Spaces:
Runtime error
Runtime error
| import torch | |
| from torch.nn import functional as F | |
| from PIL import Image | |
| ### from https://huggingface.co/transformers/v3.2.0/_modules/transformers/generation_utils.html | |
| def top_k_top_p_filtering( | |
| logits, | |
| top_k: int = 0, | |
| top_p: float = 1.0, | |
| filter_value: float = -float("Inf"), | |
| min_tokens_to_keep: int = 1, | |
| ): | |
| """Filter a distribution of logits using top-k and/or nucleus (top-p) filtering | |
| Args: | |
| logits: logits distribution shape (batch size, vocabulary size) | |
| if top_k > 0: keep only top k tokens with highest probability (top-k filtering). | |
| if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering). | |
| Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751) | |
| Make sure we keep at least min_tokens_to_keep per batch example in the output | |
| From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317 | |
| """ | |
| logits[:,:256000]=filter_value | |
| if top_k > 0: | |
| top_k = min(max(top_k, min_tokens_to_keep), logits.size(-1)) # Safety check | |
| # Remove all tokens with a probability less than the last token of the top-k | |
| indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] | |
| logits[indices_to_remove] = filter_value | |
| if top_p < 1.0: | |
| sorted_logits, sorted_indices = torch.sort(logits, descending=True) | |
| cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) | |
| # Remove tokens with cumulative probability above the threshold (token with 0 are kept) | |
| sorted_indices_to_remove = cumulative_probs > top_p | |
| if min_tokens_to_keep > 1: | |
| # Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below) | |
| sorted_indices_to_remove[..., :min_tokens_to_keep] = 0 | |
| # Shift the indices to the right to keep also the first token above the threshold | |
| sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() | |
| sorted_indices_to_remove[..., 0] = 0 | |
| # scatter sorted tensors to original indexing | |
| indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove) | |
| logits[indices_to_remove] = filter_value | |
| # import pdb;pdb.set_trace() | |
| return logits | |
| def sample(logits, temperature: float=1.0, top_k: int=0, top_p: float=1.0, sample_logits=True): | |
| logits = logits[:, -1, :] / max(temperature, 1e-5) | |
| if top_k > 0 or top_p < 1.0: | |
| logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p) | |
| probs = F.softmax(logits, dim=-1) | |
| if sample_logits: | |
| idx = torch.multinomial(probs, num_samples=1) | |
| else: | |
| _, idx = torch.topk(probs, k=1, dim=-1) | |
| return idx, probs | |
| def expand2square(pil_img, background_color): | |
| width, height = pil_img.size | |
| if width == height: | |
| return pil_img | |
| elif width > height: | |
| result = Image.new(pil_img.mode, (width, width), background_color) | |
| result.paste(pil_img, (0, (width - height) // 2)) | |
| return result | |
| else: | |
| result = Image.new(pil_img.mode, (height, height), background_color) | |
| result.paste(pil_img, ((height - width) // 2, 0)) | |
| return result | |
| def tokenizer_image_token(prompt, tokenizer, image_token_index=-200, return_tensors=None): | |
| prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('<image>')] | |
| def insert_separator(X, sep): | |
| return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1] | |
| input_ids = [] | |
| offset = 0 | |
| if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id: | |
| offset = 1 | |
| input_ids.append(prompt_chunks[0][0]) | |
| for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)): | |
| input_ids.extend(x[offset:]) | |
| if return_tensors is not None: | |
| if return_tensors == 'pt': | |
| return torch.tensor(input_ids, dtype=torch.long) | |
| raise ValueError(f'Unsupported tensor type: {return_tensors}') | |
| return input_ids | |