Spaces:
Sleeping
Sleeping
| import sys | |
| import logging | |
| import os | |
| import json | |
| import torch | |
| import argparse | |
| import commons | |
| import utils | |
| import gradio as gr | |
| import numpy as np | |
| import librosa | |
| import re_matching | |
| from tools.sentence import split_by_language | |
| from huggingface_hub import hf_hub_download | |
| from clap_wrapper import get_clap_audio_feature, get_clap_text_feature | |
| from models import SynthesizerTrn | |
| from text.symbols import symbols | |
| from text import cleaned_text_to_sequence, get_bert | |
| from text.cleaner import clean_text | |
| logging.basicConfig(level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s") | |
| logger = logging.getLogger(__name__) | |
| def get_net_g(model_path: str, version: str, device: str, hps): | |
| net_g = SynthesizerTrn( | |
| len(symbols), | |
| hps.data.filter_length // 2 + 1, | |
| hps.train.segment_size // hps.data.hop_length, | |
| n_speakers=hps.data.n_speakers, | |
| **hps.model, | |
| ).to(device) | |
| _ = net_g.eval() | |
| _ = utils.load_checkpoint(model_path, net_g, None, skip_optimizer=True) | |
| return net_g | |
| def get_text(text, language_str, hps, device, style_text=None, style_weight=0.7): | |
| style_text = None if style_text == "" else style_text | |
| norm_text, phone, tone, word2ph = clean_text(text, language_str) | |
| phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str) | |
| if hps.data.add_blank: | |
| phone = commons.intersperse(phone, 0) | |
| tone = commons.intersperse(tone, 0) | |
| language = commons.intersperse(language, 0) | |
| for i in range(len(word2ph)): | |
| word2ph[i] = word2ph[i] * 2 | |
| word2ph[0] += 1 | |
| bert = get_bert(norm_text, word2ph, language_str, device, style_text, style_weight) | |
| del word2ph | |
| assert bert.shape[-1] == len(phone) | |
| phone = torch.LongTensor(phone) | |
| tone = torch.LongTensor(tone) | |
| language = torch.LongTensor(language) | |
| return bert, phone, tone, language | |
| def infer(*args, **kwargs): | |
| from infer import infer as real_infer | |
| return real_infer(*args, **kwargs) | |
| def load_audio(path): | |
| audio, sr = librosa.load(path, 48000) | |
| return sr, audio | |
| def gr_util(item): | |
| if item == "Text prompt": | |
| return {"visible": True, "__type__": "update"}, {"visible": False, "__type__": "update"} | |
| else: | |
| return {"visible": False, "__type__": "update"}, {"visible": True, "__type__": "update"} | |
| def create_tts_fn(hps, net_g, device): | |
| def tts_fn( | |
| text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale, language, | |
| reference_audio, emotion, prompt_mode, style_text, style_weight | |
| ): | |
| if style_text == "": | |
| style_text = None | |
| if prompt_mode == "Audio prompt": | |
| if reference_audio is None: | |
| return ("Invalid audio prompt", None) | |
| else: | |
| reference_audio = load_audio(reference_audio)[1] | |
| else: | |
| reference_audio = None | |
| audio = infer( | |
| text=text, | |
| reference_audio=reference_audio, | |
| emotion=emotion, | |
| sdp_ratio=sdp_ratio, | |
| noise_scale=noise_scale, | |
| noise_scale_w=noise_scale_w, | |
| length_scale=length_scale, | |
| sid=speaker, | |
| language=language, | |
| hps=hps, | |
| net_g=net_g, | |
| device=device, | |
| style_text=style_text, | |
| style_weight=style_weight, | |
| ) | |
| return "Success", (hps.data.sampling_rate, audio) | |
| return tts_fn | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--share", default=False, help="make link public", action="store_true") | |
| parser.add_argument("-d", "--debug", action="store_true", help="enable DEBUG-LEVEL log") | |
| args = parser.parse_args() | |
| if args.debug: | |
| logger.setLevel(logging.DEBUG) | |
| with open("pretrained_models/info.json", "r", encoding="utf-8") as f: | |
| models_info = json.load(f) | |
| device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
| models = [] | |
| for _, info in models_info.items(): | |
| if not info['enable']: | |
| continue | |
| name, title, link, example = info['name'], info['title'], info['link'], info['example'] | |
| config_path = hf_hub_download(repo_id=link, filename="config.json") | |
| model_path = hf_hub_download(repo_id=link, filename=f"{name}.pth") | |
| hps = utils.get_hparams_from_file(config_path) | |
| version = hps.version if hasattr(hps, "version") else "v2" | |
| net_g = get_net_g(model_path, version, device, hps) | |
| fn = create_tts_fn(hps, net_g, device) | |
| models.append((title, example, list(hps.data.spk2id.keys()), fn)) | |
| with gr.Blocks(theme='NoCrypt/miku') as app: | |
| gr.Markdown("## ✅ All models loaded successfully. Ready to use.") | |
| with gr.Tabs(): | |
| for (title, example, speakers, tts_fn) in models: | |
| with gr.TabItem(title): | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_text = gr.Textbox(label="Input text", lines=5, value=example) | |
| speaker = gr.Dropdown(choices=speakers, value=speakers[0], label="Speaker") | |
| prompt_mode = gr.Radio(["Text prompt", "Audio prompt"], label="Prompt Mode", value="Text prompt") | |
| text_prompt = gr.Textbox(label="Text prompt", value="Happy", visible=True) | |
| audio_prompt = gr.Audio(label="Audio prompt", type="filepath", visible=False) | |
| sdp_ratio = gr.Slider(0, 1, 0.2, 0.1, label="SDP Ratio") | |
| noise_scale = gr.Slider(0.1, 2.0, 0.6, 0.1, label="Noise") | |
| noise_scale_w = gr.Slider(0.1, 2.0, 0.8, 0.1, label="Noise_W") | |
| length_scale = gr.Slider(0.1, 2.0, 1.0, 0.1, label="Length") | |
| language = gr.Dropdown(choices=["JP", "ZH", "EN", "mix", "auto"], value="JP", label="Language") | |
| style_text = gr.Textbox(label="Style Text", placeholder="辅助文本 (留空为无)") | |
| style_weight = gr.Slider(0, 1, 0.7, 0.1, label="Style Weight") | |
| btn = gr.Button("Generate Audio", variant="primary") | |
| with gr.Column(): | |
| output_msg = gr.Textbox(label="Output Message") | |
| output_audio = gr.Audio(label="Output Audio") | |
| prompt_mode.change(lambda x: gr_util(x), inputs=[prompt_mode], outputs=[text_prompt, audio_prompt]) | |
| audio_prompt.upload(lambda x: load_audio(x), inputs=[audio_prompt], outputs=[audio_prompt]) | |
| btn.click(tts_fn, inputs=[input_text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale, language, audio_prompt, text_prompt, prompt_mode, style_text, style_weight], outputs=[output_msg, output_audio]) | |
| app.queue().launch(share=args.share) | |