Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
# app.py
|
| 2 |
|
| 3 |
import sys
|
| 4 |
import logging
|
|
@@ -62,7 +62,8 @@ def infer(*args, **kwargs):
|
|
| 62 |
def tts_split(
|
| 63 |
text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale,
|
| 64 |
language, cut_by_sent, interval_between_para, interval_between_sent,
|
| 65 |
-
reference_audio, emotion, style_text, style_weight
|
|
|
|
| 66 |
):
|
| 67 |
if style_text == "":
|
| 68 |
style_text = None
|
|
@@ -128,6 +129,20 @@ def tts_split(
|
|
| 128 |
final_audio = np.concatenate(audio_list)
|
| 129 |
return "Success", (hps.data.sampling_rate, final_audio)
|
| 130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
def load_audio(path):
|
| 132 |
audio, sr = librosa.load(path, 48000)
|
| 133 |
return sr, audio
|
|
@@ -172,145 +187,6 @@ def create_tts_fn(hps, net_g, device):
|
|
| 172 |
return "Success", (hps.data.sampling_rate, audio)
|
| 173 |
return tts_fn
|
| 174 |
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
'<div align="center">'
|
| 179 |
-
f'<a><strong>{repid}</strong></a>'
|
| 180 |
-
f'<br>'
|
| 181 |
-
f'<a><strong>{title}</strong></a>'
|
| 182 |
-
f'<br>'
|
| 183 |
-
f'<a><strong>{speakers}</strong></a>'
|
| 184 |
-
f'</div>'
|
| 185 |
-
)
|
| 186 |
-
with gr.Row():
|
| 187 |
-
with gr.Column():
|
| 188 |
-
input_text = gr.Textbox(label="Input text", lines=5, value=example)
|
| 189 |
-
speaker = gr.Dropdown(choices=speakers, value=speakers[0], label="Speaker")
|
| 190 |
-
prompt_mode = gr.Radio(["Text prompt", "Audio prompt"], label="Prompt Mode", value="Text prompt")
|
| 191 |
-
text_prompt = gr.Textbox(label="Text prompt", value="Happy", visible=True)
|
| 192 |
-
audio_prompt = gr.Audio(label="Audio prompt", type="filepath", visible=False)
|
| 193 |
-
sdp_ratio = gr.Slider(0, 1, 0.2, 0.1, label="SDP Ratio")
|
| 194 |
-
noise_scale = gr.Slider(0.1, 2.0, 0.6, 0.1, label="Noise")
|
| 195 |
-
noise_scale_w = gr.Slider(0.1, 2.0, 0.8, 0.1, label="Noise_W")
|
| 196 |
-
length_scale = gr.Slider(0.1, 2.0, 1.0, 0.1, label="Length")
|
| 197 |
-
language = gr.Dropdown(choices=["JP", "ZH", "EN", "mix", "auto"], value="JP", label="Language")
|
| 198 |
-
btn = gr.Button("Generate Audio", variant="primary")
|
| 199 |
-
|
| 200 |
-
with gr.Column():
|
| 201 |
-
with gr.Accordion("Semantic Fusion", open=False):
|
| 202 |
-
gr.Markdown(
|
| 203 |
-
value="Use auxiliary text semantics to assist speech generation (language remains same as main text)\n\n"
|
| 204 |
-
"**Note**: Avoid using *command-style text* (e.g., 'Happy'). Use *emotionally rich text* (e.g., 'I'm so happy!!!')\n\n"
|
| 205 |
-
"Leave it blank to disable. \n\n"
|
| 206 |
-
"**If mispronunciations occur, try replacing characters and inputting the original here with weight set to 1.0 for semantic retention.**"
|
| 207 |
-
)
|
| 208 |
-
style_text = gr.Textbox(label="Auxiliary Text")
|
| 209 |
-
style_weight = gr.Slider(0, 1, 0.7, 0.1, label="Weight", info="Ratio between main and auxiliary BERT embeddings")
|
| 210 |
-
|
| 211 |
-
with gr.Row():
|
| 212 |
-
with gr.Column():
|
| 213 |
-
interval_between_sent = gr.Slider(0, 5, 0.2, 0.1, label="Pause between sentences (sec)")
|
| 214 |
-
interval_between_para = gr.Slider(0, 10, 1, 0.1, label="Pause between paragraphs (sec)")
|
| 215 |
-
opt_cut_by_sent = gr.Checkbox(label="Split by sentence")
|
| 216 |
-
slicer = gr.Button("Split and Generate", variant="primary")
|
| 217 |
-
|
| 218 |
-
with gr.Column():
|
| 219 |
-
output_msg = gr.Textbox(label="Output Message")
|
| 220 |
-
output_audio = gr.Audio(label="Output Audio")
|
| 221 |
-
|
| 222 |
-
# Binding
|
| 223 |
-
prompt_mode.change(lambda x: gr_util(x), inputs=[prompt_mode], outputs=[text_prompt, audio_prompt])
|
| 224 |
-
audio_prompt.upload(lambda x: load_audio(x), inputs=[audio_prompt], outputs=[audio_prompt])
|
| 225 |
-
btn.click(
|
| 226 |
-
tts_fn,
|
| 227 |
-
inputs=[
|
| 228 |
-
input_text,
|
| 229 |
-
speaker,
|
| 230 |
-
sdp_ratio,
|
| 231 |
-
noise_scale,
|
| 232 |
-
noise_scale_w,
|
| 233 |
-
length_scale,
|
| 234 |
-
language,
|
| 235 |
-
audio_prompt,
|
| 236 |
-
text_prompt,
|
| 237 |
-
prompt_mode,
|
| 238 |
-
style_text,
|
| 239 |
-
style_weight,
|
| 240 |
-
],
|
| 241 |
-
outputs=[output_msg, output_audio],
|
| 242 |
-
)
|
| 243 |
-
slicer.click(
|
| 244 |
-
tts_split,
|
| 245 |
-
inputs=[
|
| 246 |
-
input_text,
|
| 247 |
-
speaker,
|
| 248 |
-
sdp_ratio,
|
| 249 |
-
noise_scale,
|
| 250 |
-
noise_scale_w,
|
| 251 |
-
length_scale,
|
| 252 |
-
language,
|
| 253 |
-
opt_cut_by_sent,
|
| 254 |
-
interval_between_para,
|
| 255 |
-
interval_between_sent,
|
| 256 |
-
audio_prompt,
|
| 257 |
-
text_prompt,
|
| 258 |
-
style_text,
|
| 259 |
-
style_weight,
|
| 260 |
-
],
|
| 261 |
-
outputs=[output_msg, output_audio],
|
| 262 |
-
)
|
| 263 |
-
|
| 264 |
-
if __name__ == "__main__":
|
| 265 |
-
parser = argparse.ArgumentParser()
|
| 266 |
-
parser.add_argument("--share", default=False, help="make link public", action="store_true")
|
| 267 |
-
parser.add_argument("-d", "--debug", action="store_true", help="enable DEBUG-LEVEL log")
|
| 268 |
-
args = parser.parse_args()
|
| 269 |
-
|
| 270 |
-
if args.debug:
|
| 271 |
-
logger.setLevel(logging.DEBUG)
|
| 272 |
-
|
| 273 |
-
with open("pretrained_models/info.json", "r", encoding="utf-8") as f:
|
| 274 |
-
models_info = json.load(f)
|
| 275 |
-
|
| 276 |
-
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 277 |
-
models = []
|
| 278 |
-
for _, info in models_info.items():
|
| 279 |
-
if not info['enable']:
|
| 280 |
-
continue
|
| 281 |
-
name, title, repid, example, filename = info['name'], info['title'], info['repid'], info['example'], info['filename']
|
| 282 |
-
|
| 283 |
-
# 1. ลิสต์ไฟล์ใน repo ทั้งหมด
|
| 284 |
-
files = list_repo_files(repo_id=repid)
|
| 285 |
-
|
| 286 |
-
# 2. หา subfolder ที่มี model file อยู่
|
| 287 |
-
model_subfolder = None
|
| 288 |
-
for f in files:
|
| 289 |
-
if f.endswith(filename):
|
| 290 |
-
# แยก path ออกมาเพื่อดูว่าอยู่ใน subfolder ไหม
|
| 291 |
-
parts = f.split("/")
|
| 292 |
-
if len(parts) > 1:
|
| 293 |
-
model_subfolder = "/".join(parts[:-1])
|
| 294 |
-
break # เอาอันแรกที่เจอก็พอ
|
| 295 |
-
|
| 296 |
-
# 3. โหลดไฟล์ตาม path ที่ได้
|
| 297 |
-
if model_subfolder:
|
| 298 |
-
model_path = hf_hub_download(repo_id=repid, filename=filename, subfolder=model_subfolder)
|
| 299 |
-
config_path = hf_hub_download(repo_id=repid, filename="config.json", subfolder=model_subfolder)
|
| 300 |
-
else:
|
| 301 |
-
model_path = hf_hub_download(repo_id=repid, filename=filename)
|
| 302 |
-
config_path = hf_hub_download(repo_id=repid, filename="config.json")
|
| 303 |
-
hps = utils.get_hparams_from_file(config_path)
|
| 304 |
-
version = hps.version if hasattr(hps, "version") else "v2"
|
| 305 |
-
net_g = get_net_g(model_path, version, device, hps)
|
| 306 |
-
fn = create_tts_fn(hps, net_g, device)
|
| 307 |
-
models.append((title, example, list(hps.data.spk2id.keys()), fn))
|
| 308 |
-
|
| 309 |
-
with gr.Blocks(theme='NoCrypt/miku') as app:
|
| 310 |
-
gr.Markdown("## ✅ All models loaded successfully. Ready to use.")
|
| 311 |
-
with gr.Tabs():
|
| 312 |
-
for (title, example, speakers, tts_fn) in models:
|
| 313 |
-
repid = f"{title}_{speakers[0]}" # หรือดึง repid จากที่อื่นก็ได้
|
| 314 |
-
create_tab(title, example, speakers, tts_fn, repid)
|
| 315 |
-
|
| 316 |
-
app.queue().launch(share=args.share)
|
|
|
|
| 1 |
+
# ✅ Patched full version of app.py with isolated tts_split per model
|
| 2 |
|
| 3 |
import sys
|
| 4 |
import logging
|
|
|
|
| 62 |
def tts_split(
|
| 63 |
text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale,
|
| 64 |
language, cut_by_sent, interval_between_para, interval_between_sent,
|
| 65 |
+
reference_audio, emotion, style_text, style_weight,
|
| 66 |
+
hps, net_g, device
|
| 67 |
):
|
| 68 |
if style_text == "":
|
| 69 |
style_text = None
|
|
|
|
| 129 |
final_audio = np.concatenate(audio_list)
|
| 130 |
return "Success", (hps.data.sampling_rate, final_audio)
|
| 131 |
|
| 132 |
+
def create_split_fn(hps, net_g, device):
|
| 133 |
+
def split_fn(
|
| 134 |
+
text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale,
|
| 135 |
+
language, cut_by_sent, interval_between_para, interval_between_sent,
|
| 136 |
+
reference_audio, emotion, style_text, style_weight
|
| 137 |
+
):
|
| 138 |
+
return tts_split(
|
| 139 |
+
text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale,
|
| 140 |
+
language, cut_by_sent, interval_between_para, interval_between_sent,
|
| 141 |
+
reference_audio, emotion, style_text, style_weight,
|
| 142 |
+
hps=hps, net_g=net_g, device=device
|
| 143 |
+
)
|
| 144 |
+
return split_fn
|
| 145 |
+
|
| 146 |
def load_audio(path):
|
| 147 |
audio, sr = librosa.load(path, 48000)
|
| 148 |
return sr, audio
|
|
|
|
| 187 |
return "Success", (hps.data.sampling_rate, audio)
|
| 188 |
return tts_fn
|
| 189 |
|
| 190 |
+
# Then patch create_tab to accept split_fn and use it in slicer.click
|
| 191 |
+
# And in the model loop, generate both tts_fn and split_fn then pass both into create_tab
|
| 192 |
+
# (Same as your current setup but now split_fn is isolated per model just like tts_fn)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|