Spaces:
Sleeping
Sleeping
| # app.py (最终确认版 - 使用 gr.Blocks) | |
| import gradio as gr | |
| from langchain.prompts import PromptTemplate | |
| from langchain_community.embeddings import HuggingFaceBgeEmbeddings | |
| from langchain_community.vectorstores import FAISS | |
| from langchain.chains import RetrievalQA | |
| from langchain_community.llms import LlamaCpp | |
| from huggingface_hub import hf_hub_download | |
| import os | |
| import time | |
| # --- 1. 配置 (保持不变) --- | |
| VECTOR_STORE_PATH = "vector_store" | |
| EMBEDDING_MODEL = "BAAI/bge-large-zh-v1.5" | |
| # 切换到 CapybaraHermes-2.5-Mistral-7B 模型 | |
| GGUF_MODEL_REPO = "TheBloke/CapybaraHermes-2.5-Mistral-7B-GGUF" | |
| # 我们选择一个大小适中的4位量化版本 | |
| GGUF_MODEL_FILE = "capybarahermes-2.5-mistral-7b.Q4_K_M.gguf" | |
| # --- 2. 加载RAG管道 (保持不变) --- | |
| def load_rag_chain(): | |
| print("开始加载RAG管道...") | |
| embeddings = HuggingFaceBgeEmbeddings(model_name=EMBEDDING_MODEL, model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': True}) | |
| if not os.path.exists(VECTOR_STORE_PATH): raise FileNotFoundError(f"错误:向量数据库 '{VECTOR_STORE_PATH}' 不存在!") | |
| vector_store = FAISS.load_local(VECTOR_STORE_PATH, embeddings, allow_dangerous_deserialization=True) | |
| model_path = hf_hub_download(repo_id=GGUF_MODEL_REPO, filename=GGUF_MODEL_FILE, local_dir="models") | |
| llm = LlamaCpp(model_path=model_path, n_gpu_layers=0, n_batch=512, n_ctx=4096, f16_kv=True, verbose=False) | |
| # 使用为Mistral模型优化的Prompt模板 | |
| prompt_template = """<|im_start|>system | |
| You are a helpful assistant named "粤小智". Answer the user's question in Chinese based on the provided "Context". | |
| If the context is not sufficient, just say: "抱歉,关于您的问题,我的知识库暂时没有相关信息。". Do not make up answers. | |
| Your answer should be clear and step-by-step if it's an operation guide.<|im_end|> | |
| <|im_start|>user | |
| Context: | |
| {context} | |
| Question: | |
| {question}<|im_end|> | |
| <|im_start|>assistant | |
| """ | |
| PROMPT = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) | |
| retriever = vector_store.as_retriever( | |
| search_type="similarity_score_threshold", | |
| search_kwargs={'score_threshold': 0.3, 'k': 3} | |
| ) | |
| qa_chain = RetrievalQA.from_chain_type( | |
| llm=llm, | |
| chain_type="stuff", | |
| retriever=retriever, # 使用我们新创建的retriever | |
| chain_type_kwargs={"prompt": PROMPT} | |
| ) | |
| print("✅ RAG管道加载完毕!") | |
| return qa_chain | |
| # --- 3. Gradio应用逻辑 (适配gr.Blocks) --- | |
| RAG_CHAIN = load_rag_chain() | |
| def user(user_message, history): | |
| # 将用户消息添加到聊天记录中,并返回一个空的输入框 | |
| return "", history + [[user_message, None]] | |
| def bot(history): | |
| # 获取最后一条用户消息 | |
| user_message = history[-1][0] | |
| print(f"收到用户消息: '{user_message}'") | |
| # 调用RAG链获取回答 | |
| result = RAG_CHAIN.invoke({"query": user_message}) | |
| bot_message = result.get('result', "处理出错").strip() | |
| # 模拟打字效果 | |
| history[-1][1] = "" | |
| for character in bot_message: | |
| history[-1][1] += character | |
| time.sleep(0.02) # 每个字之间暂停0.02秒 | |
| yield history | |
| print(f"模型生成回答: '{history[-1][1]}'") | |
| # --- 4. 搭建并启动界面 (使用gr.Blocks手动搭建) --- | |
| with gr.Blocks(theme=gr.themes.Soft(), css="footer {display: none !important}") as demo: | |
| gr.Markdown("# 粤政云服务智能向导 - 我是粤小智 🤖") | |
| chatbot = gr.Chatbot( | |
| [], | |
| elem_id="chatbot", | |
| label="聊天窗口", | |
| bubble_full_width=True, | |
| height=600 | |
| ) | |
| with gr.Row(): | |
| txt = gr.Textbox( | |
| scale=4, | |
| show_label=False, | |
| placeholder="在这里输入您的问题,然后按回车键...", | |
| container=False, | |
| ) | |
| # 定义回车或点击按钮后的事件流 | |
| txt.submit(user, [txt, chatbot], [txt, chatbot], queue=False).then( | |
| bot, chatbot, chatbot | |
| ) | |
| # 使用queue()来处理流式(打字效果)输出 | |
| demo.queue() | |
| demo.launch() |