Spaces:
Paused
Paused
Upload 3 files
Browse files- README.md +9 -6
- app.py +93 -0
- requirements.txt +8 -0
README.md
CHANGED
|
@@ -1,12 +1,15 @@
|
|
| 1 |
---
|
| 2 |
-
title: Test Chatbot
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 5.
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
|
|
|
|
|
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
-
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Test Chatbot 1
|
| 3 |
+
emoji: 💬
|
| 4 |
+
colorFrom: yellow
|
| 5 |
+
colorTo: purple
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 5.42.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
+
hf_oauth: true
|
| 11 |
+
hf_oauth_scopes:
|
| 12 |
+
- inference-api
|
| 13 |
---
|
| 14 |
|
| 15 |
+
An example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).
|
app.py
ADDED
|
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, TorchAoConfig
|
| 4 |
+
from threading import Thread
|
| 5 |
+
import torch
|
| 6 |
+
from torchao.quantization import Int8DynamicActivationInt8WeightConfig, Int8WeightOnlyConfig
|
| 7 |
+
|
| 8 |
+
quant_config = Int8DynamicActivationInt8WeightConfig()
|
| 9 |
+
#quant_config = Int8WeightOnlyConfig()
|
| 10 |
+
quantization_config = TorchAoConfig(quant_type=quant_config)
|
| 11 |
+
#checkpoint = "HuggingFaceTB/SmolLM2-135M-Instruct"
|
| 12 |
+
checkpoint = "unsloth/gemma-3-4b-it"
|
| 13 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 14 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
| 15 |
+
#model = AutoModelForCausalLM.from_pretrained(checkpoint, torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32).to(device)
|
| 16 |
+
model = AutoModelForCausalLM.from_pretrained(checkpoint, torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
|
| 17 |
+
device_map=device, quantization_config=quantization_config)
|
| 18 |
+
|
| 19 |
+
@spaces.GPU(duration=30)
|
| 20 |
+
def respond_stream(message, history, system_message, max_tokens, temperature, top_p):
|
| 21 |
+
messages = [{"role": "system", "content": system_message}] + history + [{"role": "user", "content": message}]
|
| 22 |
+
|
| 23 |
+
input_ids = tokenizer.apply_chat_template(
|
| 24 |
+
messages,
|
| 25 |
+
tokenize=True,
|
| 26 |
+
add_generation_prompt=True,
|
| 27 |
+
return_tensors="pt",
|
| 28 |
+
).to(model.device)
|
| 29 |
+
|
| 30 |
+
streamer = TextIteratorStreamer(
|
| 31 |
+
tokenizer, skip_prompt=True, skip_special_tokens=True
|
| 32 |
+
)
|
| 33 |
+
gen_kwargs = dict(
|
| 34 |
+
inputs=input_ids,
|
| 35 |
+
streamer=streamer,
|
| 36 |
+
max_new_tokens=max_tokens,
|
| 37 |
+
do_sample=True,
|
| 38 |
+
temperature=temperature,
|
| 39 |
+
top_p=top_p,
|
| 40 |
+
eos_token_id=tokenizer.eos_token_id,
|
| 41 |
+
cache_implementation="static",
|
| 42 |
+
)
|
| 43 |
+
thread = Thread(target=model.generate, kwargs=gen_kwargs)
|
| 44 |
+
thread.start()
|
| 45 |
+
|
| 46 |
+
partial = ""
|
| 47 |
+
for piece in streamer:
|
| 48 |
+
partial += piece
|
| 49 |
+
yield partial
|
| 50 |
+
|
| 51 |
+
@spaces.GPU(duration=30)
|
| 52 |
+
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
| 53 |
+
messages = [{"role": "system", "content": system_message}] + history + [{"role": "user", "content": message}]
|
| 54 |
+
|
| 55 |
+
input_ids = tokenizer.apply_chat_template(
|
| 56 |
+
messages,
|
| 57 |
+
tokenize=True,
|
| 58 |
+
add_generation_prompt=True,
|
| 59 |
+
return_tensors="pt",
|
| 60 |
+
).to(model.device)
|
| 61 |
+
|
| 62 |
+
outputs = model.generate(
|
| 63 |
+
input_ids=input_ids,
|
| 64 |
+
max_new_tokens=max_tokens,
|
| 65 |
+
do_sample=True,
|
| 66 |
+
temperature=temperature,
|
| 67 |
+
top_p=top_p,
|
| 68 |
+
eos_token_id=tokenizer.eos_token_id,
|
| 69 |
+
cache_implementation="static",
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
gen_ids = outputs[0][input_ids.shape[-1]:]
|
| 73 |
+
return tokenizer.decode(gen_ids, skip_special_tokens=True)
|
| 74 |
+
|
| 75 |
+
"""
|
| 76 |
+
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
| 77 |
+
"""
|
| 78 |
+
chatbot = gr.ChatInterface(
|
| 79 |
+
respond,
|
| 80 |
+
type="messages",
|
| 81 |
+
additional_inputs=[
|
| 82 |
+
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
| 83 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
| 84 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 85 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
| 86 |
+
],
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
with gr.Blocks() as demo:
|
| 90 |
+
chatbot.render()
|
| 91 |
+
|
| 92 |
+
if __name__ == "__main__":
|
| 93 |
+
demo.queue().launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
huggingface_hub[hf_xet]
|
| 2 |
+
torch
|
| 3 |
+
torchao
|
| 4 |
+
transformers
|
| 5 |
+
accelerate
|
| 6 |
+
peft
|
| 7 |
+
sentencepiece
|
| 8 |
+
pydantic==2.10.6
|