Commit
·
71eacb0
1
Parent(s):
16814ca
adding finetuned roberta model
Browse files
app.py
CHANGED
|
@@ -1,69 +1,42 @@
|
|
| 1 |
-
# import gradio as gr
|
| 2 |
-
# print('hello')
|
| 3 |
-
# import torch
|
| 4 |
-
# print('sdfsdf')
|
| 5 |
-
# def greet(sentiment):
|
| 6 |
-
# return "Hello " + sentiment + "!!"
|
| 7 |
-
|
| 8 |
-
# iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
| 9 |
-
# iface.launch()
|
| 10 |
-
|
| 11 |
import gradio as gr
|
| 12 |
from NeuralTextGenerator import BertTextGenerator
|
| 13 |
-
# from transformers import pipeline
|
| 14 |
-
|
| 15 |
-
# generator = pipeline("sentiment-analysis")
|
| 16 |
|
| 17 |
-
# print('dfg')
|
| 18 |
model_name = "cardiffnlp/twitter-xlm-roberta-base" #"dbmdz/bert-base-italian-uncased"
|
| 19 |
en_model = BertTextGenerator(model_name)
|
| 20 |
-
tokenizer = en_model.tokenizer
|
| 21 |
-
model = en_model.model
|
| 22 |
-
device = model.device
|
| 23 |
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
'[POSITIVE-0]',
|
| 26 |
'[POSITIVE-1]',
|
| 27 |
'[POSITIVE-2]',
|
| 28 |
'[NEGATIVE-0]',
|
| 29 |
'[NEGATIVE-1]',
|
| 30 |
-
'[NEGATIVE-2]'
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
# def classify(sentiment):
|
| 34 |
-
# parameters = {'n_sentences': 1,
|
| 35 |
-
# 'batch_size': 2,
|
| 36 |
-
# 'avg_len':30,
|
| 37 |
-
# 'max_len':50,
|
| 38 |
-
# # 'std_len' : 3,
|
| 39 |
-
# 'generation_method':'parallel',
|
| 40 |
-
# 'sample': True,
|
| 41 |
-
# 'burnin': 450,
|
| 42 |
-
# 'max_iter': 100,
|
| 43 |
-
# 'top_k': 100,
|
| 44 |
-
# 'seed_text': f"[{sentiment}-0] [{sentiment}-1] [{sentiment}-2] Ronaldo",
|
| 45 |
-
# # 'verbose': True
|
| 46 |
-
# }
|
| 47 |
-
# sents = en_model.generate(**parameters)
|
| 48 |
-
# gen_text = ''
|
| 49 |
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
# return gen_text
|
| 54 |
|
| 55 |
-
|
|
|
|
| 56 |
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
# inputs = gr.Radio(["POSITIVE", "NEGATIVE"], label="Sentiment to generate") # gr.Dropdown(["POSITIVE", "NEGATIVE"], label="Sentiment to generate")
|
| 60 |
-
# output = gr.Textbox(label="Generated tweet")
|
| 61 |
-
# b1 = gr.Button("Generate")
|
| 62 |
-
# b1.click(classify, inputs=inputs, outputs=output)
|
| 63 |
|
|
|
|
| 64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
-
def sentence_builder(n_sentences, max_iter, sentiment, seed_text):
|
| 67 |
parameters = {'n_sentences': n_sentences,
|
| 68 |
'batch_size': 2,
|
| 69 |
'avg_len':30,
|
|
@@ -77,22 +50,22 @@ def sentence_builder(n_sentences, max_iter, sentiment, seed_text):
|
|
| 77 |
'seed_text': f"[{sentiment}-0] [{sentiment}-1] [{sentiment}-2] {seed_text}",
|
| 78 |
'verbose': True
|
| 79 |
}
|
| 80 |
-
sents =
|
| 81 |
gen_text = ''
|
| 82 |
|
| 83 |
for i, s in enumerate(sents):
|
| 84 |
gen_text += f'- GENERATED TWEET #{i}: {s}\n'
|
| 85 |
|
| 86 |
return gen_text
|
| 87 |
-
# return f"""The {quantity} {animal}s from {" and ".join(countries)} went to the {place} where they {" and ".join(activity_list)} until the {"morning" if morning else "night"}"""
|
| 88 |
|
| 89 |
|
| 90 |
demo = gr.Interface(
|
| 91 |
sentence_builder,
|
| 92 |
[
|
|
|
|
| 93 |
gr.Slider(1, 15, value=2, label="Num. Tweets", step=1, info="Number of tweets to be generated."),
|
| 94 |
gr.Slider(50, 500, value=100, label="Max. iter", info="Maximum number of iterations for the generation."),
|
| 95 |
-
gr.Radio(["POSITIVE", "NEGATIVE"], label="Sentiment to generate"),
|
| 96 |
gr.Textbox('', label="Seed text", info="Seed text for the generation.")
|
| 97 |
],
|
| 98 |
"text",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from NeuralTextGenerator import BertTextGenerator
|
|
|
|
|
|
|
|
|
|
| 3 |
|
|
|
|
| 4 |
model_name = "cardiffnlp/twitter-xlm-roberta-base" #"dbmdz/bert-base-italian-uncased"
|
| 5 |
en_model = BertTextGenerator(model_name)
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
+
finetunned_BERT_model_name = "JuanJoseMV/BERT_text_gen"
|
| 8 |
+
finetunned_BERT_en_model = BertTextGenerator(finetunned_BERT_model_name)
|
| 9 |
+
|
| 10 |
+
finetunned_RoBERTa_model_name = "JuanJoseMV/XLM_RoBERTa_text_gen"
|
| 11 |
+
finetunned_RoBERTa_en_model = BertTextGenerator(finetunned_RoBERTa_model_name)
|
| 12 |
+
|
| 13 |
+
special_tokens = [
|
| 14 |
'[POSITIVE-0]',
|
| 15 |
'[POSITIVE-1]',
|
| 16 |
'[POSITIVE-2]',
|
| 17 |
'[NEGATIVE-0]',
|
| 18 |
'[NEGATIVE-1]',
|
| 19 |
+
'[NEGATIVE-2]'
|
| 20 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
+
en_model.tokenizer.add_special_tokens({'additional_special_tokens': special_tokens})
|
| 23 |
+
en_model.model.resize_token_embeddings(len(en_model.tokenizer))
|
|
|
|
|
|
|
| 24 |
|
| 25 |
+
finetunned_BERT_en_model.tokenizer.add_special_tokens({'additional_special_tokens': special_tokens})
|
| 26 |
+
finetunned_BERT_en_model.model.resize_token_embeddings(len(en_model.tokenizer))
|
| 27 |
|
| 28 |
+
finetunned_RoBERTa_en_model.tokenizer.add_special_tokens({'additional_special_tokens': special_tokens})
|
| 29 |
+
finetunned_RoBERTa_en_model.model.resize_token_embeddings(len(en_model.tokenizer))
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
+
def sentence_builder(selected_model, n_sentences, max_iter, sentiment, seed_text):
|
| 32 |
|
| 33 |
+
if selected_model == "Finetuned_RoBERTA":
|
| 34 |
+
generator = finetunned_RoBERTa_en_model
|
| 35 |
+
elif selected_model == "Finetuned_BERT":
|
| 36 |
+
generator = finetunned_BERT_en_model
|
| 37 |
+
else:
|
| 38 |
+
generator = en_model
|
| 39 |
|
|
|
|
| 40 |
parameters = {'n_sentences': n_sentences,
|
| 41 |
'batch_size': 2,
|
| 42 |
'avg_len':30,
|
|
|
|
| 50 |
'seed_text': f"[{sentiment}-0] [{sentiment}-1] [{sentiment}-2] {seed_text}",
|
| 51 |
'verbose': True
|
| 52 |
}
|
| 53 |
+
sents = generator.generate(**parameters)
|
| 54 |
gen_text = ''
|
| 55 |
|
| 56 |
for i, s in enumerate(sents):
|
| 57 |
gen_text += f'- GENERATED TWEET #{i}: {s}\n'
|
| 58 |
|
| 59 |
return gen_text
|
|
|
|
| 60 |
|
| 61 |
|
| 62 |
demo = gr.Interface(
|
| 63 |
sentence_builder,
|
| 64 |
[
|
| 65 |
+
gr.Radio(["Pre-trained", "Finetuned_RoBERTA", "Finetunned_BERT"], value="Pre-trained", label="Sentiment to generate"),
|
| 66 |
gr.Slider(1, 15, value=2, label="Num. Tweets", step=1, info="Number of tweets to be generated."),
|
| 67 |
gr.Slider(50, 500, value=100, label="Max. iter", info="Maximum number of iterations for the generation."),
|
| 68 |
+
gr.Radio(["POSITIVE", "NEGATIVE"], value="POSITIVE", label="Sentiment to generate"),
|
| 69 |
gr.Textbox('', label="Seed text", info="Seed text for the generation.")
|
| 70 |
],
|
| 71 |
"text",
|