_send_button.click(
fn=builderpanel_handle_with_dynamic_vars,
inputs=[
agent_remove_dropdown, chat_input, builder_chat_histories,
builder_deescalation_culture, builder_deescalation_meds,
builder_stewardship_site, builder_stewardship_biofilm, builder_stewardship_response, builder_stewardship_crcl, builder_stewardship_severity, builder_stewardship_allergies,
builder_empiric_age, builder_empiric_allergies, builder_empiric_labs, builder_empiric_culture, builder_empiric_meds, builder_empiric_site, builder_empiric_biofilm, builder_empiric_response, builder_empiric_crcl, builder_empiric_severity
],
outputs=[builder_chatbot, builder_chat_histories, chat_input, invocation_log, challenger_debug_md]
)
# Hide the challenger debug markdown in the deployed chat and simple chat panels
# (No code needed, as those panels do not use this Markdown block)
# (3) Agent-Chat panel, hidden by default
with gr.Group(elem_id="agent_chat", visible=False) as chat_panel:
gr.Markdown("### π¨οΈ Chat with Your ID Agents")
chat_active_agents = gr.Markdown("### π§ Active Agents\n_(None yet)_")
# Dropdown to pick which agent to chat with
agent_picker = gr.Dropdown(
label="Select Agent",
choices=list(agents_config.keys()),
interactive=True
)
# The ChatGPT-style history box
chat_view = gr.Chatbot(label="Conversation")
# --- Stewardship Tool Clinical Variables Section (Deescalation & Alert Prolonged Abx Use) ---
with gr.Accordion("Stewardship Clinical Variables", open=False, visible=False) as stewardship_vars_section:
deescalation_culture = gr.Textbox(label="Culture & Sensitivity Results", lines=2, visible=False)
deescalation_meds = gr.Textbox(label="Current Antibiotic Regimen", lines=2, visible=False)
stewardship_site = gr.Textbox(label="Site of Infection", lines=1)
stewardship_biofilm = gr.Textbox(label="Risk or Presence of Biofilm", lines=1)
stewardship_response = gr.Textbox(label="Current Response to Antibiotics", lines=1)
stewardship_crcl = gr.Textbox(label="Creatinine Clearance", lines=1)
stewardship_severity = gr.Textbox(label="Severity of Infection", lines=1)
stewardship_allergies = gr.Textbox(label="Known Drug Allergies", lines=1)
# --- Empiric Therapy Tool Clinical Variables Section ---
with gr.Accordion("Empiric Therapy Clinical Variables", open=False, visible=False) as empiric_vars_section:
empiric_age = gr.Textbox(label="Age", lines=1)
empiric_allergies = gr.Textbox(label="Allergies", lines=1)
empiric_labs = gr.Textbox(label="Recent Labs", lines=2)
empiric_culture = gr.Textbox(label="Culture & Sensitivity Results", lines=2)
empiric_meds = gr.Textbox(label="Current Antibiotic Regimen", lines=2)
empiric_site = gr.Textbox(label="Site of Infection", lines=1)
empiric_biofilm = gr.Textbox(label="Risk or Presence of Biofilm", lines=1)
empiric_response = gr.Textbox(label="Current Response to Antibiotics", lines=1)
empiric_crcl = gr.Textbox(label="Creatinine Clearance", lines=1)
empiric_severity = gr.Textbox(label="Severity of Infection", lines=1)
empiric_known_allergies = gr.Textbox(label="Known Drug Allergies", lines=1)
# --- Infection Prevention and Control Clinical Variables Section ---
with gr.Accordion("IPC Clinical Variables", open=False, visible=False) as ipc_vars_section:
ipc_facility_name = gr.Textbox(label="Facility Name", lines=1)
ipc_location = gr.Textbox(label="Location/Unit", lines=1)
ipc_infection_type = gr.Textbox(label="Type of Infection (HAI, SSI, CLABSI, etc.)", lines=1)
ipc_onset_date = gr.Textbox(label="Infection Onset Date", lines=1)
ipc_device_days = gr.Textbox(label="Device Days (Central Line, Ventilator, etc.)", lines=1)
ipc_pathogen = gr.Textbox(label="Pathogen Identified", lines=1)
ipc_resistance_pattern = gr.Textbox(label="Resistance Pattern (MRSA, CRE, etc.)", lines=1)
ipc_isolation_status = gr.Textbox(label="Current Isolation Precautions", lines=1)
ipc_compliance_issues = gr.Textbox(label="Compliance/Breach Issues", lines=2)
# --- Clinical Assistant Clinical Variables Section ---
with gr.Accordion("Clinical Assessment Variables", open=False, visible=False) as clinical_vars_section:
clinical_chief_complaint = gr.Textbox(label="Chief Complaint", lines=2)
clinical_history_present = gr.Textbox(label="History of Present Illness", lines=3)
clinical_past_medical = gr.Textbox(label="Past Medical History", lines=2)
clinical_medications = gr.Textbox(label="Current Medications", lines=2)
clinical_allergies = gr.Textbox(label="Allergies", lines=1)
clinical_social_history = gr.Textbox(label="Social History (Travel, Exposures)", lines=2)
clinical_vital_signs = gr.Textbox(label="Vital Signs", lines=1)
clinical_physical_exam = gr.Textbox(label="Physical Examination Findings", lines=3)
clinical_lab_results = gr.Textbox(label="Laboratory Results", lines=2)
clinical_imaging = gr.Textbox(label="Imaging Results", lines=2)
# --- Orchestrator Coordination Variables Section ---
with gr.Accordion("Multi-Agent Coordination Variables", open=False, visible=False) as orchestrator_vars_section:
# Stewardship Variables (8 fields)
orchestrator_culture = gr.Textbox(label="Culture Results", lines=1)
orchestrator_meds = gr.Textbox(label="Current Medications", lines=1)
orchestrator_site = gr.Textbox(label="Site of Infection", lines=1)
orchestrator_biofilm = gr.Textbox(label="Risk of Biofilm", lines=1)
orchestrator_response = gr.Textbox(label="Current Response", lines=1)
orchestrator_crcl = gr.Textbox(label="Creatinine Clearance", lines=1)
orchestrator_severity = gr.Textbox(label="Severity of Infection", lines=1)
orchestrator_allergies = gr.Textbox(label="Known Allergies", lines=1)
# IPC Variables (9 fields)
orchestrator_facility_name = gr.Textbox(label="Facility Name", lines=1)
orchestrator_location = gr.Textbox(label="Location/Unit", lines=1)
orchestrator_infection_type = gr.Textbox(label="Type of Infection (HAI, SSI, CLABSI, etc.)", lines=1)
orchestrator_onset_date = gr.Textbox(label="Infection Onset Date", lines=1)
orchestrator_device_days = gr.Textbox(label="Device Days (Central Line, Ventilator, etc.)", lines=1)
orchestrator_pathogen = gr.Textbox(label="Pathogen Identified", lines=1)
orchestrator_resistance_pattern = gr.Textbox(label="Resistance Pattern (MRSA, CRE, etc.)", lines=1)
orchestrator_isolation_status = gr.Textbox(label="Current Isolation Precautions", lines=1)
orchestrator_compliance_issues = gr.Textbox(label="Compliance/Breach Issues", lines=2)
# Clinical Assistant Variables (10 fields)
orchestrator_chief_complaint = gr.Textbox(label="Chief Complaint", lines=2)
orchestrator_history_present = gr.Textbox(label="History of Present Illness", lines=3)
orchestrator_past_medical = gr.Textbox(label="Past Medical History", lines=2)
orchestrator_medications = gr.Textbox(label="Current Medications", lines=2)
orchestrator_patient_allergies = gr.Textbox(label="Patient Allergies", lines=1)
orchestrator_social_history = gr.Textbox(label="Social History (Travel, Exposures)", lines=2)
orchestrator_vital_signs = gr.Textbox(label="Vital Signs", lines=1)
orchestrator_physical_exam = gr.Textbox(label="Physical Examination Findings", lines=3)
orchestrator_lab_results = gr.Textbox(label="Laboratory Results", lines=2)
orchestrator_imaging = gr.Textbox(label="Imaging Results", lines=2)
# Add chat input box to chat panel
chat_panel_input = gr.Textbox(
placeholder="Type your question hereβ¦",
show_label=False,
lines=3,
max_lines=5
)
# Only show chat_send, chat_reset, and chat_back in the chat panel
with gr.Row(elem_classes="chat-panel-buttons"):
chat_send = gr.Button("Send", elem_classes="chat-only-btn")
chat_reset = gr.Button("π Reset Chat", elem_classes="chat-only-btn")
chat_back = gr.Button("π Back to Builder", elem_id="chat_back", elem_classes="chat-only-btn")
# Patient cards section - positioned at bottom of chat panel
with gr.Group(elem_classes="patient-cards-section"):
gr.Markdown("### π― Select Context-Aware Chat Scenario (Optional)", elem_classes="patient-cards-header")
# First row - 3 cards
with gr.Row(elem_classes="patient-cards-row"):
# Patient Card 1: Stewardship Case
with gr.Column(elem_classes="patient-card", scale=1):
patient_card_1 = gr.Button(
"π Patient A: ICU Sepsis\n\nπ‘οΈ SmartSteward Case\n\n68F, ICU day 5, on vancomycin + piperacillin-tazobactam for sepsis. Blood cultures positive for MSSA. Patient improving, normal renal function.",
elem_classes="patient-card-btn"
)
# Patient Card 2: IPC Case
with gr.Column(elem_classes="patient-card", scale=1):
patient_card_2 = gr.Button(
"π¦ Patient B: CLABSI Investigation\n\nπ¦ InfectoGuard Case\n\n45M, ICU patient with central line x6 days. Developed fever, positive blood cultures for MRSA. Potential healthcare-associated infection.",
elem_classes="patient-card-btn"
)
# Patient Card 3: Research Case
with gr.Column(elem_classes="patient-card", scale=1):
patient_card_3 = gr.Button(
"㪠Research Query\n\n㪠ResearchRanger Case\n\nLiterature search needed for novel carbapenem-resistant Enterobacterales treatment options and resistance mechanisms.",
elem_classes="patient-card-btn"
)
# Second row - 3 cards
with gr.Row(elem_classes="patient-cards-row"):
# Patient Card 4: Clinical Case
with gr.Column(elem_classes="patient-card", scale=1):
patient_card_4 = gr.Button(
"π₯ Patient C: Complex Diagnosis\n\nπ₯ ClinicoPilot Case\n\n32M with fever, rash, and joint pain after recent travel to Southeast Asia. Multiple differential diagnoses to consider.",
elem_classes="patient-card-btn"
)
# Patient Card 5: Education Case
with gr.Column(elem_classes="patient-card", scale=1):
patient_card_5 = gr.Button(
"π Education Request\n\nπ EduMedCoach Case\n\nMedical student requesting board exam questions and educational materials on antimicrobial resistance mechanisms.",
elem_classes="patient-card-btn"
)
# Patient Card 6: Orchestrator Case
with gr.Column(elem_classes="patient-card", scale=1):
patient_card_6 = gr.Button(
"πΌ Complex Multi-Agent Case\n\nπΌ ID Maestro Case\n\n75M with multiple ID issues: MDRO pneumonia, C. diff colitis, and suspected endocarditis requiring comprehensive analysis.",
elem_classes="patient-card-btn"
)
# Store patient data in hidden state
patient_data = gr.State({})
# Define patient case data
patient_cases = {
"patient_1": {
"name": "Patient A",
"age": "68",
"summary": "68-year-old female in ICU, day 5 of admission for sepsis",
"current_meds": "vancomycin 1g q12h, piperacillin-tazobactam 4.5g q6h",
"culture_results": "Blood cultures (day 3): methicillin-sensitive Staphylococcus aureus (MSSA), sensitive to cefazolin, nafcillin, clindamycin",
"site_of_infection": "bloodstream",
"biofilm_risk": "central venous catheter present",
"response": "clinically improving, fever resolved, WBC trending down",
"creatinine_clearance": "75 mL/min (normal)",
"severity": "severe sepsis, now stable",
"allergies": "NKDA",
"agent_focus": "π‘οΈ Antimicrobial Stewardship",
"context": "This patient is a perfect candidate for antibiotic deescalation given the MSSA blood culture results and clinical improvement. Current broad-spectrum therapy can likely be narrowed."
},
"patient_2": {
"name": "Patient B",
"age": "45",
"summary": "45-year-old male, ICU patient with central line-associated bloodstream infection",
"diagnosis": "Central line-associated bloodstream infection (CLABSI)",
"central_line_days": "6 days",
"culture_results": "Blood cultures positive for methicillin-resistant Staphylococcus aureus (MRSA)",
"symptoms": "fever (38.8Β°C), chills, no other obvious source",
"location": "Methodist Hospital, Dallas, Texas",
"agent_focus": "π¦ Infection Prevention and Control",
"context": "This case requires evaluation for NHSN CLABSI criteria, appropriate isolation precautions for MRSA, and reporting requirements for healthcare-associated infections in Texas."
},
"patient_3": {
"name": "Research Query",
"topic": "Carbapenem-resistant Enterobacterales (CRE) treatment",
"research_focus": "Novel treatment options for CRE infections",
"specific_interests": "resistance mechanisms, combination therapies, newer antibiotics",
"urgency": "clinical decision support needed",
"agent_focus": "π¬ Research Assistant",
"context": "Literature search and evidence synthesis needed for treatment of carbapenem-resistant Enterobacterales infections, including mechanism-based approaches and newest therapeutic options."
},
"patient_4": {
"name": "Patient C",
"age": "32",
"summary": "32-year-old male with fever, rash, and arthralgia after travel",
"travel_history": "Recent travel to Southeast Asia (Thailand, Vietnam) 3 weeks ago",
"symptoms": "fever (39.1Β°C), maculopapular rash on trunk and extremities, polyarthralgia",
"duration": "symptoms for 5 days",
"differential": "considering dengue fever, chikungunya, Zika virus, typhus, malaria",
"agent_focus": "π₯ Clinical Assistant",
"context": "Complex infectious disease case requiring systematic evaluation of travel-related illnesses and patient education about diagnostic workup and treatment options."
},
"patient_5": {
"name": "Education Request",
"level": "Medical student, 3rd year",
"topic": "Antimicrobial resistance mechanisms",
"request": "Board exam questions and educational materials",
"focus_areas": "beta-lactamase types, carbapenemases, ESBL, AmpC",
"format_needed": "multiple choice questions, flashcards, presentation slides",
"agent_focus": "π Education Assistant",
"context": "Educational content creation for antimicrobial resistance mechanisms, suitable for medical student board exam preparation with varying difficulty levels."
},
"patient_6": {
"name": "Patient D",
"age": "75",
"summary": "75-year-old male with multiple infectious complications",
"problem_1": "Ventilator-associated pneumonia with XDR Pseudomonas aeruginosa",
"problem_2": "Clostridioides difficile colitis (severe, recurrent)",
"problem_3": "Suspected infective endocarditis (blood cultures pending)",
"comorbidities": "diabetes, chronic kidney disease (CrCl 30 mL/min), heart failure",
"current_status": "ICU day 12, on multiple antibiotics, clinically complex",
"agent_focus": "πΌ Orchestrator",
"context": "Complex multi-system infectious disease case requiring coordination between stewardship, infection control, and clinical decision-making across multiple agents and specialties."
}
}
# Patient card click handlers
def load_patient_1():
case = patient_cases["patient_1"]
context_msg = f"""**Patient Case Loaded: {case['name']}**
**Clinical Summary:** {case['summary']}
- **Age:** {case['age']} years old
- **Current Antibiotics:** {case['current_meds']}
- **Culture Results:** {case['culture_results']}
- **Site of Infection:** {case['site_of_infection']}
- **Current Response:** {case['response']}
- **Renal Function:** {case['creatinine_clearance']}
- **Allergies:** {case['allergies']}
**Agent Focus:** {case['agent_focus']}
*How can I help with this stewardship case?*"""
# Auto-populate stewardship clinical variables
role_content_history = [{"role": "assistant", "content": context_msg}]
gradio_history = convert_messages_for_gradio(role_content_history)
return (
gradio_history,
case,
case.get('culture_results', ''), # deescalation_culture
case.get('current_meds', ''), # deescalation_meds
case.get('site_of_infection', ''), # stewardship_site
case.get('biofilm_risk', ''), # stewardship_biofilm
case.get('response', ''), # stewardship_response
case.get('creatinine_clearance', ''), # stewardship_crcl
case.get('severity', ''), # stewardship_severity
case.get('allergies', ''), # stewardship_allergies
case.get('age', ''), # empiric_age
case.get('allergies', ''), # empiric_allergies
'', # empiric_labs (not in patient data)
case.get('culture_results', ''), # empiric_culture
case.get('current_meds', ''), # empiric_meds
case.get('site_of_infection', ''), # empiric_site
case.get('biofilm_risk', ''), # empiric_biofilm
case.get('response', ''), # empiric_response
case.get('creatinine_clearance', ''), # empiric_crcl
case.get('severity', ''), # empiric_severity
'', '', '', '', '', '', '', '', '', # ipc fields (9 fields)
'', '', '', '', '', '', '', '', '', '', # clinical fields (10 fields)
'', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '' # orchestrator fields (27 fields)
)
def load_patient_2():
case = patient_cases["patient_2"]
context_msg = f"""**Patient Case Loaded: {case['name']}**
**Clinical Summary:** {case['summary']}
- **Age:** {case['age']} years old
- **Diagnosis:** {case['diagnosis']}
- **Central Line Duration:** {case['central_line_days']}
- **Culture Results:** {case['culture_results']}
- **Symptoms:** {case['symptoms']}
- **Location:** {case['location']}
**Agent Focus:** {case['agent_focus']}
*How can I help with this infection prevention case?*"""
# Auto-populate IPC clinical variables for Patient B
role_content_history = [{"role": "assistant", "content": context_msg}]
gradio_history = convert_messages_for_gradio(role_content_history)
return (
gradio_history,
case,
'', '', '', '', '', '', '', '', # stewardship fields (8 fields)
'', '', '', '', '', '', '', '', '', '', # empiric fields (10 fields)
'', # ipc_facility_name (blank for user input)
'', # ipc_location (blank for user input)
case.get('diagnosis', ''), # ipc_infection_type
'admission + ' + case.get('central_line_days', ''), # ipc_onset_date
case.get('central_line_days', ''), # ipc_device_days
'MRSA' if 'MRSA' in case.get('culture_results', '') else case.get('culture_results', ''), # ipc_pathogen
'MRSA' if 'MRSA' in case.get('culture_results', '') else 'pending resistance testing', # ipc_resistance_pattern
'Contact precautions for MRSA', # ipc_isolation_status
'Review central line maintenance', # ipc_compliance_issues
'', '', '', '', '', '', '', '', '', '', # clinical fields (10 fields)
'', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '' # orchestrator fields (27 fields)
)
def load_patient_3():
case = patient_cases["patient_3"]
context_msg = f"""**Research Query Loaded: {case['name']}**
**Research Focus:** {case['research_focus']}
- **Topic:** {case['topic']}
- **Specific Interests:** {case['specific_interests']}
- **Urgency:** {case['urgency']}
**Agent Focus:** {case['agent_focus']}
*How can I help with your research needs?*"""
# Return empty clinical variables for research case
role_content_history = [{"role": "assistant", "content": context_msg}]
gradio_history = convert_messages_for_gradio(role_content_history)
return (
gradio_history,
case,
'', '', '', '', '', '', '', '', # stewardship fields (8 fields)
'', '', '', '', '', '', '', '', '', '', # empiric fields (10 fields)
'', '', '', '', '', '', '', '', '', # ipc fields (9 fields)
'', '', '', '', '', '', '', '', '', '', # clinical fields (10 fields)
'', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '' # orchestrator fields (27 fields)
)
def load_patient_4():
case = patient_cases["patient_4"]
context_msg = f"""**Patient Case Loaded: {case['name']}**
**Clinical Summary:** {case['summary']}
- **Age:** {case['age']} years old
- **Travel History:** {case['travel_history']}
- **Symptoms:** {case['symptoms']}
- **Duration:** {case['duration']}
- **Differential Diagnosis:** {case['differential']}
**Agent Focus:** {case['agent_focus']}
*How can I help with this clinical case?*"""
# Return clinical assistant-focused variables for Patient E case
role_content_history = [{"role": "assistant", "content": context_msg}]
gradio_history = convert_messages_for_gradio(role_content_history)
return (
gradio_history,
case,
'', '', '', '', '', '', '', '', # stewardship fields (8 fields)
'', '', '', '', '', '', '', '', '', '', # empiric fields (10 fields)
'', '', '', '', '', '', '', '', '', # ipc fields (9 fields)
case['symptoms'], # chief_complaint
f"Patient with travel history to {case['travel_history']} presenting with {case['symptoms']} for {case['duration']}", # history_present
'Travel medicine history as noted', # past_medical_history
'', # current_medications
'', # allergies
f"Recent travel to {case['travel_history']}", # social_history
'', # vital_signs
'', # physical_exam
'', # lab_results
'', # imaging_results
'', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '' # orchestrator fields (27 fields)
)
def load_patient_5():
case = patient_cases["patient_5"]
context_msg = f"""**Education Request Loaded: {case['name']}**
**Educational Details:**
- **Student Level:** {case['level']}
- **Topic:** {case['topic']}
- **Request:** {case['request']}
- **Focus Areas:** {case['focus_areas']}
- **Formats Needed:** {case['format_needed']}
**Agent Focus:** {case['agent_focus']}
*How can I help with your educational materials?*"""
# Return empty clinical variables for education case
role_content_history = [{"role": "assistant", "content": context_msg}]
gradio_history = convert_messages_for_gradio(role_content_history)
return (
gradio_history,
case,
'', '', '', '', '', '', '', '', # stewardship fields (8 fields)
'', '', '', '', '', '', '', '', '', '', # empiric fields (10 fields)
'', '', '', '', '', '', '', '', '', # ipc fields (9 fields)
'', '', '', '', '', '', '', '', '', '', # clinical fields (10 fields)
'', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '' # orchestrator fields (27 fields)
)
def load_patient_6():
case = patient_cases["patient_6"]
context_msg = f"""**Complex Case Loaded: {case['name']}**
**Clinical Summary:** {case['summary']}
- **Age:** {case['age']} years old
- **Problem 1:** {case['problem_1']}
- **Problem 2:** {case['problem_2']}
- **Problem 3:** {case['problem_3']}
- **Comorbidities:** {case['comorbidities']}
- **Current Status:** {case['current_status']}
**Agent Focus:** {case['agent_focus']}
*This complex case requires multi-agent coordination. How can I help orchestrate the care?*"""
# Auto-populate clinical variables for complex orchestrator case
role_content_history = [{"role": "assistant", "content": context_msg}]
gradio_history = convert_messages_for_gradio(role_content_history)
return (
gradio_history,
case,
'', # deescalation_culture (no specific culture data)
'multiple antibiotics', # deescalation_meds (from current_status)
'multiple sites (respiratory, GI)', # stewardship_site (inferred from problems)
'biofilm risk from devices', # stewardship_biofilm (inferred)
'complex, multiple infections', # stewardship_response
case.get('comorbidities', '').split(',')[1].strip() if 'CrCl' in case.get('comorbidities', '') else '30 mL/min', # stewardship_crcl
'severe, multiple complications', # stewardship_severity
'review allergies needed', # stewardship_allergies
case.get('age', ''), # empiric_age
'review allergies needed', # empiric_allergies
'', # empiric_labs
'', # empiric_culture
'multiple antibiotics', # empiric_meds
'multiple sites (respiratory, GI)', # empiric_site
'biofilm risk from devices', # empiric_biofilm
'complex, multiple infections', # empiric_response
'30 mL/min', # empiric_crcl
'severe, multiple complications', # empiric_severity
'', '', '', '', '', '', '', '', '', # ipc fields (9 fields)
'Multiple acute medical problems', # chief_complaint
f"Complex patient with {case['problem_1']}, {case['problem_2']}, and {case['problem_3']}", # history_present
case['comorbidities'], # past_medical_history
'Multiple antibiotics, supportive care', # current_medications
'Review needed', # allergies
'ICU setting, complex care', # social_history
'Multiple abnormalities expected', # vital_signs
'Complex findings across systems', # physical_exam
'Multiple abnormal values', # lab_results
'Multiple studies indicated', # imaging_results
# Auto-populate orchestrator variables from case data
'', # orchestrator_culture
'multiple antibiotics', # orchestrator_meds
'multiple sites (respiratory, GI)', # orchestrator_site
'biofilm risk from devices', # orchestrator_biofilm
'complex, multiple infections', # orchestrator_response
'30 mL/min', # orchestrator_crcl
'severe, multiple complications', # orchestrator_severity
'review allergies needed', # orchestrator_allergies
'', # orchestrator_facility_name
'ICU', # orchestrator_location
'multiple HAIs', # orchestrator_infection_type
'admission', # orchestrator_onset_date
'multiple devices', # orchestrator_device_days
'multiple pathogens', # orchestrator_pathogen
'review resistance patterns', # orchestrator_resistance_pattern
'contact precautions', # orchestrator_isolation_status
'complex care coordination', # orchestrator_compliance_issues
'Multiple acute medical problems', # orchestrator_chief_complaint
f"Complex patient with {case['problem_1']}, {case['problem_2']}, and {case['problem_3']}", # orchestrator_history_present
case['comorbidities'], # orchestrator_past_medical
'Multiple antibiotics, supportive care', # orchestrator_medications
'Review needed', # orchestrator_patient_allergies
'ICU setting, complex care', # orchestrator_social_history
'Multiple abnormalities expected', # orchestrator_vital_signs
'Complex findings across systems', # orchestrator_physical_exam
'Multiple abnormal values', # orchestrator_lab_results
'Multiple studies indicated' # orchestrator_imaging
)
# Store patient data in hidden state
patient_data = gr.State({})
# Define patient case data
patient_cases = {
"patient_1": {
"name": "Patient A",
"age": "68",
"summary": "68-year-old female in ICU, day 5 of admission for sepsis",
"current_meds": "vancomycin 1g q12h, piperacillin-tazobactam 4.5g q6h",
"culture_results": "Blood cultures (day 3): methicillin-sensitive Staphylococcus aureus (MSSA), sensitive to cefazolin, nafcillin, clindamycin",
"site_of_infection": "bloodstream",
"biofilm_risk": "central venous catheter present",
"response": "clinically improving, fever resolved, WBC trending down",
"creatinine_clearance": "75 mL/min (normal)",
"severity": "severe sepsis, now stable",
"allergies": "NKDA",
"agent_focus": "π‘οΈ Antimicrobial Stewardship",
"context": "This patient is a perfect candidate for antibiotic deescalation given the MSSA blood culture results and clinical improvement. Current broad-spectrum therapy can likely be narrowed."
},
"patient_2": {
"name": "Patient B",
"age": "45",
"summary": "45-year-old male, ICU patient with central line-associated bloodstream infection",
"diagnosis": "Central line-associated bloodstream infection (CLABSI)",
"central_line_days": "6 days",
"culture_results": "Blood cultures positive for methicillin-resistant Staphylococcus aureus (MRSA)",
"symptoms": "fever (38.8Β°C), chills, no other obvious source",
"location": "Methodist Hospital, Dallas, Texas",
"agent_focus": "π¦ Infection Prevention and Control",
"context": "This case requires evaluation for NHSN CLABSI criteria, appropriate isolation precautions for MRSA, and reporting requirements for healthcare-associated infections in Texas."
},
"patient_3": {
"name": "Research Query",
"topic": "Carbapenem-resistant Enterobacterales (CRE) treatment",
"research_focus": "Novel treatment options for CRE infections",
"specific_interests": "resistance mechanisms, combination therapies, newer antibiotics",
"urgency": "clinical decision support needed",
"agent_focus": "π¬ Research Assistant",
"context": "Literature search and evidence synthesis needed for treatment of carbapenem-resistant Enterobacterales infections, including mechanism-based approaches and newest therapeutic options."
},
"patient_4": {
"name": "Patient C",
"age": "32",
"summary": "32-year-old male with fever, rash, and arthralgia after travel",
"travel_history": "Recent travel to Southeast Asia (Thailand, Vietnam) 3 weeks ago",
"symptoms": "fever (39.1Β°C), maculopapular rash on trunk and extremities, polyarthralgia",
"duration": "symptoms for 5 days",
"differential": "considering dengue fever, chikungunya, Zika virus, typhus, malaria",
"agent_focus": "π₯ Clinical Assistant",
"context": "Complex infectious disease case requiring systematic evaluation of travel-related illnesses and patient education about diagnostic workup and treatment options."
},
"patient_5": {
"name": "Education Request",
"level": "Medical student, 3rd year",
"topic": "Antimicrobial resistance mechanisms",
"request": "Board exam questions and educational materials",
"focus_areas": "beta-lactamase types, carbapenemases, ESBL, AmpC",
"format_needed": "multiple choice questions, flashcards, presentation slides",
"agent_focus": "π Education Assistant",
"context": "Educational content creation for antimicrobial resistance mechanisms, suitable for medical student board exam preparation with varying difficulty levels."
},
"patient_6": {
"name": "Patient D",
"age": "75",
"summary": "75-year-old male with multiple infectious complications",
"problem_1": "Ventilator-associated pneumonia with XDR Pseudomonas aeruginosa",
"problem_2": "Clostridioides difficile colitis (severe, recurrent)",
"problem_3": "Suspected infective endocarditis (blood cultures pending)",
"comorbidities": "diabetes, chronic kidney disease (CrCl 30 mL/min), heart failure",
"current_status": "ICU day 12, on multiple antibiotics, clinically complex",
"agent_focus": "πΌ Orchestrator",
"context": "Complex multi-system infectious disease case requiring coordination between stewardship, infection control, and clinical decision-making across multiple agents and specialties."
}
}
# Connect patient card click handlers
patient_card_1.click(
fn=load_patient_1,
inputs=[],
outputs=[
chat_view, patient_data,
deescalation_culture, deescalation_meds,
stewardship_site, stewardship_biofilm, stewardship_response, stewardship_crcl, stewardship_severity, stewardship_allergies,
empiric_age, empiric_allergies, empiric_labs, empiric_culture, empiric_meds, empiric_site, empiric_biofilm, empiric_response, empiric_crcl, empiric_severity,
ipc_facility_name, ipc_location, ipc_infection_type, ipc_onset_date, ipc_device_days, ipc_pathogen, ipc_resistance_pattern, ipc_isolation_status, ipc_compliance_issues,
clinical_chief_complaint, clinical_history_present, clinical_past_medical, clinical_medications, clinical_allergies, clinical_social_history, clinical_vital_signs, clinical_physical_exam, clinical_lab_results, clinical_imaging,
orchestrator_culture, orchestrator_meds, orchestrator_site, orchestrator_biofilm, orchestrator_response, orchestrator_crcl, orchestrator_severity, orchestrator_allergies, orchestrator_facility_name, orchestrator_location, orchestrator_infection_type, orchestrator_onset_date, orchestrator_device_days, orchestrator_pathogen, orchestrator_resistance_pattern, orchestrator_isolation_status, orchestrator_compliance_issues, orchestrator_chief_complaint, orchestrator_history_present, orchestrator_past_medical, orchestrator_medications, orchestrator_patient_allergies, orchestrator_social_history, orchestrator_vital_signs, orchestrator_physical_exam, orchestrator_lab_results, orchestrator_imaging
]
)
patient_card_2.click(
fn=load_patient_2,
inputs=[],
outputs=[
chat_view, patient_data,
deescalation_culture, deescalation_meds,
stewardship_site, stewardship_biofilm, stewardship_response, stewardship_crcl, stewardship_severity, stewardship_allergies,
empiric_age, empiric_allergies, empiric_labs, empiric_culture, empiric_meds, empiric_site, empiric_biofilm, empiric_response, empiric_crcl, empiric_severity,
ipc_facility_name, ipc_location, ipc_infection_type, ipc_onset_date, ipc_device_days, ipc_pathogen, ipc_resistance_pattern, ipc_isolation_status, ipc_compliance_issues,
clinical_chief_complaint, clinical_history_present, clinical_past_medical, clinical_medications, clinical_allergies, clinical_social_history, clinical_vital_signs, clinical_physical_exam, clinical_lab_results, clinical_imaging,
orchestrator_culture, orchestrator_meds, orchestrator_site, orchestrator_biofilm, orchestrator_response, orchestrator_crcl, orchestrator_severity, orchestrator_allergies, orchestrator_facility_name, orchestrator_location, orchestrator_infection_type, orchestrator_onset_date, orchestrator_device_days, orchestrator_pathogen, orchestrator_resistance_pattern, orchestrator_isolation_status, orchestrator_compliance_issues, orchestrator_chief_complaint, orchestrator_history_present, orchestrator_past_medical, orchestrator_medications, orchestrator_patient_allergies, orchestrator_social_history, orchestrator_vital_signs, orchestrator_physical_exam, orchestrator_lab_results, orchestrator_imaging
]
)
patient_card_3.click(
fn=load_patient_3,
inputs=[],
outputs=[
chat_view, patient_data,
deescalation_culture, deescalation_meds,
stewardship_site, stewardship_biofilm, stewardship_response, stewardship_crcl, stewardship_severity, stewardship_allergies,
empiric_age, empiric_allergies, empiric_labs, empiric_culture, empiric_meds, empiric_site, empiric_biofilm, empiric_response, empiric_crcl, empiric_severity,
ipc_facility_name, ipc_location, ipc_infection_type, ipc_onset_date, ipc_device_days, ipc_pathogen, ipc_resistance_pattern, ipc_isolation_status, ipc_compliance_issues,
clinical_chief_complaint, clinical_history_present, clinical_past_medical, clinical_medications, clinical_allergies, clinical_social_history, clinical_vital_signs, clinical_physical_exam, clinical_lab_results, clinical_imaging,
orchestrator_culture, orchestrator_meds, orchestrator_site, orchestrator_biofilm, orchestrator_response, orchestrator_crcl, orchestrator_severity, orchestrator_allergies, orchestrator_facility_name, orchestrator_location, orchestrator_infection_type, orchestrator_onset_date, orchestrator_device_days, orchestrator_pathogen, orchestrator_resistance_pattern, orchestrator_isolation_status, orchestrator_compliance_issues, orchestrator_chief_complaint, orchestrator_history_present, orchestrator_past_medical, orchestrator_medications, orchestrator_patient_allergies, orchestrator_social_history, orchestrator_vital_signs, orchestrator_physical_exam, orchestrator_lab_results, orchestrator_imaging
]
)
patient_card_4.click(
fn=load_patient_4,
inputs=[],
outputs=[
chat_view, patient_data,
deescalation_culture, deescalation_meds,
stewardship_site, stewardship_biofilm, stewardship_response, stewardship_crcl, stewardship_severity, stewardship_allergies,
empiric_age, empiric_allergies, empiric_labs, empiric_culture, empiric_meds, empiric_site, empiric_biofilm, empiric_response, empiric_crcl, empiric_severity,
ipc_facility_name, ipc_location, ipc_infection_type, ipc_onset_date, ipc_device_days, ipc_pathogen, ipc_resistance_pattern, ipc_isolation_status, ipc_compliance_issues,
clinical_chief_complaint, clinical_history_present, clinical_past_medical, clinical_medications, clinical_allergies, clinical_social_history, clinical_vital_signs, clinical_physical_exam, clinical_lab_results, clinical_imaging,
orchestrator_culture, orchestrator_meds, orchestrator_site, orchestrator_biofilm, orchestrator_response, orchestrator_crcl, orchestrator_severity, orchestrator_allergies, orchestrator_facility_name, orchestrator_location, orchestrator_infection_type, orchestrator_onset_date, orchestrator_device_days, orchestrator_pathogen, orchestrator_resistance_pattern, orchestrator_isolation_status, orchestrator_compliance_issues, orchestrator_chief_complaint, orchestrator_history_present, orchestrator_past_medical, orchestrator_medications, orchestrator_patient_allergies, orchestrator_social_history, orchestrator_vital_signs, orchestrator_physical_exam, orchestrator_lab_results, orchestrator_imaging
]
)
patient_card_5.click(
fn=load_patient_5,
inputs=[],
outputs=[
chat_view, patient_data,
deescalation_culture, deescalation_meds,
stewardship_site, stewardship_biofilm, stewardship_response, stewardship_crcl, stewardship_severity, stewardship_allergies,
empiric_age, empiric_allergies, empiric_labs, empiric_culture, empiric_meds, empiric_site, empiric_biofilm, empiric_response, empiric_crcl, empiric_severity,
ipc_facility_name, ipc_location, ipc_infection_type, ipc_onset_date, ipc_device_days, ipc_pathogen, ipc_resistance_pattern, ipc_isolation_status, ipc_compliance_issues,
clinical_chief_complaint, clinical_history_present, clinical_past_medical, clinical_medications, clinical_allergies, clinical_social_history, clinical_vital_signs, clinical_physical_exam, clinical_lab_results, clinical_imaging,
orchestrator_culture, orchestrator_meds, orchestrator_site, orchestrator_biofilm, orchestrator_response, orchestrator_crcl, orchestrator_severity, orchestrator_allergies, orchestrator_facility_name, orchestrator_location, orchestrator_infection_type, orchestrator_onset_date, orchestrator_device_days, orchestrator_pathogen, orchestrator_resistance_pattern, orchestrator_isolation_status, orchestrator_compliance_issues, orchestrator_chief_complaint, orchestrator_history_present, orchestrator_past_medical, orchestrator_medications, orchestrator_patient_allergies, orchestrator_social_history, orchestrator_vital_signs, orchestrator_physical_exam, orchestrator_lab_results, orchestrator_imaging
]
)
patient_card_6.click(
fn=load_patient_6,
inputs=[],
outputs=[
chat_view, patient_data,
deescalation_culture, deescalation_meds,
stewardship_site, stewardship_biofilm, stewardship_response, stewardship_crcl, stewardship_severity, stewardship_allergies,
empiric_age, empiric_allergies, empiric_labs, empiric_culture, empiric_meds, empiric_site, empiric_biofilm, empiric_response, empiric_crcl, empiric_severity,
ipc_facility_name, ipc_location, ipc_infection_type, ipc_onset_date, ipc_device_days, ipc_pathogen, ipc_resistance_pattern, ipc_isolation_status, ipc_compliance_issues,
clinical_chief_complaint, clinical_history_present, clinical_past_medical, clinical_medications, clinical_allergies, clinical_social_history, clinical_vital_signs, clinical_physical_exam, clinical_lab_results, clinical_imaging,
orchestrator_culture, orchestrator_meds, orchestrator_site, orchestrator_biofilm, orchestrator_response, orchestrator_crcl, orchestrator_severity, orchestrator_allergies, orchestrator_facility_name, orchestrator_location, orchestrator_infection_type, orchestrator_onset_date, orchestrator_device_days, orchestrator_pathogen, orchestrator_resistance_pattern, orchestrator_isolation_status, orchestrator_compliance_issues, orchestrator_chief_complaint, orchestrator_history_present, orchestrator_past_medical, orchestrator_medications, orchestrator_patient_allergies, orchestrator_social_history, orchestrator_vital_signs, orchestrator_physical_exam, orchestrator_lab_results, orchestrator_imaging
]
)
# --- Show/hide stewardship fields based on agent selection ---
def update_dynamic_vars_visibility(agent_name):
agent_json = agents_config.get(agent_name)
if agent_json:
agent_data = json.loads(agent_json)
skills = agent_data.get("skills", [])
agent_type = agent_data.get("agent_type", "")
# Stewardship tools
if "recommend_deescalation" in skills or "alert_prolonged_antibiotic_use" in skills:
show_culture = "recommend_deescalation" in skills
show_meds = "recommend_deescalation" in skills
return (
gr.update(visible=True), # stewardship_vars_section
gr.update(visible=show_culture), # deescalation_culture
gr.update(visible=show_meds), # deescalation_meds
gr.update(visible=False), # empiric_vars_section
gr.update(visible=False), # ipc_vars_section
gr.update(visible=False), # clinical_vars_section
gr.update(visible=False) # orchestrator_vars_section
)
# Empiric therapy tool
elif "recommend_empiric_therapy" in skills:
return (
gr.update(visible=False), # stewardship_vars_section
gr.update(visible=False), # deescalation_culture
gr.update(visible=False), # deescalation_meds
gr.update(visible=True), # empiric_vars_section
gr.update(visible=False), # ipc_vars_section
gr.update(visible=False), # clinical_vars_section
gr.update(visible=False) # orchestrator_vars_section
)
# IPC tools
elif "IPC_reporting" in skills or "NHSN_criteria_evaluator" in skills or "recommend_isolation_precautions" in skills:
return (
gr.update(visible=False), # stewardship_vars_section
gr.update(visible=False), # deescalation_culture
gr.update(visible=False), # deescalation_meds
gr.update(visible=False), # empiric_vars_section
gr.update(visible=True), # ipc_vars_section
gr.update(visible=False), # clinical_vars_section
gr.update(visible=False) # orchestrator_vars_section
)
# Clinical Assistant tools
elif "retrieve_guidelines" in skills or "explain_in_layman_language" in skills or "history_taking" in skills:
return (
gr.update(visible=False), # stewardship_vars_section
gr.update(visible=False), # deescalation_culture
gr.update(visible=False), # deescalation_meds
gr.update(visible=False), # empiric_vars_section
gr.update(visible=False), # ipc_vars_section
gr.update(visible=True), # clinical_vars_section
gr.update(visible=False) # orchestrator_vars_section
)
# Orchestrator (check by agent type since it has no specific skills)
elif "πΌ Orchestrator" in agent_type:
return (
gr.update(visible=False), # stewardship_vars_section
gr.update(visible=False), # deescalation_culture
gr.update(visible=False), # deescalation_meds
gr.update(visible=False), # empiric_vars_section
gr.update(visible=False), # ipc_vars_section
gr.update(visible=False), # clinical_vars_section
gr.update(visible=True) # orchestrator_vars_section
)
# Hide all
return (
gr.update(visible=False), # stewardship_vars_section
gr.update(visible=False), # deescalation_culture
gr.update(visible=False), # deescalation_meds
gr.update(visible=False), # empiric_vars_section
gr.update(visible=False), # ipc_vars_section
gr.update(visible=False), # clinical_vars_section
gr.update(visible=False) # orchestrator_vars_section
)
agent_picker.change(
fn=update_dynamic_vars_visibility,
inputs=[agent_picker],
outputs=[
stewardship_vars_section, deescalation_culture, deescalation_meds, empiric_vars_section,
ipc_vars_section, clinical_vars_section, orchestrator_vars_section
]
)
# Client-side script
gr.HTML("""
<script>
document.addEventListener("DOMContentLoaded", function(){
const startBtn = document.getElementById('start_button');
const backBtn = document.getElementById('back_button');
const toChatBtn = document.getElementById('to_chat_button');
const chatBackBtn = document.getElementById('chat_back');
const landing = document.getElementById('landing_card');
const form = document.getElementById('agent_form');
const chat = document.getElementById('agent_chat');
// Landing β Builder
startBtn.addEventListener('click', () => {
landing.classList.add('hidden');
setTimeout(() => {
landing.style.display = 'none';
form.style.display = 'block';
form.classList.add('hidden');
setTimeout(() => form.classList.remove('hidden'), 50);
}, 500);
});
// Builder β Landing
backBtn.addEventListener('click', () => {
form.classList.add('hidden');
setTimeout(() => {
form.style.display = 'none';
landing.style.display = 'block';
landing.classList.add('hidden');
setTimeout(() => landing.classList.remove('hidden'), 50);
}, 500);
});
// Builder β Agent-Chat
toChatBtn.addEventListener('click', () => {
form.classList.add('hidden');
setTimeout(() => {
form.style.display = 'none';
chat.style.display = 'block';
chat.classList.add('hidden');
setTimeout(() => chat.classList.remove('hidden'), 50);
}, 500);
});
// Agent-Chat β Builder
chatBackBtn.addEventListener('click', () => {
chat.classList.add('hidden');
setTimeout(() => {
chat.style.display = 'none';
form.style.display = 'block';
form.classList.add('hidden');
setTimeout(() => form.classList.remove('hidden'), 50);
}, 500);
});
});
</script>
""")
# --- Interactions ---
# Simple GPT-3.5 Chat callbacks (no skills, no internet)
def simple_send_handler(user_message, history):
# Convert Gradio format to role/content format for OpenAI API
role_content_history = convert_gradio_to_messages(history)
updated_history, cleared = simple_chat_response(user_message, role_content_history)
return updated_history, cleared, updated_history
simple_send.click(
simple_send_handler,
inputs=[simple_input, simple_chat_history],
outputs=[simple_chatbot, simple_input, simple_chat_history],
)
simple_input.submit(
simple_send_handler,
inputs=[simple_input, simple_chat_history],
outputs=[simple_chatbot, simple_input, simple_chat_history],
)
def simple_reset_handler():
return [], "", []
simple_reset.click(
simple_reset_handler,
inputs=[],
outputs=[simple_chatbot, simple_input, simple_chat_history],
)
start_button.click(
fn=lambda: (gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), ""),
inputs=[],
outputs=[landing_panel, agent_form, chat_panel, challenger_debug_md],
)
back_button.click(
fn=show_landing,
inputs=[],
outputs=[landing_panel, agent_form, chat_panel],
)
to_chat_button.click(
fn=lambda: (gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), ""),
outputs=[landing_panel, agent_form, chat_panel, challenger_debug_md]
).then(
refresh_active_agents_widgets,
inputs=[],
outputs=[chat_active_agents, agent_picker]
)
# Only wire up chat_back for the agent_chat panel (third page)
chat_back.click(
fn=lambda: (gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), ""),
outputs=[landing_panel, agent_form, chat_panel, challenger_debug_md]
)
# when you pick a new agent, reload its history into chat_view
agent_picker.change(
fn=load_history,
inputs=[agent_picker, deployed_chat_histories],
outputs=[chat_view]
)
# when you click Send, append & re-render
def chatpanel_handle_with_dynamic_vars(
agent_name, user_text, histories,
deescalation_culture, deescalation_meds,
stewardship_site, stewardship_biofilm, stewardship_response, stewardship_crcl, stewardship_severity, stewardship_allergies,
empiric_age, empiric_allergies, empiric_labs, empiric_culture, empiric_meds, empiric_site, empiric_biofilm, empiric_response, empiric_crcl, empiric_severity
):
agent_json = agents_config.get(agent_name)
# Prevent tool invocation on empty/whitespace input (e.g., initial greeting or agent selection)
if user_text is None or not str(user_text).strip():
# Just return the current history, do not invoke any tool
current_history = histories.get(agent_name, [])
gradio_history = convert_messages_for_gradio(current_history)
return gradio_history, histories, user_text or ""
# --- IPC dynamic requirements integration ---
ipc_tool_triggered = False
ipc_jurisdiction = None
ipc_info = None
if agent_json:
agent_data = json.loads(agent_json)
skills = agent_data.get("skills", [])
history = histories.get(agent_name, [])
# --- Trusted links wiring ---
trusted_links = []
for k in ["trusted_links", "trusted_links_1", "trusted_links_2", "trusted_links_3", "trusted_links_4"]:
if isinstance(agent_data.get(k), list):
trusted_links.extend([l for l in agent_data[k] if l])
elif isinstance(agent_data.get(k), str) and agent_data[k]:
trusted_links.append(agent_data[k])
for k in ["link1", "link2", "link3", "link4"]:
if agent_data.get(k):
trusted_links.append(agent_data[k])
trusted_links = [l for l in trusted_links if l]
# --- End trusted links wiring ---
# IPC tool dynamic requirements fetch
if "ipc_reporting" in skills:
# TODO: Fix IPC requirements fetch
# fetch_ipc_requirements = tools.fetch_ipc_requirements
# Always extract the latest jurisdiction from the most recent user message
us_states = [
"Alabama", "Alaska", "Arizona", "Arkansas", "California", "Colorado", "Connecticut", "Delaware", "Florida", "Georgia", "Hawaii", "Idaho", "Illinois", "Indiana", "Iowa", "Kansas", "Kentucky", "Louisiana", "Maine", "Maryland", "Massachusetts", "Michigan", "Minnesota", "Mississippi", "Missouri", "Montana", "Nebraska", "Nevada", "New Hampshire", "New Jersey", "New Mexico", "New York", "North Carolina", "North Dakota", "Ohio", "Oklahoma", "Oregon", "Pennsylvania", "Rhode Island", "South Carolina", "South Dakota", "Tennessee", "Texas", "Utah", "Vermont", "Virginia", "Washington", "West Virginia", "Wisconsin", "Wyoming"
]
# Try to find a state name (case-insensitive) in the latest user message
state_match = None
for state in us_states:
if re.search(rf"\\b{state}\\b", user_text, re.IGNORECASE):
state_match = state
break
match = re.search(r"\b(CDC|WHO|United States|US|World Health Organization|global)\b", user_text, re.IGNORECASE)
if state_match:
ipc_jurisdiction = state_match
elif match:
ipc_jurisdiction = match.group(1)
else:
# If not in this message, look back in history for last mentioned jurisdiction
ipc_jurisdiction = None
for msg in reversed(history):
if msg["role"] == "user":
for state in us_states:
if re.search(rf"\\b{state}\\b", msg["content"], re.IGNORECASE):
ipc_jurisdiction = state
break
if not ipc_jurisdiction:
match2 = re.search(r"\b(CDC|WHO|United States|US|World Health Organization|global)\b", msg["content"], re.IGNORECASE)
if match2:
ipc_jurisdiction = match2.group(1)
if ipc_jurisdiction:
break
if not ipc_jurisdiction:
ipc_jurisdiction = "CDC" # Default
# Fetch requirements for the extracted jurisdiction
# ipc_info = fetch_ipc_requirements(ipc_jurisdiction)
ipc_info = None # TODO: Fix IPC requirements fetch
ipc_tool_triggered = True
# Prepend IPC requirements info to user_text for the agent
if ipc_info:
req_fields_list = ipc_info.get("fields", [])
req_fields = ", ".join(req_fields_list)
summary = ipc_info.get("summary", "")
source_url = ipc_info.get("source_url")
warning = ipc_info.get("warning")
else:
req_fields_list = []
req_fields = ""
summary = ""
source_url = ""
warning = ""
if ipc_info: # Only process if we have valid info
# --- Prevent repeated tool invocation logic ---
# Gather current field values from user_text/history (simple: just use user_text for now)
current_submission = {
"jurisdiction": ipc_jurisdiction,
"fields": req_fields_list,
"summary": summary,
"user_text": user_text.strip()
}
# Find last IPC_SUBMISSION in history
last_ipc_submission = None
for msg in reversed(history):
if msg["role"] == "system" and msg["content"].startswith("[IPC_SUBMISSION]"):
try:
last_ipc_submission = json.loads(msg["content"][len("[IPC_SUBMISSION]"):].strip())
except Exception:
last_ipc_submission = None
break
# Only proceed if something changed
if last_ipc_submission == current_submission:
# Requirements and user input unchanged, do not re-invoke
return history, histories, ""
# --- Dynamic required fields logic ---
# Only prompt for missing fields if the live/static requirements specify them
missing_fields = []
if req_fields_list:
# Try to extract field values from user_text (very basic: look for each field name in user_text, case-insensitive)
for field in req_fields_list:
if not re.search(rf"\b{re.escape(field)}\b", user_text, re.IGNORECASE):
missing_fields.append(field)
if missing_fields:
prompt = f"Please provide the following required information for IPC reporting: {', '.join(missing_fields)}."
history.append({"role": "assistant", "content": prompt})
return history, histories, ""
# If no required fields or all are present, proceed
user_text = f"[IPC_REQUIREMENTS] Jurisdiction: {ipc_jurisdiction}\nRequired fields: {req_fields}\nSummary: {summary}\n" + user_text
# Always add a visible assistant message to the chat so the user sees which requirements are being used
visible_msg = f"π <b>Reporting requirements for <u>{ipc_jurisdiction}</u>:</b> <br>"
if req_fields:
visible_msg += f"<b>Required fields:</b> {req_fields}. "
if summary:
visible_msg += f"<b>Summary:</b> {summary} "
if source_url:
visible_msg += f'<br><b>Source:</b> <a href="{source_url}" target="_blank">{source_url}</a>'
if warning:
visible_msg += f'<br><b>Warning:</b> {warning}'
try:
with open("debug_log.txt", "a", encoding="utf-8") as f:
f.write(f"[DEBUG] IPC visible_msg: {visible_msg}\n")
except Exception as e:
pass
# Add the requirements message if it's new or the jurisdiction changed
if not (history and history[-1]["role"] == "assistant" and ipc_jurisdiction in history[-1]["content"]):
history.append({"role": "assistant", "content": visible_msg})
# Store this submission in history as a hidden system message
history.append({"role": "system", "content": "[IPC_SUBMISSION] " + json.dumps(current_submission)})
# Deescalation tool
if "recommend_deescalation" in skills:
var_names = ["culture", "meds", "site_of_infection", "risk_of_biofilm", "current_response", "creatinine_clearance", "severity_of_infection", "known_allergies"]
user_vars = {
"culture": deescalation_culture,
"meds": deescalation_meds,
"site_of_infection": stewardship_site,
"risk_of_biofilm": stewardship_biofilm,
"current_response": stewardship_response,
"creatinine_clearance": stewardship_crcl,
"severity_of_infection": stewardship_severity,
"known_allergies": stewardship_allergies
}
extracted = extract_clinical_variables_from_history(history, var_names)
for k in var_names:
if not user_vars[k]:
user_vars[k] = extracted.get(k) or ""
# Only prepend if at least one field is non-empty
if any(user_vars[k] for k in var_names):
user_text = f"[DEESCALATION_TOOL_INPUT] {json.dumps(user_vars)}\n" + user_text
# Alert prolonged antibiotic use tool
elif "alert_prolonged_antibiotic_use" in skills:
var_names = ["site_of_infection", "risk_of_biofilm", "current_response", "creatinine_clearance", "severity_of_infection", "known_allergies"]
user_vars = {
"site_of_infection": stewardship_site,
"risk_of_biofilm": stewardship_biofilm,
"current_response": stewardship_response,
"creatinine_clearance": stewardship_crcl,
"severity_of_infection": stewardship_severity,
"known_allergies": stewardship_allergies
}
extracted = extract_clinical_variables_from_history(history, var_names)
for k in var_names:
if not user_vars[k]:
user_vars[k] = extracted.get(k) or ""
if any(user_vars[k] for k in var_names):
user_text = f"[ALERT_PROLONGED_ABX_INPUT] {json.dumps(user_vars)}\n" + user_text
# Empiric therapy tool
elif "recommend_empiric_therapy" in skills:
var_names = [
"age", "allergies", "labs", "culture", "meds", "site_of_infection",
"risk_of_biofilm", "current_response", "creatinine_clearance", "severity_of_infection"
]
user_vars = {
"age": empiric_age,
"allergies": empiric_allergies,
"labs": empiric_labs,
"culture": empiric_culture,
"meds": empiric_meds,
"site_of_infection": empiric_site,
"risk_of_biofilm": empiric_biofilm,
"current_response": empiric_response,
"creatinine_clearance": empiric_crcl,
"severity_of_infection": empiric_severity
}
extracted = extract_clinical_variables_from_history(history, var_names)
for k in var_names:
if not user_vars[k]:
user_vars[k] = extracted.get(k) or ""
# If any required field is missing, prompt = ...
missing = [k.replace('_', ' ').capitalize() for k in var_names if not user_vars[k].strip()]
if missing:
prompt = f"Please provide the following required information for empiric therapy: {', '.join(missing)}."
# Show this as an assistant message and do not call the tool
history.append({"role": "assistant", "content": prompt})
return history, histories, ""
# All required fields present, prepend tool input
if any(user_vars[k] for k in var_names):
user_text = f"[EMPIRIC_THERAPY_INPUT] {json.dumps(user_vars)}\n" + user_text
# Use simulate_agent_response_stream for all agents to ensure challenger logic is applied
import asyncio
from core.agents.chat_orchestrator import simulate_agent_response_stream
agent_json_val = agents_config.get(agent_name)
history_val = histories.get(agent_name, [])
result = None
# Prevent repeated tool invocation: if the last assistant message is a tool request for the same required fields, do not re-invoke
if history_val and history_val[-1]["role"] == "assistant":
last_content = history_val[-1]["content"]
if "required fields" in last_content.lower() and "ipc_reporting" in last_content.lower():
# Don't re-invoke, just return
return history_val, histories, ""
async def run_stream():
final_history = history_val
final_invocation_log = ""
challenger_info = None
gen = simulate_agent_response_stream(
agent_json=agent_json_val,
history=history_val,
user_input=user_text,
debug_flag=False,
active_children=[]
)
async for updated_history, _, invocation_log, _, challenger_info in gen:
final_history = updated_history
final_invocation_log = invocation_log
return final_history, final_invocation_log, challenger_info
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
try:
result = loop.run_until_complete(run_stream())
if result is not None and len(result) == 3:
final_history, invocation_log, challenger_info = result
else:
final_history, updated_histories, cleared_input, invocation_log = chatpanel_handle(agent_name, user_text, histories)
challenger_info = None
gradio_history = convert_messages_for_gradio(final_history)
return gradio_history, updated_histories, cleared_input, invocation_log
except Exception:
# fallback to old behavior if error
final_history, updated_histories, cleared_input, invocation_log = chatpanel_handle(agent_name, user_text, histories)
challenger_info = None
gradio_history = convert_messages_for_gradio(final_history)
return gradio_history, updated_histories, cleared_input, invocation_log
# Update histories
updated_histories = histories.copy()
updated_histories[agent_name] = final_history
# Prepare challenger markdown (debug log for builder panel)
challenger_md = ""
challenger_enabled = False
try:
if agent_json_val:
agent_data = json.loads(agent_json_val)
challenger_enabled = agent_data.get("challenger_enabled", False)
except Exception:
pass
if isinstance(challenger_info, dict) and challenger_enabled:
orig = challenger_info.get("original_reply", "")
crit = challenger_info.get("challenger_critique", "")
final = challenger_info.get("final_reply", "")
challenger_md = f"**Original Agent Answer:**\n\n{orig}\n\n**Challenger Critique:**\n\n{crit}\n\n**Final Answer Shown to User:**\n\n{final}"
# Only show the final (challenger-approved) answer in the chatbox
if final and final_history and isinstance(final_history, list):
final_history[-1]["content"] = final
# If challenger is not enabled, do not show the markdown at all
elif not challenger_enabled:
challenger_md = ""
# Convert to Gradio format before returning
gradio_history = convert_messages_for_gradio(final_history)
return gradio_history, updated_histories, "", invocation_log, challenger_md
chat_send.click(
fn=chatpanel_handle_with_dynamic_vars,
inputs=[
agent_picker, chat_panel_input, deployed_chat_histories,
deescalation_culture, deescalation_meds,
stewardship_site, stewardship_biofilm, stewardship_response, stewardship_crcl, stewardship_severity, stewardship_allergies,
empiric_age, empiric_allergies, empiric_labs, empiric_culture, empiric_meds, empiric_site, empiric_biofilm, empiric_response, empiric_crcl, empiric_severity
],
outputs=[chat_view, deployed_chat_histories, chat_panel_input]
)
# --- Reset button for deployed agent chat panel ---
def reset_and_clear_deployed_history(agent_name, histories):
# Clear orchestrator state to prevent persistence across conversations
from core.agents.chat_orchestrator import orchestrators
orchestrators.clear()
if not agent_name:
return (
[], histories, "",
"", "", "", "", "", "", "", "", # stewardship fields cleared (8 fields)
"", "", "", "", "", "", "", "", "", "", # empiric fields cleared (10 fields)
"", "", "", "", "", "", "", "", "", # ipc fields cleared (9 fields)
"", "", "", "", "", "", "", "", "", "", # clinical fields cleared (10 fields)
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "" # orchestrator fields cleared (27 fields)
)
# Remove the agent's chat history and re-seed with greeting
if agent_name in histories:
del histories[agent_name]
chat_history = [{"role": "assistant", "content": f"π Hello! I'm {agent_name}. How can I help?"}]
histories[agent_name] = chat_history
# Convert to Gradio format
gradio_history = convert_messages_for_gradio(chat_history)
return (
gradio_history, histories, "",
"", "", "", "", "", "", "", "", # stewardship fields cleared (8 fields)
"", "", "", "", "", "", "", "", "", "", # empiric fields cleared (10 fields)
"", "", "", "", "", "", "", "", "", # ipc fields cleared (9 fields)
"", "", "", "", "", "", "", "", "", "", # clinical fields cleared (10 fields)
"", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "" # orchestrator fields cleared (27 fields)
)
chat_reset.click(
reset_and_clear_deployed_history,
inputs=[agent_picker, deployed_chat_histories],
outputs=[
chat_view, deployed_chat_histories, chat_panel_input,
deescalation_culture, deescalation_meds,
stewardship_site, stewardship_biofilm, stewardship_response, stewardship_crcl, stewardship_severity, stewardship_allergies,
empiric_age, empiric_allergies, empiric_labs, empiric_culture, empiric_meds, empiric_site, empiric_biofilm, empiric_response, empiric_crcl, empiric_severity,
ipc_facility_name, ipc_location, ipc_infection_type, ipc_onset_date, ipc_device_days, ipc_pathogen, ipc_resistance_pattern, ipc_isolation_status, ipc_compliance_issues,
clinical_chief_complaint, clinical_history_present, clinical_past_medical, clinical_medications, clinical_allergies, clinical_social_history, clinical_vital_signs, clinical_physical_exam, clinical_lab_results, clinical_imaging,
orchestrator_culture, orchestrator_meds, orchestrator_site, orchestrator_biofilm, orchestrator_response, orchestrator_crcl, orchestrator_severity, orchestrator_allergies, orchestrator_facility_name, orchestrator_location, orchestrator_infection_type, orchestrator_onset_date, orchestrator_device_days, orchestrator_pathogen, orchestrator_resistance_pattern, orchestrator_isolation_status, orchestrator_compliance_issues, orchestrator_chief_complaint, orchestrator_history_present, orchestrator_past_medical, orchestrator_medications, orchestrator_patient_allergies, orchestrator_social_history, orchestrator_vital_signs, orchestrator_physical_exam, orchestrator_lab_results, orchestrator_imaging
]
)
agent_type.change(
fn=on_agent_type_change,
inputs=[agent_type, prefill_flag],
outputs=[skills, agent_name, agent_mission, prefill_flag]
)
prefilled.change(
fn=populate_from_preset,
inputs=[prefilled],
outputs=[agent_type, agent_name, agent_mission, skills, prefill_flag]
)
uploaded_files.upload(fn=handle_uploaded_files, inputs=[uploaded_files], outputs=[upload_alert, upload_alert])
def handle_generate(agent_type, agent_name, agent_mission, selected_skills, web_access, allow_fallback, uploaded_files, link1, link2, link3, link4, challenger_toggle):
# Accept challenger_toggle as an argument
agent_json = build_agent(agent_type, agent_name, agent_mission, selected_skills, web_access, allow_fallback, uploaded_files, link1, link2, link3, link4)
# Add challenger_enabled to the agent config JSON
agent_data = json.loads(agent_json)
agent_data["challenger_enabled"] = challenger_toggle
agent_json = json.dumps(agent_data)
agents_config[agent_name] = agent_json
return agent_json
generate_button.click(
lambda: gr.update(visible=True, value="β³ Generating your agent..."),
inputs=[], outputs=[agent_loader]
).then( # 1) add / save the agent
handle_generate,
inputs=[agent_type, agent_name, agent_mission, skills,
web_access_toggle, allow_fallback_toggle,
uploaded_files, link1, link2, link3, link4, challenger_toggle],
outputs=[agent_output] # <- only the JSON
).then( # 2) show initial instruction instead of preload demo chat
lambda: show_initial_instruction_state(),
inputs=[], outputs=[builder_chatbot, chat_input, builder_send_button, reset_button, invocation_log, active_children]
).then( # 2.5) auto-load agent fields into builder panel
lambda agent_json: (
json.loads(agent_json).get("agent_type", ""),
json.loads(agent_json).get("agent_name", ""),
json.loads(agent_json).get("agent_mission", ""),
json.loads(agent_json).get("skills", [])
),
inputs=[agent_output],
outputs=[agent_type, agent_name, agent_mission, skills]
).then( # 3) refresh markdown & dropdown *atomically*
refresh_active_agents_widgets,
inputs=[], outputs=[builder_active_agents, agent_remove_dropdown]
).then( # 4) done spinner
lambda: gr.update(visible=True, value="β
Agent generated successfully!"),
inputs=[], outputs=[agent_loader]
).then(
refresh_chat_dropdown,
inputs=[],
outputs=[agent_picker]
)
edit_agent_button.click(
load_agent_to_builder,
inputs=[agent_remove_dropdown],
outputs=[agent_type, agent_name, agent_mission, skills]
)
chat_agent_button.click(
fn=enable_chat_controls_with_agent,
inputs=[agent_remove_dropdown],
outputs=[builder_chatbot, chat_input, builder_send_button, reset_button, invocation_log, active_children, agent_output]
)
remove_agent_button.click(
remove_selected_agent,
inputs=[agent_remove_dropdown],
outputs=[builder_active_agents, agent_remove_dropdown]
).then(
refresh_chat_dropdown,
inputs=[],
outputs=[agent_picker]
)
download_button.click(
prepare_download,
inputs=[agent_output],
outputs=[download_button]
)
# Only keep reset for builder panel, and chat_send for chat panel
def reset_and_clear_builder_history(agent_json, histories):
# Clear orchestrator state to prevent persistence across conversations
from core.agents.chat_orchestrator import orchestrators
orchestrators.clear()
if not agent_json or agent_json.strip() == "":
# No agent selected, return disabled state with instruction
instruction_state = show_initial_instruction_state()
return instruction_state[0], instruction_state[1], instruction_state[5], histories # chatbot, input, active_children, histories
# Valid agent selected, show agent greeting with enabled controls
agent_data = json.loads(agent_json)
name = agent_data.get("agent_name", "Agent")
welcome = f"π Hello! I'm {name}. How can I assist you today?"
chat_history = [{"role":"assistant","content":welcome}]
if name in histories:
del histories[name]
# Convert to Gradio format
gradio_history = convert_messages_for_gradio(chat_history)
return gradio_history, gr.update(value="", interactive=True, placeholder="Type your question hereβ¦"), [], histories
reset_button.click(
reset_and_clear_builder_history,
inputs=[agent_output, builder_chat_histories],
outputs=[builder_chatbot, chat_input, active_children, builder_chat_histories]
)
return app
def build_authenticated_app():
"""Build the main application with authentication wrapper"""
# Create the authentication interface
auth_interface, session_state = create_auth_interface()
# Create the main ID Agents app
main_app = build_ui()
# Combine authentication with main app
with gr.Blocks(title="ID Agents - Authenticated", css=main_app.css) as app:
# Add authentication state management
current_session = gr.State("")
user_info = gr.State({})
# Add the authentication interface
with gr.Group() as auth_group:
auth_interface.render()
# Add the main app (initially hidden)
with gr.Group(visible=False) as main_group:
main_app.render()
# Authentication success handler
def on_auth_success(session_id: str):
"""Handle successful authentication"""
session_info = auth_manager.get_session_info(session_id)
if session_info:
user_data = session_info["user_info"]
capabilities = session_info["capabilities"]
# Show main app, hide auth
return (
gr.update(visible=False), # Hide auth group
gr.update(visible=True), # Show main group
session_id, # Update session state
user_data # Update user info state
)
return gr.update(), gr.update(), "", {}
# Authentication failure/logout handler
def on_auth_logout():
"""Handle logout or authentication failure"""
return (
gr.update(visible=True), # Show auth group
gr.update(visible=False), # Hide main group
"", # Clear session state
{} # Clear user info state
)
return app
def build_ui_with_auth_check(session_id: str = ""):
"""Build UI with authentication check and capability restrictions"""
# Validate session
session_info = auth_manager.get_session_info(session_id) if session_id else None
if not session_info:
# Return basic app with limited functionality
return build_ui()
# Get user capabilities
capabilities = session_info["capabilities"]
user_info = session_info["user_info"]
# Build app with capability restrictions
app = build_ui()
# Add authentication status to the app
def add_auth_status():
auth_status = f"""
**π Authenticated as:** {user_info['full_name']} ({user_info['role']})
**Access Level:** {user_info['access_level']} | **Session:** Active
"""
return auth_status
# You could add capability-based UI modifications here
# For now, we'll handle restrictions in the function calls
return app
if __name__ == "__main__":
try:
# Always enable authentication for this version
print("π Launching ID Agents with Authentication...")
# Create main app
main_app = build_ui()
# Authentication credentials
auth_credentials = [
("dr_smith", "idweek2025"),
("id_fellow", "hello"),
("pharmacist", "stewardship"),
("ipc_nurse", "infection"),
("researcher", "research"),
("educator", "education"),
("student", "learning"),
("admin", "idagents2025"),
("guest1", "guest123"),
("guest2", "guest456")
]
auth_message = """
π¦ **ID Agents Beta Testing Access**
Welcome to the ID Agents beta testing environment!
**Test Accounts:**
β’ **dr_smith** / idweek2025 (ID Physician)
β’ **id_fellow** / hello (ID Fellow)
β’ **pharmacist** / stewardship (Clinical Pharmacist)
β’ **ipc_nurse** / infection (IPC Coordinator)
β’ **researcher** / research (Clinical Researcher)
β’ **educator** / education (Medical Educator)
β’ **student** / learning (Medical Student)
β’ **admin** / idagents2025 (Administrator)
β’ **guest1** / guest123 (Guest Access)
β’ **guest2** / guest456 (Guest Access)
Please use your assigned credentials to access the application.
"""
# Check if running on Hugging Face Spaces
try:
from hf_config import configure_hf_environment, get_hf_launch_config
if configure_hf_environment():
# Use HF Spaces configuration with authentication
launch_config = get_hf_launch_config()
print("οΏ½ Authentication enabled for HF Spaces deployment")
else:
# Local development with authentication for testing
launch_config = {
"share": False,
"server_name": "127.0.0.1",
"server_port": 7860
}
print("π Authentication enabled for local testing")
except ImportError:
# Fallback configuration with authentication
launch_config = {
"share": False,
"server_name": "127.0.0.1",
"server_port": 7860
}
print("οΏ½ Authentication enabled with fallback configuration")
# Always add authentication
launch_config["auth"] = auth_credentials
launch_config["auth_message"] = auth_message
print("π Available test accounts:")
for username, password in auth_credentials:
print(f" β’ {username} / {password}")
main_app.launch(**launch_config)
except Exception as e:
print(f"Failed to launch Gradio app: {e}")
print("π‘ Check your API keys and environment configuration") |