Update app.py
Browse files
app.py
CHANGED
|
@@ -17,7 +17,7 @@ def feifeimodload():
|
|
| 17 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 18 |
|
| 19 |
pipe = DiffusionPipeline.from_pretrained(
|
| 20 |
-
"
|
| 21 |
).to(device)
|
| 22 |
|
| 23 |
pipe.load_lora_weights(
|
|
@@ -25,20 +25,8 @@ def feifeimodload():
|
|
| 25 |
adapter_name="feifei",
|
| 26 |
)
|
| 27 |
|
| 28 |
-
pipe.set_adapters(
|
| 29 |
-
["feifei"],
|
| 30 |
-
adapter_weights=[0.75],
|
| 31 |
-
)
|
| 32 |
-
|
| 33 |
-
pipe.fuse_lora(
|
| 34 |
-
adapter_name=["feifei"],
|
| 35 |
-
lora_scale=1.0,
|
| 36 |
-
)
|
| 37 |
-
|
| 38 |
-
#pipe.enable_sequential_cpu_offload()
|
| 39 |
pipe.vae.enable_slicing()
|
| 40 |
pipe.vae.enable_tiling()
|
| 41 |
-
pipe.unload_lora_weights()
|
| 42 |
torch.cuda.empty_cache()
|
| 43 |
return pipe
|
| 44 |
|
|
@@ -47,15 +35,20 @@ MAX_SEED = np.iinfo(np.int32).max
|
|
| 47 |
MAX_IMAGE_SIZE = 2048
|
| 48 |
|
| 49 |
@spaces.GPU()
|
| 50 |
-
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
|
| 51 |
if randomize_seed:
|
| 52 |
seed = random.randint(0, MAX_SEED)
|
| 53 |
generator = torch.Generator().manual_seed(seed)
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
image = pipe(
|
| 60 |
prompt = prompt,
|
| 61 |
width = width,
|
|
@@ -140,7 +133,6 @@ with gr.Blocks(css=css) as demo:
|
|
| 140 |
|
| 141 |
with gr.Row():
|
| 142 |
|
| 143 |
-
|
| 144 |
num_inference_steps = gr.Slider(
|
| 145 |
label="Number of inference steps",
|
| 146 |
minimum=1,
|
|
@@ -148,6 +140,15 @@ with gr.Blocks(css=css) as demo:
|
|
| 148 |
step=1,
|
| 149 |
value=4,
|
| 150 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
|
| 152 |
gr.Examples(
|
| 153 |
examples = examples,
|
|
@@ -160,7 +161,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 160 |
gr.on(
|
| 161 |
triggers=[run_button.click, prompt.submit],
|
| 162 |
fn = infer,
|
| 163 |
-
inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps],
|
| 164 |
outputs = [result, seed]
|
| 165 |
)
|
| 166 |
|
|
|
|
| 17 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 18 |
|
| 19 |
pipe = DiffusionPipeline.from_pretrained(
|
| 20 |
+
"aifeifei798/DarkIdol-flux-v1", torch_dtype=dtype
|
| 21 |
).to(device)
|
| 22 |
|
| 23 |
pipe.load_lora_weights(
|
|
|
|
| 25 |
adapter_name="feifei",
|
| 26 |
)
|
| 27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
pipe.vae.enable_slicing()
|
| 29 |
pipe.vae.enable_tiling()
|
|
|
|
| 30 |
torch.cuda.empty_cache()
|
| 31 |
return pipe
|
| 32 |
|
|
|
|
| 35 |
MAX_IMAGE_SIZE = 2048
|
| 36 |
|
| 37 |
@spaces.GPU()
|
| 38 |
+
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, num_feifei=0.35, progress=gr.Progress(track_tqdm=True)):
|
| 39 |
if randomize_seed:
|
| 40 |
seed = random.randint(0, MAX_SEED)
|
| 41 |
generator = torch.Generator().manual_seed(seed)
|
| 42 |
+
|
| 43 |
+
pipe.set_adapters(
|
| 44 |
+
["feifei"],
|
| 45 |
+
adapter_weights=[num_feifei],
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
pipe.fuse_lora(
|
| 49 |
+
adapter_name=["feifei"],
|
| 50 |
+
lora_scale=1.0,
|
| 51 |
+
)
|
| 52 |
image = pipe(
|
| 53 |
prompt = prompt,
|
| 54 |
width = width,
|
|
|
|
| 133 |
|
| 134 |
with gr.Row():
|
| 135 |
|
|
|
|
| 136 |
num_inference_steps = gr.Slider(
|
| 137 |
label="Number of inference steps",
|
| 138 |
minimum=1,
|
|
|
|
| 140 |
step=1,
|
| 141 |
value=4,
|
| 142 |
)
|
| 143 |
+
|
| 144 |
+
with gr.Row():
|
| 145 |
+
num_feifei = gr.Slider(
|
| 146 |
+
label="FeiFei",
|
| 147 |
+
minimum=0,
|
| 148 |
+
maximum=2,
|
| 149 |
+
step=0.05,
|
| 150 |
+
value=0.35,
|
| 151 |
+
)
|
| 152 |
|
| 153 |
gr.Examples(
|
| 154 |
examples = examples,
|
|
|
|
| 161 |
gr.on(
|
| 162 |
triggers=[run_button.click, prompt.submit],
|
| 163 |
fn = infer,
|
| 164 |
+
inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps, num_feifei],
|
| 165 |
outputs = [result, seed]
|
| 166 |
)
|
| 167 |
|