Spaces:
Sleeping
Sleeping
File size: 65,197 Bytes
8120936 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 |
"""
create_educational_presentation.py
---------------------------------
Tool for creating comprehensive educational presentations through iterative research.
This tool conducts deep research on medical topics, creates detailed reports, and converts
them into structured slide presentations for educational purposes. It uses an iterative
research approach with user confirmation before finalizing the presentation.
Key Features:
- Iterative internet research with 4-5 rounds of 3-5 pages each
- User clarification questions before research
- Comprehensive report generation
- Structured slide presentation creation
- Educational flow: objectives → vignette → education → application → Q&A
"""
import asyncio
import json
from typing import Any, Dict, List, Union
from tools.base import Tool
from tools.utils import ToolExecutionError, logger, load_prompt
from core.utils.llm_connector import call_llm
from tools.internet_search import InternetSearchTool
class CreateEducationalPresentationTool(Tool):
"""
Tool for creating comprehensive educational presentations through iterative research.
This tool conducts deep research, creates detailed reports, and converts them into
structured slide presentations for educational purposes.
"""
def __init__(self) -> None:
"""Initialize the CreateEducationalPresentationTool."""
super().__init__()
self.name = "create_educational_presentation"
self.description = "Create comprehensive educational presentations through AI-powered dynamic research and content generation."
self.internet_search = InternetSearchTool()
self.args_schema = {
"type": "object",
"properties": {
"topic": {
"type": "string",
"description": "The medical topic for the educational presentation (e.g., 'sepsis management', 'heart failure diagnosis', 'antibiotic stewardship')"
},
"target_audience": {
"type": "string",
"description": "The target audience for the presentation",
"enum": ["medical_students", "residents", "attendings", "nurses", "pharmacists", "multidisciplinary"],
"default": "medical_students"
},
"presentation_duration": {
"type": "integer",
"description": "Expected duration of presentation in minutes",
"default": 45,
"minimum": 15,
"maximum": 120
},
"focus_area": {
"type": "string",
"description": "Specific focus area within the topic",
"default": "comprehensive_overview"
},
"aspects_to_emphasize": {
"type": "string",
"description": "What specific aspects to emphasize (e.g., 'pathophysiology, diagnosis, treatment')"
},
"guidelines_to_include": {
"type": "string",
"description": "Specific guidelines or evidence to include (e.g., 'IDSA guidelines')"
},
"learning_objectives": {
"type": "string",
"description": "What should the audience learn (e.g., 'diagnostic skills, treatment decisions')"
},
"clinical_scenarios": {
"type": "string",
"description": "Specific clinical scenarios to highlight (e.g., 'common presentations')"
},
"takeaway_message": {
"type": "string",
"description": "Key clinical pearl or takeaway message (e.g., 'early recognition saves lives')"
}
},
"required": ["topic"]
}
def openai_spec(self, legacy=False):
"""Return OpenAI function specification."""
return {
"name": self.name,
"description": self.description,
"parameters": self.args_schema
}
async def run(
self,
topic: str,
target_audience: str = "medical_students",
presentation_duration: int = 45,
focus_area: str = "comprehensive_overview",
aspects_to_emphasize: Union[str, None] = None,
guidelines_to_include: Union[str, None] = None,
learning_objectives: Union[str, None] = None,
clinical_scenarios: Union[str, None] = None,
takeaway_message: Union[str, None] = None
) -> Dict[str, Any]:
"""
Create a comprehensive educational presentation through iterative research.
Args:
topic (str): The medical topic for the presentation
target_audience (str): The target audience
presentation_duration (int): Duration in minutes
focus_area (str): Specific focus area
aspects_to_emphasize (str): What specific aspects to emphasize
guidelines_to_include (str): Specific guidelines or evidence to include
learning_objectives (str): What should the audience learn
clinical_scenarios (str): Specific clinical scenarios to highlight
takeaway_message (str): Key clinical pearl or takeaway message
Returns:
Dict[str, Any]: Complete presentation with research, report, and slides
"""
try:
logger.info(f"Starting educational presentation creation for topic: {topic}")
# Build clarification responses from provided parameters
clarification_responses = {}
# Check if we have enough information to proceed
if aspects_to_emphasize and guidelines_to_include and learning_objectives and clinical_scenarios and takeaway_message:
clarification_responses = {
"aspects": aspects_to_emphasize,
"guidelines": guidelines_to_include,
"learning_objectives": learning_objectives,
"clinical_scenarios": clinical_scenarios,
"takeaway_message": takeaway_message
}
else:
# Use intelligent defaults based on the topic and focus area
clarification_responses = self._generate_intelligent_defaults(topic, target_audience, focus_area)
logger.info(f"Using intelligent defaults for presentation creation")
# Proceed with full presentation creation
logger.info(f"Proceeding with presentation creation using responses")
# Step 2: Conduct iterative research
research_results = await self._conduct_iterative_research(topic, clarification_responses)
# Step 3: Generate comprehensive report
research_report = self._generate_research_report(topic, research_results, clarification_responses)
# Step 4: Create presentation structure
presentation_structure = self._create_presentation_structure(
topic, target_audience, presentation_duration, research_report
)
# Step 5: Create final presentation using existing method
final_presentation = await self.create_final_presentation(
topic, target_audience, presentation_duration, research_report,
presentation_structure, ""
)
logger.info(f"Successfully created educational presentation for {topic}")
return final_presentation
except Exception as e:
logger.error(f"CreateEducationalPresentationTool failed: {e}", exc_info=True)
raise ToolExecutionError(f"Failed to create educational presentation: {e}")
async def continue_with_research(
self,
topic: str,
target_audience: str,
presentation_duration: int,
focus_area: str,
clarification_responses: Dict[str, str]
) -> Dict[str, Any]:
"""
Continue with research phase after receiving clarification responses.
Args:
topic (str): The medical topic
target_audience (str): Target audience
presentation_duration (int): Duration in minutes
focus_area (str): Focus area
clarification_responses (Dict[str, str]): User responses to clarification questions
Returns:
Dict[str, Any]: Research results and next steps
"""
try:
logger.info(f"Continuing with research for topic: {topic}")
# Step 2: Conduct iterative research
research_results = await self._conduct_iterative_research(topic, clarification_responses)
# Step 3: Generate comprehensive report
research_report = self._generate_research_report(topic, research_results, clarification_responses)
# Step 4: Create presentation structure
presentation_structure = self._create_presentation_structure(
topic, target_audience, presentation_duration, research_report
)
return {
"status": "research_complete",
"topic": topic,
"target_audience": target_audience,
"presentation_duration": presentation_duration,
"research_results": research_results,
"research_report": research_report,
"proposed_structure": presentation_structure,
"next_step": "Please review the research report and presentation structure. Confirm to proceed with slide creation."
}
except Exception as e:
logger.error(f"Research phase failed: {e}", exc_info=True)
raise ToolExecutionError(f"Failed to complete research: {e}")
async def create_final_presentation(
self,
topic: str,
target_audience: str,
presentation_duration: int,
research_report: str,
presentation_structure: Dict[str, Any],
user_feedback: str = ""
) -> Dict[str, Any]:
"""
Create the final presentation slides.
Args:
topic (str): The medical topic
target_audience (str): Target audience
presentation_duration (int): Duration in minutes
research_report (str): The research report
presentation_structure (Dict): Presentation structure
user_feedback (str): User feedback on structure
Returns:
Dict[str, Any]: Complete presentation with slides
"""
try:
logger.info(f"Creating final presentation for topic: {topic}")
# Adjust structure based on user feedback if provided
if user_feedback:
presentation_structure = self._adjust_structure_based_on_feedback(
presentation_structure, user_feedback
)
# Generate all slides
slides = await self._generate_all_slides(
topic, target_audience, research_report, presentation_structure
)
# Create speaker notes
speaker_notes = self._generate_speaker_notes(slides, research_report)
# Generate presentation metadata
presentation_metadata = self._generate_presentation_metadata(
topic, target_audience, presentation_duration, len(slides)
)
return {
"status": "presentation_complete",
"topic": topic,
"target_audience": target_audience,
"presentation_duration": presentation_duration,
"total_slides": len(slides),
"slides": slides,
"speaker_notes": speaker_notes,
"metadata": presentation_metadata,
"research_report": research_report,
"created_date": "2025-07-18"
}
except Exception as e:
logger.error(f"Final presentation creation failed: {e}", exc_info=True)
raise ToolExecutionError(f"Failed to create final presentation: {e}")
def _generate_clarification_questions(self, topic: str, target_audience: str, focus_area: str) -> List[Dict[str, str]]:
"""Generate 3-5 clarification questions for the user."""
questions = [
{
"question": f"What specific aspects of {topic} would you like to emphasize in this presentation?",
"purpose": "To focus the research on the most relevant areas",
"examples": "e.g., pathophysiology, diagnosis, treatment, recent advances, guidelines"
},
{
"question": f"Are there any specific guidelines, studies, or evidence you want to include?",
"purpose": "To ensure important references are included",
"examples": "e.g., specific society guidelines, landmark studies, recent publications"
},
{
"question": f"What learning objectives should the {target_audience} achieve after this presentation?",
"purpose": "To structure the educational content appropriately",
"examples": "e.g., diagnostic skills, treatment decisions, understanding pathophysiology"
},
{
"question": f"Are there any specific clinical scenarios or patient populations you want to highlight?",
"purpose": "To create relevant clinical vignettes",
"examples": "e.g., pediatric patients, elderly, specific comorbidities, severity levels"
},
{
"question": f"What should be the takeaway message or key clinical pearl from this presentation?",
"purpose": "To ensure the presentation has a clear, memorable message",
"examples": "e.g., early recognition saves lives, personalized treatment approach, guideline adherence"
}
]
return questions
def _generate_intelligent_defaults(self, topic: str, target_audience: str, focus_area: str) -> Dict[str, str]:
"""
Generate intelligent default responses based on topic and focus area.
Args:
topic (str): The medical topic
target_audience (str): Target audience
focus_area (str): Focus area
Returns:
Dict[str, str]: Intelligent default responses
"""
try:
# Topic-specific intelligent defaults
topic_lower = topic.lower()
if "dimorphic fungi" in topic_lower or "fungal" in topic_lower:
return {
"aspects": "comprehensive coverage including pathophysiology, diagnosis, treatment, epidemiology, and clinical presentations",
"guidelines": "IDSA guidelines and recent evidence-based recommendations",
"learning_objectives": "comprehensive understanding of diagnosis, treatment, and key clinical presentations for board exam preparation",
"clinical_scenarios": "common clinical presentations of each dimorphic fungus including histoplasmosis, coccidioidomycosis, blastomycosis, and others",
"takeaway_message": "systematic approach to diagnosis and management with focus on board exam question patterns"
}
elif "sepsis" in topic_lower:
return {
"aspects": "pathophysiology, early recognition, diagnosis, management, and outcomes",
"guidelines": "Surviving Sepsis Campaign guidelines and recent updates",
"learning_objectives": "early recognition, appropriate management, and outcome improvement",
"clinical_scenarios": "emergency department presentations, ICU management, and complications",
"takeaway_message": "early recognition and prompt treatment save lives"
}
elif "heart failure" in topic_lower:
return {
"aspects": "pathophysiology, classification, diagnosis, management, and prognosis",
"guidelines": "ACC/AHA heart failure guidelines",
"learning_objectives": "diagnostic skills, treatment optimization, and guideline adherence",
"clinical_scenarios": "acute decompensated heart failure, chronic management, and comorbidities",
"takeaway_message": "guideline-directed medical therapy improves outcomes"
}
else:
# Generic intelligent defaults
return {
"aspects": "comprehensive coverage including pathophysiology, diagnosis, treatment, and recent advances",
"guidelines": "latest evidence-based guidelines from relevant professional societies",
"learning_objectives": "comprehensive understanding of diagnosis, treatment, and key clinical pearls",
"clinical_scenarios": "common clinical presentations and real-world case studies",
"takeaway_message": "evidence-based approach to diagnosis and management"
}
except Exception as e:
logger.warning(f"Failed to generate intelligent defaults: {e}")
# Fallback to basic defaults
return {
"aspects": "comprehensive overview of the topic",
"guidelines": "current evidence-based guidelines",
"learning_objectives": "understanding of key concepts",
"clinical_scenarios": "common clinical presentations",
"takeaway_message": "evidence-based clinical approach"
}
async def _conduct_iterative_research(self, topic: str, clarification_responses: Dict[str, str]) -> Dict[str, Any]:
"""Conduct 4-5 rounds of iterative research."""
research_results = {
"rounds": [],
"total_sources": 0,
"key_themes": [],
"evidence_summary": {}
}
# Import internet search tool
from tools.internet_search import InternetSearchTool
internet_tool = InternetSearchTool()
# Round 1: General topic overview
round1_queries = [
f"{topic} overview clinical guidelines",
f"{topic} pathophysiology mechanisms",
f"{topic} diagnosis treatment current evidence",
f"{topic} management recommendations 2024",
f"{topic} clinical practice guidelines"
]
round1_results = await self._conduct_research_round(internet_tool, round1_queries, 1, "General Overview")
research_results["rounds"].append(round1_results)
# Round 2: Specific focus based on clarification
focus_keywords = self._extract_focus_keywords(clarification_responses)
round2_queries = [
f"{topic} {focus_keywords[0]} latest research",
f"{topic} {focus_keywords[1]} clinical studies",
f"{topic} {focus_keywords[0]} best practices",
f"{topic} guidelines {focus_keywords[1]}",
f"{topic} evidence based {focus_keywords[0]}"
]
round2_results = await self._conduct_research_round(internet_tool, round2_queries, 2, "Focused Research")
research_results["rounds"].append(round2_results)
# Round 3: Clinical evidence and studies
round3_queries = [
f"{topic} randomized controlled trials",
f"{topic} systematic review meta-analysis",
f"{topic} clinical outcomes studies",
f"{topic} evidence quality assessment",
f"{topic} landmark studies"
]
round3_results = await self._conduct_research_round(internet_tool, round3_queries, 3, "Clinical Evidence")
research_results["rounds"].append(round3_results)
# Round 4: Guidelines and recommendations
round4_queries = [
f"{topic} society guidelines recommendations",
f"{topic} international consensus statements",
f"{topic} practice guidelines updates",
f"{topic} expert consensus recommendations",
f"{topic} clinical practice standards"
]
round4_results = await self._conduct_research_round(internet_tool, round4_queries, 4, "Guidelines & Recommendations")
research_results["rounds"].append(round4_results)
# Calculate total sources
research_results["total_sources"] = sum(len(round_data["sources"]) for round_data in research_results["rounds"])
# Extract key themes
research_results["key_themes"] = self._extract_key_themes(research_results["rounds"])
return research_results
async def _conduct_research_round(self, internet_tool, queries: List[str], round_number: int, round_focus: str) -> Dict[str, Any]:
"""Conduct a single round of research."""
round_results = {
"round_number": round_number,
"focus": round_focus,
"queries": queries,
"sources": [],
"summary": ""
}
for query in queries:
try:
search_results = await internet_tool.run(query)
if search_results:
# Parse and extract key information
parsed_sources = self._parse_search_results(search_results, query)
round_results["sources"].extend(parsed_sources)
# Limit to 3-5 sources per round
if len(round_results["sources"]) >= 5:
break
except Exception as e:
logger.warning(f"Search failed for query '{query}': {e}")
continue
# Generate summary for this round
round_results["summary"] = self._generate_round_summary(round_results["sources"], round_focus)
return round_results
def _parse_search_results(self, search_results: str, query: str) -> List[Dict[str, str]]:
"""Parse search results string into structured sources."""
sources = []
# Split by entries (each entry starts with **)
import re
entries = re.split(r'\*\*([^*]+)\*\*', search_results)
for i in range(1, len(entries), 2):
if i + 1 < len(entries):
title = entries[i].strip()
content_and_link = entries[i + 1].strip()
# Extract the link
link_match = re.search(r'\[Read more\]\(([^)]+)\)', content_and_link)
url = link_match.group(1) if link_match else ""
# Extract the content
content = re.sub(r'\[Read more\]\([^)]+\)', '', content_and_link).strip()
if title and content:
sources.append({
"title": title,
"url": url,
"content": content,
"query": query,
"relevance": "high" # Could be improved with actual relevance scoring
})
return sources
def _extract_focus_keywords(self, clarification_responses: Dict[str, str]) -> List[str]:
"""Extract focus keywords from clarification responses."""
keywords = ["diagnosis", "treatment", "management", "pathophysiology", "guidelines"]
# Extract keywords from user responses
for response in clarification_responses.values():
if response:
# Simple keyword extraction - could be improved
if "diagnosis" in response.lower():
keywords.insert(0, "diagnosis")
elif "treatment" in response.lower():
keywords.insert(0, "treatment")
elif "management" in response.lower():
keywords.insert(0, "management")
return keywords[:2] # Return top 2 keywords
def _generate_round_summary(self, sources: List[Dict], round_focus: str) -> str:
"""Generate a summary for a research round."""
if not sources:
return f"No relevant sources found for {round_focus}."
# Extract key points from sources
key_points = []
for source in sources:
content = source.get("content", "")
if len(content) > 50:
# Extract first sentence or key point
first_sentence = content.split('.')[0]
if len(first_sentence) > 20:
key_points.append(first_sentence)
summary = f"**{round_focus}** ({len(sources)} sources):\n"
for i, point in enumerate(key_points[:3], 1):
summary += f"{i}. {point}\n"
return summary
def _extract_key_themes(self, rounds: List[Dict]) -> List[str]:
"""Extract key themes from all research rounds."""
themes = []
for round_data in rounds:
summary = round_data.get("summary", "")
if "diagnosis" in summary.lower():
themes.append("Diagnostic Approach")
if "treatment" in summary.lower():
themes.append("Treatment Strategies")
if "management" in summary.lower():
themes.append("Clinical Management")
if "guidelines" in summary.lower():
themes.append("Evidence-Based Guidelines")
if "pathophysiology" in summary.lower():
themes.append("Pathophysiology")
# Remove duplicates and return unique themes
return list(set(themes))
def _generate_research_report(self, topic: str, research_results: Dict, clarification_responses: Dict) -> str:
"""Generate a comprehensive research report."""
report = f"# Comprehensive Research Report: {topic.title()}\n\n"
# Executive summary
report += "## Executive Summary\n"
report += f"This report synthesizes findings from {research_results['total_sources']} sources across {len(research_results['rounds'])} research rounds.\n\n"
# Key themes
report += "## Key Themes Identified\n"
for theme in research_results["key_themes"]:
report += f"- {theme}\n"
report += "\n"
# Research rounds summary
report += "## Research Findings by Round\n"
for round_data in research_results["rounds"]:
report += f"### Round {round_data['round_number']}: {round_data['focus']}\n"
report += f"{round_data['summary']}\n\n"
# Evidence synthesis
report += "## Evidence Synthesis\n"
report += f"Based on the research conducted, the following key points emerge about {topic}:\n\n"
# Add synthesized content based on themes
for theme in research_results["key_themes"]:
report += f"**{theme}**: [Evidence-based summary for {theme}]\n\n"
# Clinical implications
report += "## Clinical Implications\n"
report += f"The research findings have the following implications for clinical practice:\n"
report += "- [Key clinical implication 1]\n"
report += "- [Key clinical implication 2]\n"
report += "- [Key clinical implication 3]\n\n"
# Recommendations
report += "## Recommendations\n"
report += "Based on the evidence review:\n"
report += "1. [Recommendation 1]\n"
report += "2. [Recommendation 2]\n"
report += "3. [Recommendation 3]\n\n"
return report
def _create_presentation_structure(self, topic: str, target_audience: str, duration: int, research_report: str) -> Dict[str, Any]:
"""Create the presentation structure."""
# Calculate approximate slides based on duration
slides_estimate = max(10, duration // 3) # ~3 minutes per slide
structure = {
"title": f"{topic.title()}: A Comprehensive Review",
"estimated_slides": slides_estimate,
"estimated_duration": duration,
"sections": [
{
"section": "Introduction",
"slides": [
{"title": "Title Slide", "content": f"{topic.title()}", "duration": 1},
{"title": "Learning Objectives", "content": "What you will learn today", "duration": 2},
{"title": "Case Vignette", "content": "Clinical scenario introduction", "duration": 3}
]
},
{
"section": "Educational Content",
"slides": [
{"title": "Definition & Overview", "content": f"What is {topic}?", "duration": 5},
{"title": "Pathophysiology", "content": "Understanding the mechanisms", "duration": 7},
{"title": "Clinical Presentation", "content": "Recognition and diagnosis", "duration": 7},
{"title": "Diagnostic Approach", "content": "Evidence-based diagnosis", "duration": 8},
{"title": "Treatment Strategies", "content": "Management options", "duration": 8},
{"title": "Guidelines & Evidence", "content": "Current recommendations", "duration": 5}
]
},
{
"section": "Application",
"slides": [
{"title": "Case Application", "content": "Applying knowledge to the vignette", "duration": 5},
{"title": "Clinical Pearls", "content": "Key takeaways", "duration": 3}
]
},
{
"section": "Assessment",
"slides": [
{"title": "Rapid Fire Questions", "content": "Quick knowledge check", "duration": 5},
{"title": "Discussion", "content": "Open discussion and Q&A", "duration": 5}
]
}
]
}
return structure
def _adjust_structure_based_on_feedback(self, structure: Dict, feedback: str) -> Dict:
"""Adjust presentation structure based on user feedback."""
# Simple feedback processing - could be enhanced
if "more slides" in feedback.lower():
# Add more detail slides
for section in structure["sections"]:
if section["section"] == "Educational Content":
section["slides"].append({
"title": "Advanced Topics",
"content": "Additional detailed information",
"duration": 5
})
if "shorter" in feedback.lower():
# Remove some slides
for section in structure["sections"]:
if len(section["slides"]) > 2:
section["slides"] = section["slides"][:2]
return structure
async def _generate_all_slides(self, topic: str, target_audience: str, research_report: str, structure: Dict) -> List[Dict[str, Any]]:
"""Generate all presentation slides using AI and research content."""
slides = []
slide_number = 1
logger.info(f"Starting AI-powered slide generation for {topic}")
for section in structure["sections"]:
for slide_template in section["slides"]:
try:
slide = await self._create_ai_slide(
slide_number,
slide_template["title"],
slide_template["content"],
topic,
target_audience,
research_report,
section["section"]
)
slides.append(slide)
slide_number += 1
logger.info(f"Generated slide {slide_number-1}: {slide_template['title']}")
except Exception as e:
logger.error(f"Failed to generate slide {slide_number}: {e}")
# Fallback to basic slide structure
slide = self._create_fallback_slide(slide_number, slide_template["title"], section["section"])
slides.append(slide)
slide_number += 1
logger.info(f"Completed slide generation: {len(slides)} slides created")
return slides
async def _create_ai_slide(self, slide_number: int, title: str, content_desc: str, topic: str,
target_audience: str, research_report: str, section: str) -> Dict[str, Any]:
"""Create an individual slide with AI-generated content based on research."""
try:
# Load the slide generation prompt
logger.info(f"Generating AI content for slide: {title}")
prompt = load_prompt('generate_presentation_slide.j2',
topic=topic,
target_audience=target_audience.replace('_', ' '),
slide_title=title,
section=section,
content_description=content_desc,
research_report=research_report[:3000] # Limit research content to avoid token limits
)
# Generate slide content with OpenAI
response = await asyncio.wait_for(
call_llm(prompt),
timeout=30.0
)
# Parse AI response
if response.strip().startswith('```json'):
response = response.strip()[7:-3].strip()
elif response.strip().startswith('```'):
response = response.strip()[3:-3].strip()
slide_content = json.loads(response)
# Construct the slide with AI-generated content
slide = {
"slide_number": slide_number,
"title": slide_content.get("slide_title", title),
"section": section,
"content": {
"bullet_points": slide_content.get("main_content", []),
"sub_bullets": slide_content.get("sub_bullets", {}),
"clinical_notes": slide_content.get("clinical_notes", ""),
"references_used": slide_content.get("references_used", ""),
"generation_method": "AI-powered with research integration"
}
}
logger.info(f"Successfully generated AI slide: {title} ({len(slide['content']['bullet_points'])} main points)")
return slide
except Exception as e:
logger.error(f"AI slide generation failed for {title}: {e}")
# Return fallback slide
return self._create_fallback_slide(slide_number, title, section)
def _create_fallback_slide(self, slide_number: int, title: str, section: str) -> Dict[str, Any]:
"""Create a basic fallback slide if AI generation fails."""
return {
"slide_number": slide_number,
"title": title,
"section": section,
"content": {
"bullet_points": [
f"Content for {title} slide",
"Key points to be covered",
"Clinical applications",
"Important considerations"
],
"sub_bullets": {},
"clinical_notes": "Fallback content - consider manual review",
"generation_method": "Fallback template"
}
}
def _create_slide(self, slide_number: int, title: str, content_desc: str, topic: str, target_audience: str, research_report: str, section: str) -> Dict[str, Any]:
"""Create an individual slide with detailed, presentation-ready content."""
slide = {
"slide_number": slide_number,
"title": title,
"section": section,
"content": {
"bullet_points": [],
"images": [],
"notes": ""
}
}
# Generate detailed content based on slide type and topic
if "Title Slide" in title:
slide["content"]["bullet_points"] = [
f"{topic.title()}: A Comprehensive Review",
f"For {target_audience.replace('_', ' ').title()}",
f"Date: July 18, 2025"
]
elif "Learning Objectives" in title:
slide["content"]["bullet_points"] = self._generate_learning_objectives_content(topic)
elif "Case Vignette" in title:
slide["content"]["bullet_points"] = self._generate_case_vignette_content(topic)
elif "Definition" in title or "Overview" in title:
slide["content"]["bullet_points"] = self._generate_definition_overview_content(topic)
elif "Pathophysiology" in title:
slide["content"]["bullet_points"] = self._generate_pathophysiology_content(topic)
elif "Clinical Presentation" in title:
slide["content"]["bullet_points"] = self._generate_clinical_presentation_content(topic)
elif "Diagnostic" in title:
slide["content"]["bullet_points"] = self._generate_diagnostic_content(topic)
elif "Treatment" in title:
slide["content"]["bullet_points"] = self._generate_treatment_content(topic)
elif "Guidelines" in title:
slide["content"]["bullet_points"] = self._generate_guidelines_content(topic)
elif "Case Application" in title:
slide["content"]["bullet_points"] = self._generate_case_application_content(topic)
elif "Clinical Pearls" in title:
slide["content"]["bullet_points"] = self._generate_clinical_pearls_content(topic)
elif "Rapid Fire" in title:
slide["content"]["bullet_points"] = self._generate_rapid_fire_content(topic)
elif "Discussion" in title:
slide["content"]["bullet_points"] = self._generate_discussion_content(topic)
else:
# Fallback for other slide types
slide["content"]["bullet_points"] = self._generate_generic_content(title, topic)
return slide
def _generate_learning_objectives_content(self, topic: str) -> List[str]:
"""Generate specific learning objectives based on topic."""
if "dimorphic fungi" in topic.lower():
return [
"Identify the three major endemic dimorphic fungi in the United States",
"Describe the unique morphological characteristics of dimorphic fungi",
"Recognize geographic distribution patterns and epidemiologic risk factors",
"Differentiate clinical presentations of histoplasmosis, blastomycosis, and coccidioidomycosis",
"Apply appropriate diagnostic testing strategies and interpret results",
"Implement evidence-based antifungal treatment protocols per IDSA guidelines"
]
elif "pneumonia" in topic.lower():
return [
"Classify pneumonia by etiology and clinical setting (CAP, HAP, VAP)",
"Recognize clinical presentation and physical examination findings",
"Select appropriate diagnostic tests and interpret chest imaging",
"Apply severity scoring systems (CURB-65, PSI) for risk stratification",
"Implement evidence-based antibiotic therapy based on guidelines",
"Identify complications and indications for hospitalization"
]
else:
return [
f"Define key concepts related to {topic}",
f"Recognize clinical manifestations of {topic}",
f"Apply diagnostic approaches for {topic}",
f"Implement evidence-based treatment strategies",
f"Integrate current guidelines into clinical practice"
]
def _generate_case_vignette_content(self, topic: str) -> List[str]:
"""Generate specific case vignette based on topic."""
if "dimorphic fungi" in topic.lower():
return [
"45-year-old construction worker from Ohio River Valley",
"Recent spelunking activities in Kentucky caves (6 weeks ago)",
"3-week history: fever, nonproductive cough, 15-pound weight loss",
"Physical exam: erythema nodosum, bilateral hilar lymphadenopathy",
"Labs: lymphopenia, elevated ESR, positive Histoplasma urine antigen",
"Question: What is the most likely diagnosis and treatment?"
]
elif "pneumonia" in topic.lower():
return [
"68-year-old man with COPD and diabetes",
"Recent cruise ship travel, acute onset (48 hours)",
"Productive cough with rust-colored sputum, pleuritic chest pain",
"Physical exam: dullness to percussion, bronchial breath sounds",
"Labs: elevated WBC with left shift, positive pneumococcal antigen",
"Question: What is the most appropriate treatment approach?"
]
else:
return [
f"Clinical scenario presenting with {topic}",
"Relevant patient history and risk factors",
"Physical examination findings",
"Initial diagnostic workup results",
"Clinical decision-making challenge"
]
def _generate_definition_overview_content(self, topic: str) -> List[str]:
"""Generate definition and overview content."""
if "dimorphic fungi" in topic.lower():
return [
"Dimorphic fungi: organisms that exist in two distinct morphological forms",
"Yeast form at body temperature (37°C) - pathogenic phase",
"Mold form at room temperature (25°C) - environmental phase",
"Three major endemic fungi in US: Histoplasma, Blastomyces, Coccidioides",
"Cause significant morbidity in immunocompromised and healthy hosts",
"Geographic distribution correlates with environmental factors"
]
elif "pneumonia" in topic.lower():
return [
"Pneumonia: infection of the lung parenchyma and alveolar spaces",
"Leading cause of infectious disease mortality worldwide",
"Classification: Community-acquired (CAP), Healthcare-associated (HAP/VAP)",
"Etiology: bacterial, viral, fungal, or atypical pathogens",
"Risk factors: age, comorbidities, immunosuppression, aspiration",
"Clinical spectrum: mild outpatient to severe septic shock"
]
else:
return [
f"Definition and key characteristics of {topic}",
f"Epidemiology and prevalence of {topic}",
f"Clinical significance in medical practice",
f"Risk factors and predisposing conditions"
]
def _generate_pathophysiology_content(self, topic: str) -> List[str]:
"""Generate pathophysiology content."""
if "dimorphic fungi" in topic.lower():
return [
"Inhalation of microconidia from contaminated soil or bird/bat droppings",
"Conversion to yeast form in lung alveoli at body temperature",
"Phagocytosis by alveolar macrophages - intracellular survival",
"Hematogenous dissemination to reticuloendothelial system",
"Host immune response: cell-mediated immunity crucial for control",
"Granulomatous inflammation with potential for reactivation"
]
elif "pneumonia" in topic.lower():
return [
"Pathogen invasion of lower respiratory tract via inhalation or aspiration",
"Overwhelm of normal host defense mechanisms (mucociliary clearance, alveolar macrophages)",
"Inflammatory response: neutrophil recruitment, cytokine release",
"Alveolar filling with inflammatory exudate and impaired gas exchange",
"Systemic inflammatory response syndrome (SIRS) in severe cases",
"Complications: pleural effusion, empyema, respiratory failure"
]
else:
return [
f"Underlying mechanisms of {topic}",
f"Pathophysiologic pathways involved",
f"Host response and immune system involvement",
f"Disease progression and complications"
]
def _generate_clinical_presentation_content(self, topic: str) -> List[str]:
"""Generate clinical presentation content."""
if "dimorphic fungi" in topic.lower():
return [
"Histoplasmosis: fever, cough, weight loss, erythema nodosum",
"Blastomycosis: skin lesions, pulmonary symptoms, bone involvement",
"Coccidioidomycosis: Valley fever, arthralgias, desert rheumatism",
"Pulmonary manifestations: nodules, cavitation, hilar lymphadenopathy",
"Disseminated disease: CNS, skin, bone, adrenal involvement",
"Chronic forms: progressive pulmonary fibrosis, cavitary disease"
]
elif "pneumonia" in topic.lower():
return [
"Classic triad: fever, cough, and dyspnea",
"Productive cough with purulent sputum (bacterial)",
"Pleuritic chest pain and decreased breath sounds",
"Physical signs: dullness to percussion, crackles, bronchial breath sounds",
"Systemic symptoms: malaise, myalgias, headache",
"Severe cases: sepsis, altered mental status, respiratory failure"
]
else:
return [
f"Common signs and symptoms of {topic}",
f"Physical examination findings",
f"Disease spectrum and severity variations",
f"Complications and warning signs"
]
def _generate_diagnostic_content(self, topic: str) -> List[str]:
"""Generate diagnostic approach content."""
if "dimorphic fungi" in topic.lower():
return [
"Urine antigen testing: rapid, sensitive for Histoplasma",
"Serology: complement fixation, EIA antibodies (takes weeks)",
"Culture: gold standard but requires 2-6 weeks for growth",
"Histopathology: special stains (GMS, PAS) for tissue diagnosis",
"Molecular testing: PCR increasingly available",
"Imaging: chest CT for pulmonary nodules, lymphadenopathy"
]
elif "pneumonia" in topic.lower():
return [
"Chest X-ray: first-line imaging for consolidation",
"Laboratory: CBC with differential, procalcitonin, blood cultures",
"Sputum culture: if good quality specimen available",
"Urinary antigens: pneumococcal and Legionella",
"Severity assessment: CURB-65, PSI scoring systems",
"Advanced imaging: chest CT if complicated or atypical"
]
else:
return [
f"Laboratory tests for {topic}",
f"Imaging studies and interpretation",
f"Differential diagnosis considerations",
f"Confirmatory diagnostic procedures"
]
def _generate_treatment_content(self, topic: str) -> List[str]:
"""Generate treatment strategies content."""
if "dimorphic fungi" in topic.lower():
return [
"Mild-moderate disease: Itraconazole 200 mg BID × 6-12 weeks",
"Severe disease: Amphotericin B 0.7-1.0 mg/kg/day × 1-2 weeks",
"Step-down therapy: Itraconazole after amphotericin stabilization",
"CNS disease: Amphotericin B × 4-6 weeks, then fluconazole",
"Duration: 6-12 months for pulmonary, 12-24 months for disseminated",
"Monitoring: drug levels, hepatic function, treatment response"
]
elif "pneumonia" in topic.lower():
return [
"Outpatient CAP: Amoxicillin or macrolide monotherapy",
"Hospitalized CAP: Beta-lactam + macrolide or fluoroquinolone",
"Severe CAP: Broad-spectrum beta-lactam + macrolide",
"Duration: 5-7 days for most cases, longer if complications",
"Supportive care: oxygen, fluids, bronchodilators if needed",
"Prevention: pneumococcal and influenza vaccination"
]
else:
return [
f"First-line treatment options for {topic}",
f"Alternative therapies and second-line agents",
f"Treatment duration and monitoring parameters",
f"Management of complications"
]
def _generate_guidelines_content(self, topic: str) -> List[str]:
"""Generate guidelines and evidence content."""
if "dimorphic fungi" in topic.lower():
return [
"IDSA 2007 Guidelines for Endemic Mycoses (updated recommendations)",
"Treatment recommendations based on disease severity and location",
"Antifungal drug selection considers penetration and efficacy",
"Monitoring guidelines for drug toxicity and therapeutic response",
"Prevention strategies for high-risk populations",
"Quality indicators for optimal clinical outcomes"
]
elif "pneumonia" in topic.lower():
return [
"IDSA/ATS 2019 Guidelines for Community-Acquired Pneumonia",
"Antimicrobial selection based on severity and risk factors",
"Biomarker-guided therapy duration (procalcitonin)",
"Quality measures: appropriate antibiotic selection and timing",
"Prevention: vaccination recommendations and smoking cessation",
"Stewardship: narrow-spectrum therapy when possible"
]
else:
return [
f"Current clinical practice guidelines for {topic}",
f"Evidence-based recommendations and quality indicators",
f"Emerging research and future directions",
f"Implementation strategies in clinical practice"
]
def _generate_case_application_content(self, topic: str) -> List[str]:
"""Generate case application content."""
if "dimorphic fungi" in topic.lower():
return [
"Case diagnosis: Acute pulmonary histoplasmosis",
"Rationale: Geographic exposure + clinical presentation + positive urine antigen",
"Treatment plan: Itraconazole 200 mg BID × 6-12 weeks",
"Monitoring: Clinical response, itraconazole levels, hepatic function",
"Patient education: Prognosis, medication adherence, follow-up",
"Prevention: Avoid high-risk activities in endemic areas"
]
elif "pneumonia" in topic.lower():
return [
"Case diagnosis: Community-acquired pneumonia, moderate severity",
"CURB-65 score: 2 points (age > 65, confusion absent)",
"Treatment: Ceftriaxone 2g IV daily + azithromycin 500mg IV daily",
"Expected response: Clinical improvement within 48-72 hours",
"Discharge criteria: Stable vital signs, tolerating oral therapy",
"Follow-up: Chest X-ray in 6 weeks if high-risk patient"
]
else:
return [
f"Application of diagnostic criteria for {topic}",
f"Treatment decision-making based on evidence",
f"Monitoring response and adjusting therapy",
f"Patient education and follow-up planning"
]
def _generate_clinical_pearls_content(self, topic: str) -> List[str]:
"""Generate clinical pearls content."""
if "dimorphic fungi" in topic.lower():
return [
"Geographic history is crucial - ask about travel to endemic areas",
"Urine antigen testing provides rapid diagnosis for Histoplasma",
"Lymphopenia is characteristic of histoplasmosis vs. bacterial infections",
"Erythema nodosum suggests acute infection with good prognosis",
"Itraconazole levels should be checked after 2 weeks of therapy",
"Immunocompromised patients require longer, more intensive treatment"
]
elif "pneumonia" in topic.lower():
return [
"Procalcitonin > 0.5 ng/mL suggests bacterial etiology",
"Positive urinary antigens guide targeted antibiotic therapy",
"CURB-65 score helps determine site of care (outpatient vs. hospital)",
"Atypical pathogens require macrolide or fluoroquinolone coverage",
"Clinical response expected within 48-72 hours of appropriate therapy",
"Chest X-ray may lag behind clinical improvement by several days"
]
else:
return [
f"Key clinical insights for {topic}",
f"Common pitfalls to avoid in diagnosis",
f"Practical tips for optimal patient management",
f"Important prognostic factors to consider"
]
def _generate_rapid_fire_content(self, topic: str) -> List[str]:
"""Generate rapid fire questions content."""
if "dimorphic fungi" in topic.lower():
return [
"Q: Which dimorphic fungus is associated with spelunking? A: Histoplasma",
"Q: What is the most sensitive test for histoplasmosis? A: Urine antigen",
"Q: Which form is pathogenic at body temperature? A: Yeast form",
"Q: What skin finding suggests acute coccidioidomycosis? A: Erythema nodosum",
"Q: First-line treatment for mild histoplasmosis? A: Itraconazole",
"Q: How long should treatment continue? A: 6-12 weeks for pulmonary disease"
]
elif "pneumonia" in topic.lower():
return [
"Q: What is the most common cause of CAP? A: Streptococcus pneumoniae",
"Q: Which score predicts 30-day mortality? A: CURB-65 or PSI",
"Q: When should blood cultures be obtained? A: Before antibiotics in hospitalized patients",
"Q: First-line outpatient treatment for CAP? A: Amoxicillin or macrolide",
"Q: What biomarker helps guide antibiotic duration? A: Procalcitonin",
"Q: How soon should clinical improvement occur? A: Within 48-72 hours"
]
else:
return [
f"Quick review questions about {topic}",
f"Key facts and figures to remember",
f"High-yield testing points",
f"Clinical scenarios for practice"
]
def _generate_discussion_content(self, topic: str) -> List[str]:
"""Generate discussion content."""
return [
"Questions and answers session",
"Case-based discussion and clinical experiences",
"Challenging scenarios and problem-solving",
"Summary of key learning points",
"Resources for further learning",
"Contact information for follow-up questions"
]
def _generate_generic_content(self, title: str, topic: str) -> List[str]:
"""Generate generic content for unspecified slide types."""
return [
f"Key concepts related to {title.lower()} in {topic}",
f"Clinical significance and practical applications",
f"Evidence-based approaches and recommendations",
f"Integration with current clinical practice"
]
def _generate_speaker_notes(self, slides: List[Dict], research_report: str) -> Dict[str, str]:
"""Generate detailed speaker notes for each slide."""
speaker_notes = {}
for slide in slides:
slide_number = slide["slide_number"]
title = slide["title"]
# Generate specific speaker notes based on slide content
if "Title Slide" in title:
notes = f"**Speaker Notes for Slide {slide_number}: {title}**\n\n"
notes += "Welcome the audience and introduce the topic.\n"
notes += "Mention the importance of understanding dimorphic fungi in clinical practice.\n"
notes += "Preview the learning objectives and interactive elements.\n"
notes += "Encourage questions throughout the presentation.\n"
elif "Learning Objectives" in title:
notes = f"**Speaker Notes for Slide {slide_number}: {title}**\n\n"
notes += "Review each learning objective with the audience.\n"
notes += "Explain how these objectives relate to clinical practice.\n"
notes += "Ask: 'What is your current experience with diagnosing fungal infections?'\n"
notes += "Set expectations for active participation.\n"
elif "Case Vignette" in title:
notes = f"**Speaker Notes for Slide {slide_number}: {title}**\n\n"
notes += "Present the case systematically, pausing for audience input.\n"
notes += "Ask: 'What additional history would you want to obtain?'\n"
notes += "Highlight key clinical clues that point to the diagnosis.\n"
notes += "Build suspense - we'll return to this case later.\n"
elif "Definition" in title or "Overview" in title:
notes = f"**Speaker Notes for Slide {slide_number}: {title}**\n\n"
notes += "Explain the unique characteristics of dimorphic fungi.\n"
notes += "Use the temperature-dependent morphology as a key teaching point.\n"
notes += "Emphasize the geographic distribution and clinical significance.\n"
notes += "Ask: 'Which endemic areas are you familiar with?'\n"
elif "Pathophysiology" in title:
notes = f"**Speaker Notes for Slide {slide_number}: {title}**\n\n"
notes += "Walk through the infection process step by step.\n"
notes += "Emphasize the importance of cell-mediated immunity.\n"
notes += "Explain why immunocompromised patients are at higher risk.\n"
notes += "Connect pathophysiology to clinical presentation.\n"
elif "Clinical Presentation" in title:
notes = f"**Speaker Notes for Slide {slide_number}: {title}**\n\n"
notes += "Describe the spectrum of disease for each fungus.\n"
notes += "Highlight distinguishing features between organisms.\n"
notes += "Use clinical images if available to illustrate skin findings.\n"
notes += "Ask: 'What clinical clues help differentiate these infections?'\n"
elif "Diagnostic" in title:
notes = f"**Speaker Notes for Slide {slide_number}: {title}**\n\n"
notes += "Discuss the pros and cons of each diagnostic method.\n"
notes += "Emphasize the rapid turnaround time of urine antigen testing.\n"
notes += "Explain when to use each test based on clinical scenario.\n"
notes += "Address common pitfalls in diagnosis.\n"
elif "Treatment" in title:
notes = f"**Speaker Notes for Slide {slide_number}: {title}**\n\n"
notes += "Review IDSA guidelines for treatment recommendations.\n"
notes += "Explain rationale for drug selection and duration.\n"
notes += "Discuss monitoring parameters and side effects.\n"
notes += "Address when to consult infectious disease specialists.\n"
elif "Guidelines" in title:
notes = f"**Speaker Notes for Slide {slide_number}: {title}**\n\n"
notes += "Highlight key recommendations from IDSA guidelines.\n"
notes += "Discuss recent updates and changes in recommendations.\n"
notes += "Emphasize evidence-based approach to treatment.\n"
notes += "Provide resources for accessing current guidelines.\n"
elif "Case Application" in title:
notes = f"**Speaker Notes for Slide {slide_number}: {title}**\n\n"
notes += "Return to the opening case vignette.\n"
notes += "Walk through the diagnostic reasoning process.\n"
notes += "Explain treatment selection and monitoring plan.\n"
notes += "Ask: 'What would you do differently in this case?'\n"
elif "Clinical Pearls" in title:
notes = f"**Speaker Notes for Slide {slide_number}: {title}**\n\n"
notes += "Emphasize practical tips for clinical practice.\n"
notes += "Share memorable mnemonics or decision aids.\n"
notes += "Highlight common mistakes to avoid.\n"
notes += "Encourage audience to share their own pearls.\n"
elif "Rapid Fire" in title:
notes = f"**Speaker Notes for Slide {slide_number}: {title}**\n\n"
notes += "Engage the audience with quick questions.\n"
notes += "Encourage rapid responses to build confidence.\n"
notes += "Provide immediate feedback and explanations.\n"
notes += "Use this as a knowledge check before concluding.\n"
elif "Discussion" in title:
notes = f"**Speaker Notes for Slide {slide_number}: {title}**\n\n"
notes += "Open the floor for questions and discussion.\n"
notes += "Encourage sharing of clinical experiences.\n"
notes += "Address any remaining questions or concerns.\n"
notes += "Provide contact information and additional resources.\n"
notes += "Thank the audience for their participation.\n"
else:
notes = f"**Speaker Notes for Slide {slide_number}: {title}**\n\n"
notes += f"Key talking points for {title}.\n"
notes += "Connect to research findings and clinical evidence.\n"
notes += "Engage audience with relevant questions.\n"
notes += "Ensure smooth transition to next slide.\n"
speaker_notes[str(slide_number)] = notes
return speaker_notes
def _generate_presentation_metadata(self, topic: str, target_audience: str, duration: int, total_slides: int) -> Dict[str, Any]:
"""Generate presentation metadata."""
metadata = {
"topic": topic,
"target_audience": target_audience,
"duration_minutes": duration,
"total_slides": total_slides,
"created_date": "2025-07-18",
"presentation_type": "Educational",
"format": "PowerPoint/Slides",
"estimated_time_per_slide": duration / total_slides if total_slides > 0 else 3,
"learning_level": "Intermediate",
"prerequisites": f"Basic knowledge of {topic}",
"materials_needed": "Projector, handouts (optional)"
}
return metadata
|