Spaces:
Sleeping
Sleeping
Upload README.md
Browse files
README.md
CHANGED
|
@@ -1,107 +1,42 @@
|
|
| 1 |
-
|
| 2 |
-
license: apache-2.0
|
| 3 |
-
---
|
| 4 |
-
# Model card for CLAP
|
| 5 |
|
| 6 |
-
|
| 7 |
|
| 8 |
-
|
| 9 |
|
|
|
|
| 10 |
|
| 11 |
-
|
| 12 |
|
| 13 |
-
|
| 14 |
-
1. [Model Details](#model-details)
|
| 15 |
-
2. [Usage](#usage)
|
| 16 |
-
3. [Uses](#uses)
|
| 17 |
-
4. [Citation](#citation)
|
| 18 |
|
| 19 |
-
|
|
|
|
| 20 |
|
| 21 |
-
|
| 22 |
|
| 23 |
-
|
|
|
|
| 24 |
|
|
|
|
| 25 |
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
# Uses
|
| 31 |
-
|
| 32 |
-
## Perform zero-shot audio classification
|
| 33 |
-
|
| 34 |
-
### Using `pipeline`
|
| 35 |
-
|
| 36 |
-
```python
|
| 37 |
-
from datasets import load_dataset
|
| 38 |
-
from transformers import pipeline
|
| 39 |
-
|
| 40 |
-
dataset = load_dataset("ashraq/esc50")
|
| 41 |
-
audio = dataset["train"]["audio"][-1]["array"]
|
| 42 |
-
|
| 43 |
-
audio_classifier = pipeline(task="zero-shot-audio-classification", model="laion/clap-htsat-fused")
|
| 44 |
-
output = audio_classifier(audio, candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"])
|
| 45 |
-
print(output)
|
| 46 |
-
>>> [{"score": 0.999, "label": "Sound of a dog"}, {"score": 0.001, "label": "Sound of vaccum cleaner"}]
|
| 47 |
-
```
|
| 48 |
-
|
| 49 |
-
## Run the model:
|
| 50 |
-
|
| 51 |
-
You can also get the audio and text embeddings using `ClapModel`
|
| 52 |
-
|
| 53 |
-
### Run the model on CPU:
|
| 54 |
-
|
| 55 |
-
```python
|
| 56 |
-
from datasets import load_dataset
|
| 57 |
-
from transformers import ClapModel, ClapProcessor
|
| 58 |
-
|
| 59 |
-
librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
| 60 |
-
audio_sample = librispeech_dummy[0]
|
| 61 |
-
|
| 62 |
-
model = ClapModel.from_pretrained("laion/clap-htsat-fused")
|
| 63 |
-
processor = ClapProcessor.from_pretrained("laion/clap-htsat-fused")
|
| 64 |
-
|
| 65 |
-
inputs = processor(audios=audio_sample["audio"]["array"], return_tensors="pt")
|
| 66 |
-
audio_embed = model.get_audio_features(**inputs)
|
| 67 |
-
```
|
| 68 |
-
|
| 69 |
-
### Run the model on GPU:
|
| 70 |
-
|
| 71 |
-
```python
|
| 72 |
-
from datasets import load_dataset
|
| 73 |
-
from transformers import ClapModel, ClapProcessor
|
| 74 |
-
|
| 75 |
-
librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
| 76 |
-
audio_sample = librispeech_dummy[0]
|
| 77 |
-
|
| 78 |
-
model = ClapModel.from_pretrained("laion/clap-htsat-fused").to(0)
|
| 79 |
-
processor = ClapProcessor.from_pretrained("laion/clap-htsat-fused")
|
| 80 |
-
|
| 81 |
-
inputs = processor(audios=audio_sample["audio"]["array"], return_tensors="pt").to(0)
|
| 82 |
-
audio_embed = model.get_audio_features(**inputs)
|
| 83 |
-
```
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
# Citation
|
| 87 |
-
|
| 88 |
-
If you are using this model for your work, please consider citing the original paper:
|
| 89 |
-
```
|
| 90 |
-
@misc{https://doi.org/10.48550/arxiv.2211.06687,
|
| 91 |
-
doi = {10.48550/ARXIV.2211.06687},
|
| 92 |
-
|
| 93 |
-
url = {https://arxiv.org/abs/2211.06687},
|
| 94 |
-
|
| 95 |
-
author = {Wu, Yusong and Chen, Ke and Zhang, Tianyu and Hui, Yuchen and Berg-Kirkpatrick, Taylor and Dubnov, Shlomo},
|
| 96 |
-
|
| 97 |
-
keywords = {Sound (cs.SD), Audio and Speech Processing (eess.AS), FOS: Computer and information sciences, FOS: Computer and information sciences, FOS: Electrical engineering, electronic engineering, information engineering, FOS: Electrical engineering, electronic engineering, information engineering},
|
| 98 |
-
|
| 99 |
-
title = {Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation},
|
| 100 |
-
|
| 101 |
-
publisher = {arXiv},
|
| 102 |
-
|
| 103 |
-
year = {2022},
|
| 104 |
-
|
| 105 |
-
copyright = {Creative Commons Attribution 4.0 International}
|
| 106 |
-
}
|
| 107 |
-
```
|
|
|
|
| 1 |
+
<div align="center">
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
+
<img alt="LOGO" src="https://cdn.jsdelivr.net/gh/fishaudio/fish-diffusion@main/images/logo_512x512.png" width="256" height="256" />
|
| 4 |
|
| 5 |
+
# Bert-VITS2
|
| 6 |
|
| 7 |
+
VITS2 Backbone with multilingual bert
|
| 8 |
|
| 9 |
+
For quick guide, please refer to `webui_preprocess.py`.
|
| 10 |
|
| 11 |
+
简易教程请参见 `webui_preprocess.py`。
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
+
## 请注意,本项目核心思路来源于[anyvoiceai/MassTTS](https://github.com/anyvoiceai/MassTTS) 一个非常好的tts项目
|
| 14 |
+
## MassTTS的演示demo为[ai版峰哥锐评峰哥本人,并找回了在金三角失落的腰子](https://www.bilibili.com/video/BV1w24y1c7z9)
|
| 15 |
|
| 16 |
+
[//]: # (## 本项目与[PlayVoice/vits_chinese](https://github.com/PlayVoice/vits_chinese) 没有任何关系)
|
| 17 |
|
| 18 |
+
[//]: # ()
|
| 19 |
+
[//]: # (本仓库来源于之前朋友分享了ai峰哥的视频,本人被其中的效果惊艳,在自己尝试MassTTS以后发现fs在音质方面与vits有一定差距,并且training的pipeline比vits更复杂,因此按照其思路将bert)
|
| 20 |
|
| 21 |
+
## 成熟的旅行者/开拓者/舰长/博士/sensei/猎魔人/喵喵露/V应当参阅代码自己学习如何训练。
|
| 22 |
|
| 23 |
+
### 严禁将此项目用于一切违反《中华人民共和国宪法》,《中华人民共和国刑法》,《中华人民共和国治安管理处罚法》和《中华人民共和国民法典》之用途。
|
| 24 |
+
### 严禁用于任何政治相关用途。
|
| 25 |
+
#### Video:https://www.bilibili.com/video/BV1hp4y1K78E
|
| 26 |
+
#### Demo:https://www.bilibili.com/video/BV1TF411k78w
|
| 27 |
+
#### QQ Group:815818430
|
| 28 |
+
## References
|
| 29 |
+
+ [anyvoiceai/MassTTS](https://github.com/anyvoiceai/MassTTS)
|
| 30 |
+
+ [jaywalnut310/vits](https://github.com/jaywalnut310/vits)
|
| 31 |
+
+ [p0p4k/vits2_pytorch](https://github.com/p0p4k/vits2_pytorch)
|
| 32 |
+
+ [svc-develop-team/so-vits-svc](https://github.com/svc-develop-team/so-vits-svc)
|
| 33 |
+
+ [PaddlePaddle/PaddleSpeech](https://github.com/PaddlePaddle/PaddleSpeech)
|
| 34 |
+
+ [emotional-vits](https://github.com/innnky/emotional-vits)
|
| 35 |
+
+ [fish-speech](https://github.com/fishaudio/fish-speech)
|
| 36 |
+
+ [Bert-VITS2-UI](https://github.com/jiangyuxiaoxiao/Bert-VITS2-UI)
|
| 37 |
+
## 感谢所有贡献者作出的努力
|
| 38 |
+
<a href="https://github.com/fishaudio/Bert-VITS2/graphs/contributors" target="_blank">
|
| 39 |
+
<img src="https://contrib.rocks/image?repo=fishaudio/Bert-VITS2"/>
|
| 40 |
+
</a>
|
| 41 |
|
| 42 |
+
[//]: # (# 本项目所有代码引用均已写明,bert部分代码思路来源于[AI峰哥](https://www.bilibili.com/video/BV1w24y1c7z9),与[vits_chinese](https://github.com/PlayVoice/vits_chinese)无任何关系。欢迎各位查阅代码。同时,我们也对该开发者的[碰瓷,乃至开盒开发者的行为](https://www.bilibili.com/read/cv27101514/)表示强烈谴责。)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|