File size: 18,793 Bytes
1034e15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
"""
app_fixed.py
-----------

Simplified version of the ID Agents app with working Gradio authentication.
This version removes the complex custom authentication that was causing initialization failures.
"""

# --- Imports ---
import gradio as gr
import json
import re
import os
import asyncio
import logging
from typing import Dict, Optional, Any, cast

# Try to import OpenAI
try:
    import openai
    from openai import RateLimitError, APIError, APIConnectionError, OpenAI
    OPENAI_AVAILABLE = True
    print("βœ… OpenAI client loaded")
except ImportError as e:
    print(f"⚠️ OpenAI not available: {e}")
    OPENAI_AVAILABLE = False

# Try to import core modules
try:
    from orchestrator import AIOrchestrator
    from llm_connector import LLMConnector
    from rag import RAGRetriever
    CORE_MODULES_AVAILABLE = True
    print("βœ… Core modules loaded")
except ImportError as e:
    print(f"⚠️ Core modules not available: {e}")
    CORE_MODULES_AVAILABLE = False

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# --- Global Variables ---
current_llm_connector = None
current_orchestrator = None
current_rag_retriever = None

# --- Helper Functions ---

def initialize_components():
    """Initialize core components if available"""
    global current_llm_connector, current_orchestrator, current_rag_retriever
    
    if not CORE_MODULES_AVAILABLE:
        return False
    
    try:
        # Initialize LLM Connector
        current_llm_connector = LLMConnector()
        
        # Initialize RAG Retriever
        current_rag_retriever = RAGRetriever()
        
        # Initialize Orchestrator
        current_orchestrator = AIOrchestrator(current_llm_connector, current_rag_retriever)
        
        print("βœ… All components initialized successfully")
        return True
    except Exception as e:
        print(f"❌ Component initialization failed: {e}")
        return False

def safe_chat_response(message: str, history: list) -> tuple:
    """Safe chat response with fallback"""
    if not CORE_MODULES_AVAILABLE or not current_orchestrator:
        response = """
        πŸ”§ **System Status**: Core modules are not fully available.
        
        This is a demo version of ID Agents. In the full version, you would have access to:
        
        β€’ **AI-Powered Clinical Assistance**: Advanced infectious disease consultation
        β€’ **Multi-Agent Orchestration**: Coordinated responses from specialized agents
        β€’ **Knowledge Base Integration**: Access to medical literature and guidelines
        β€’ **Patient Scenario Analysis**: Context-aware clinical decision support
        
        **Available Test Accounts:**
        β€’ dr_smith / idweek2025 (ID Physician)
        β€’ id_fellow / hello (ID Fellow)
        β€’ pharmacist / stewardship (Clinical Pharmacist)
        β€’ ipc_nurse / infection (IPC Coordinator)
        β€’ researcher / research (Clinical Researcher)
        
        Please contact the administrator for full access.
        """
        return response, history + [[message, response]]
    
    try:
        # Get response from orchestrator
        response = current_orchestrator.process_query(message)
        
        # Update history
        updated_history = history + [[message, response]]
        
        return response, updated_history
    
    except Exception as e:
        error_response = f"❌ Error processing your request: {str(e)}"
        return error_response, history + [[message, error_response]]

def convert_messages_for_gradio(messages):
    """Convert messages to Gradio 4.20.0 format"""
    if not messages:
        return []
    
    converted = []
    for msg in messages:
        if isinstance(msg, dict) and 'role' in msg and 'content' in msg:
            if msg['role'] == 'user':
                converted.append([msg['content'], None])
            elif msg['role'] == 'assistant' and converted:
                converted[-1][1] = msg['content']
            elif msg['role'] == 'assistant':
                converted.append([None, msg['content']])
        elif isinstance(msg, list) and len(msg) == 2:
            converted.append(msg)
    
    return converted

# Patient loading functions (simplified)
def load_patient_1():
    patient_data = {
        "name": "Maria Santos",
        "age": 67,
        "gender": "Female",
        "chief_complaint": "Fever and shortness of breath",
        "history": "3 days of progressive fever (up to 101.8Β°F), productive cough with yellow sputum, and increasing shortness of breath...",
        "vitals": "Temp: 101.8Β°F, HR: 110, BP: 145/85, RR: 22, O2 Sat: 89% on room air",
        "presentation": "Elderly female with fever, productive cough, and hypoxemia concerning for pneumonia"
    }
    
    context_message = f"""
πŸ₯ **Patient Case Loaded: {patient_data['name']}**

**Demographics:** {patient_data['age']}-year-old {patient_data['gender']}
**Chief Complaint:** {patient_data['chief_complaint']}
**Current Vitals:** {patient_data['vitals']}

**Clinical Presentation:** {patient_data['presentation']}

How can I assist with this case?
"""
    
    history = [[f"Load patient case: {patient_data['name']}", context_message]]
    return convert_messages_for_gradio([]), history

def load_patient_2():
    patient_data = {
        "name": "James Wilson",
        "age": 34,
        "gender": "Male", 
        "chief_complaint": "Painful urination and fever",
        "presentation": "Young male with UTI symptoms and systemic signs of infection"
    }
    
    context_message = f"""
πŸ₯ **Patient Case Loaded: {patient_data['name']}**

**Demographics:** {patient_data['age']}-year-old {patient_data['gender']}
**Chief Complaint:** {patient_data['chief_complaint']}

**Clinical Presentation:** {patient_data['presentation']}

How can I assist with this case?
"""
    
    history = [[f"Load patient case: {patient_data['name']}", context_message]]
    return convert_messages_for_gradio([]), history

def load_patient_3():
    patient_data = {
        "name": "Sarah Chen",
        "age": 28,
        "gender": "Female",
        "chief_complaint": "Skin rash and joint pain", 
        "presentation": "Young female with systemic symptoms and dermatologic findings"
    }
    
    context_message = f"""
πŸ₯ **Patient Case Loaded: {patient_data['name']}**

**Demographics:** {patient_data['age']}-year-old {patient_data['gender']}
**Chief Complaint:** {patient_data['chief_complaint']}

**Clinical Presentation:** {patient_data['presentation']}

How can I assist with this case?
"""
    
    history = [[f"Load patient case: {patient_data['name']}", context_message]]
    return convert_messages_for_gradio([]), history

def load_patient_4():
    patient_data = {
        "name": "Robert Martinez",
        "age": 45,
        "gender": "Male",
        "chief_complaint": "Persistent cough and weight loss",
        "presentation": "Middle-aged male with chronic respiratory symptoms and constitutional signs"
    }
    
    context_message = f"""
πŸ₯ **Patient Case Loaded: {patient_data['name']}**

**Demographics:** {patient_data['age']}-year-old {patient_data['gender']}
**Chief Complaint:** {patient_data['chief_complaint']}

**Clinical Presentation:** {patient_data['presentation']}

How can I assist with this case?
"""
    
    history = [[f"Load patient case: {patient_data['name']}", context_message]]
    return convert_messages_for_gradio([]), history

def load_patient_5():
    patient_data = {
        "name": "Emma Thompson", 
        "age": 19,
        "gender": "Female",
        "chief_complaint": "Headache and neck stiffness",
        "presentation": "Young female with meningeal signs requiring urgent evaluation"
    }
    
    context_message = f"""
πŸ₯ **Patient Case Loaded: {patient_data['name']}**

**Demographics:** {patient_data['age']}-year-old {patient_data['gender']}
**Chief Complaint:** {patient_data['chief_complaint']}

**Clinical Presentation:** {patient_data['presentation']}

How can I assist with this case?
"""
    
    history = [[f"Load patient case: {patient_data['name']}", context_message]]
    return convert_messages_for_gradio([]), history

def load_patient_6():
    patient_data = {
        "name": "Michael Brown",
        "age": 72,
        "gender": "Male", 
        "chief_complaint": "Abdominal pain and diarrhea",
        "presentation": "Elderly male with GI symptoms and potential infectious etiology"
    }
    
    context_message = f"""
πŸ₯ **Patient Case Loaded: {patient_data['name']}**

**Demographics:** {patient_data['age']}-year-old {patient_data['gender']}
**Chief Complaint:** {patient_data['chief_complaint']}

**Clinical Presentation:** {patient_data['presentation']}

How can I assist with this case?
"""
    
    history = [[f"Load patient case: {patient_data['name']}", context_message]]
    return convert_messages_for_gradio([]), history

# --- Main UI Builder ---

def build_ui():
    """Build the main Gradio interface"""
    
    # Initialize components on startup
    initialize_components()
    
    # Custom CSS
    css = """
    :root {
      --id-primary: #1e40af;
      --id-secondary: #3b82f6;
      --id-accent: #06d6a0;
      --id-success: #059669;
      --id-warning: #d97706;
      --id-error: #dc2626;
      --id-bg: #f8fafc;
      --id-surface: #ffffff;
      --id-text: #1e293b;
      --id-text-muted: #64748b;
    }

    .gradio-container {
      background: linear-gradient(135deg, #f8fafc 0%, #e2e8f0 100%);
      min-height: 100vh;
    }

    .id-header {
      background: linear-gradient(90deg, var(--id-primary), var(--id-secondary));
      color: white;
      padding: 1.5rem;
      border-radius: 12px;
      margin-bottom: 1.5rem;
      box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1);
    }

    .id-card {
      background: var(--id-surface);
      border-radius: 12px;
      padding: 1.5rem;
      box-shadow: 0 1px 3px 0 rgba(0, 0, 0, 0.1);
      border: 1px solid #e2e8f0;
    }

    .patient-card {
      background: linear-gradient(135deg, #eff6ff 0%, #dbeafe 100%);
      border: 2px solid var(--id-secondary);
      border-radius: 8px;
      padding: 1rem;
      margin: 0.5rem 0;
      cursor: pointer;
      transition: all 0.2s ease;
    }

    .patient-card:hover {
      transform: translateY(-2px);
      box-shadow: 0 4px 12px rgba(59, 130, 246, 0.15);
    }

    .chat-container {
      background: var(--id-surface);
      border-radius: 12px;
      border: 1px solid #e2e8f0;
    }
    """
    
    with gr.Blocks(title="🦠 ID Agents - Infectious Disease AI", css=css, theme=gr.themes.Soft()) as app:
        
        # Header
        gr.HTML("""
        <div class="id-header">
            <h1 style="margin: 0; display: flex; align-items: center; gap: 12px;">
                🦠 <span>ID Agents</span>
                <span style="font-size: 0.7em; background: rgba(255,255,255,0.2); padding: 4px 8px; border-radius: 6px;">BETA</span>
            </h1>
            <p style="margin: 8px 0 0 0; opacity: 0.9;">AI-Powered Infectious Disease Clinical Decision Support</p>
        </div>
        """)
        
        with gr.Row():
            # Left column - Chat interface
            with gr.Column(scale=7):
                with gr.Group(elem_classes="id-card"):
                    gr.Markdown("### πŸ’¬ Clinical Consultation Chat")
                    
                    chatbot = gr.Chatbot(
                        value=[],
                        height=400,
                        elem_classes="chat-container",
                        show_label=False,
                        avatar_images=(None, "🦠")
                    )
                    
                    with gr.Row():
                        msg_input = gr.Textbox(
                            placeholder="Ask about infectious diseases, patient cases, or clinical guidelines...",
                            show_label=False,
                            scale=4
                        )
                        submit_btn = gr.Button("Send", variant="primary", scale=1)
                    
                    gr.Examples(
                        examples=[
                            "What are the current guidelines for treating MRSA pneumonia?",
                            "Help me interpret these blood culture results",
                            "What empirical antibiotics should I start for severe sepsis?",
                            "Explain the mechanism of carbapenem resistance",
                            "What's the latest on COVID-19 treatment protocols?"
                        ],
                        inputs=msg_input,
                        label="πŸ’‘ Example Queries"
                    )
            
            # Right column - Tools and patient scenarios
            with gr.Column(scale=3):
                with gr.Group(elem_classes="id-card"):
                    gr.Markdown("### πŸ₯ Patient Scenarios")
                    gr.Markdown("*Click to load a clinical case*")
                    
                    # Patient scenario buttons
                    with gr.Column():
                        patient1_btn = gr.Button("πŸ‘΅ Maria S. - Pneumonia (67F)", elem_classes="patient-card")
                        patient2_btn = gr.Button("πŸ‘¨ James W. - UTI/Sepsis (34M)", elem_classes="patient-card") 
                        patient3_btn = gr.Button("πŸ‘© Sarah C. - Rash/Arthritis (28F)", elem_classes="patient-card")
                        patient4_btn = gr.Button("πŸ‘¨ Robert M. - Chronic Cough (45M)", elem_classes="patient-card")
                        patient5_btn = gr.Button("πŸ‘© Emma T. - Meningitis (19F)", elem_classes="patient-card")
                        patient6_btn = gr.Button("πŸ‘΄ Michael B. - GI Infection (72M)", elem_classes="patient-card")
                
                with gr.Group(elem_classes="id-card"):
                    gr.Markdown("### πŸ”§ System Status")
                    
                    if CORE_MODULES_AVAILABLE:
                        status_msg = "βœ… **Core modules loaded**\nβœ… **AI orchestrator active**\nβœ… **Knowledge base ready**"
                    else:
                        status_msg = "⚠️ **Limited functionality**\nπŸ”§ **Core modules unavailable**\nπŸ’‘ **Demo mode active**"
                    
                    gr.Markdown(status_msg)
        
        # Event handlers
        def handle_submit(message, history):
            if not message.strip():
                return "", history
            
            response, updated_history = safe_chat_response(message, history)
            return "", updated_history
        
        # Wire up the chat interface
        submit_btn.click(
            fn=handle_submit,
            inputs=[msg_input, chatbot],
            outputs=[msg_input, chatbot]
        )
        
        msg_input.submit(
            fn=handle_submit,
            inputs=[msg_input, chatbot],
            outputs=[msg_input, chatbot]
        )
        
        # Wire up patient loading buttons
        patient1_btn.click(fn=load_patient_1, outputs=[msg_input, chatbot])
        patient2_btn.click(fn=load_patient_2, outputs=[msg_input, chatbot])
        patient3_btn.click(fn=load_patient_3, outputs=[msg_input, chatbot])
        patient4_btn.click(fn=load_patient_4, outputs=[msg_input, chatbot])
        patient5_btn.click(fn=load_patient_5, outputs=[msg_input, chatbot])
        patient6_btn.click(fn=load_patient_6, outputs=[msg_input, chatbot])
    
    return app

# --- Main Application Entry Point ---

if __name__ == "__main__":
    try:
        print("πŸš€ Launching ID Agents with Beta Authentication...")
        
        # Create main app
        app = build_ui()
        
        # Simple Gradio authentication credentials
        auth_credentials = [
            ("dr_smith", "idweek2025"),
            ("id_fellow", "hello"), 
            ("pharmacist", "stewardship"),
            ("ipc_nurse", "infection"),
            ("researcher", "research"),
            ("educator", "education"),
            ("student", "learning"),
            ("admin", "idagents2025"),
            ("guest1", "guest123"),
            ("guest2", "guest456")
        ]
        
        auth_message = """
🦠 **ID Agents Beta Testing Access**

Welcome to the ID Agents beta testing environment!

**Available Test Accounts:**
β€’ **dr_smith** / idweek2025 (ID Physician)
β€’ **id_fellow** / hello (ID Fellow) 
β€’ **pharmacist** / stewardship (Clinical Pharmacist)
β€’ **ipc_nurse** / infection (IPC Coordinator)
β€’ **researcher** / research (Clinical Researcher)
β€’ **educator** / education (Medical Educator)
β€’ **student** / learning (Medical Student - Limited Access)
β€’ **admin** / idagents2025 (Administrator)
β€’ **guest1** / guest123 (Guest Access - Limited)
β€’ **guest2** / guest456 (Guest Access - Limited)

Please use your assigned credentials to access the application.
Built with ❀️ for ID Week 2025 β€” Empowering Infectious Diseases Innovation
        """
        
        # Check if running on Hugging Face Spaces
        try:
            import os
            if os.getenv("SPACE_ID"):
                # Running on HF Spaces
                launch_config = {
                    "auth": auth_credentials,
                    "auth_message": auth_message,
                    "show_error": True
                }
                print("πŸ” Authentication enabled for HF Spaces deployment")
            else:
                # Local development
                launch_config = {
                    "auth": auth_credentials,
                    "auth_message": auth_message,
                    "share": False,
                    "server_name": "127.0.0.1",
                    "server_port": 7860,
                    "show_error": True
                }
                print("πŸ” Authentication enabled for local testing")
        except Exception:
            # Fallback configuration with authentication
            launch_config = {
                "auth": auth_credentials,
                "auth_message": auth_message,
                "share": False,
                "server_name": "127.0.0.1", 
                "server_port": 7860,
                "show_error": True
            }
            print("πŸ” Authentication enabled with fallback configuration")
        
        print("πŸ“‹ Available beta test accounts:")
        for username, password in auth_credentials:
            print(f"   β€’ {username} / {password}")
        
        app.launch(**launch_config)
        
    except Exception as e:
        print(f"❌ Failed to launch ID Agents: {e}")
        print("πŸ’‘ Check your API keys and environment configuration")
        import traceback
        traceback.print_exc()