Spaces:
Runtime error
Runtime error
Update index.py
Browse files
index.py
CHANGED
|
@@ -1,24 +1,75 @@
|
|
| 1 |
import transformers
|
| 2 |
from flask import Flask, request, jsonify
|
| 3 |
from transformers import RobertaTokenizerFast, TFRobertaForSequenceClassification, pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
# Load model and tokenizer once at app startup
|
| 8 |
tokenizer = RobertaTokenizerFast.from_pretrained("arpanghoshal/EmoRoBERTa")
|
| 9 |
model = TFRobertaForSequenceClassification.from_pretrained("arpanghoshal/EmoROBERTa")
|
| 10 |
emotion = pipeline("sentiment-analysis", model="arpanghoshal/EmoROBERTa")
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
|
|
|
|
|
|
| 22 |
|
| 23 |
-
|
| 24 |
-
app.run(debug=True) # Set debug=False in production
|
|
|
|
| 1 |
import transformers
|
| 2 |
from flask import Flask, request, jsonify
|
| 3 |
from transformers import RobertaTokenizerFast, TFRobertaForSequenceClassification, pipeline
|
| 4 |
+
import gradio as gr
|
| 5 |
+
import pandas as pd
|
| 6 |
+
import numpy as np
|
| 7 |
+
import matplotlib.pyplot as plt
|
| 8 |
+
import io
|
| 9 |
+
from io import BytesIO # Import BytesIO for image generation
|
| 10 |
|
| 11 |
+
# Load model and tokenizer
|
|
|
|
|
|
|
| 12 |
tokenizer = RobertaTokenizerFast.from_pretrained("arpanghoshal/EmoRoBERTa")
|
| 13 |
model = TFRobertaForSequenceClassification.from_pretrained("arpanghoshal/EmoROBERTa")
|
| 14 |
emotion = pipeline("sentiment-analysis", model="arpanghoshal/EmoROBERTa")
|
| 15 |
|
| 16 |
+
def analyze_csv(file):
|
| 17 |
+
try:
|
| 18 |
+
# Print file content for debugging
|
| 19 |
+
file_content = file.read()
|
| 20 |
+
print("File content:", file_content)
|
| 21 |
+
|
| 22 |
+
# Reset file position to the beginning
|
| 23 |
+
file.seek(0)
|
| 24 |
+
|
| 25 |
+
# Read the CSV file into a DataFrame
|
| 26 |
+
df = pd.read_csv(io.BytesIO(file_content))``
|
| 27 |
+
print("DataFrame shape:", df.shape) # Print DataFrame shape for debugging
|
| 28 |
+
print("DataFrame columns:", df.columns) # Print DataFrame columns for debugging
|
| 29 |
+
|
| 30 |
+
# Check if the DataFrame is empty
|
| 31 |
+
if df.empty:
|
| 32 |
+
return "Empty file. Please upload a CSV file with data.", None
|
| 33 |
+
|
| 34 |
+
# Check if the expected column "phrase" is present in the DataFrame
|
| 35 |
+
if "phrase" not in df.columns:
|
| 36 |
+
return "Column 'phrase' not found in the CSV file. Please check the file format.", None
|
| 37 |
+
|
| 38 |
+
phrases = df["phrase"]
|
| 39 |
+
|
| 40 |
+
# Analyze sentiment for each phrase
|
| 41 |
+
emotion_labels = emotion(phrases)
|
| 42 |
+
|
| 43 |
+
# Create summary statistics
|
| 44 |
+
summary_df = pd.DataFrame(emotion_labels).describe()
|
| 45 |
+
|
| 46 |
+
# Create a bar chart of emotion distribution
|
| 47 |
+
plt.figure()
|
| 48 |
+
emotion_counts = emotion_labels.get("labels").value_counts()
|
| 49 |
+
emotion_counts.plot(kind="bar")
|
| 50 |
+
plt.title("Emotion Distribution")
|
| 51 |
+
plt.xlabel("Emotion")
|
| 52 |
+
plt.ylabel("Count")
|
| 53 |
+
|
| 54 |
+
# Generate PNG image of the chart
|
| 55 |
+
chart_img = BytesIO()
|
| 56 |
+
plt.savefig(chart_img, format="png")
|
| 57 |
+
chart_img.seek(0)
|
| 58 |
+
|
| 59 |
+
return summary_df.to_json(), chart_img.read()
|
| 60 |
+
|
| 61 |
+
except Exception as e:
|
| 62 |
+
error_message = f"Error processing the CSV file: {str(e)}"
|
| 63 |
+
print(error_message) # Print the error message for debugging
|
| 64 |
+
return error_message, None
|
| 65 |
+
|
| 66 |
|
| 67 |
+
iface = gr.Interface(
|
| 68 |
+
fn=analyze_csv,
|
| 69 |
+
inputs=[gr.File(label="Upload CSV File")],
|
| 70 |
+
outputs=["dataframe", "image"],
|
| 71 |
+
title="Emotion Analyzer with CSV",
|
| 72 |
+
description="Analyzes sentiment and creates charts/tables from a CSV file.",
|
| 73 |
+
)
|
| 74 |
|
| 75 |
+
iface.launch()
|
|
|