Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,116 +1,115 @@
|
|
| 1 |
-
# app.py
|
| 2 |
-
import gradio as gr
|
| 3 |
-
from langchain.prompts import PromptTemplate
|
| 4 |
-
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
|
| 5 |
-
from langchain_community.vectorstores import FAISS
|
| 6 |
-
from langchain.chains import RetrievalQA
|
| 7 |
-
from langchain_community.llms import LlamaCpp
|
| 8 |
-
from huggingface_hub import hf_hub_download
|
| 9 |
-
import os
|
| 10 |
-
|
| 11 |
-
# --- 1. 配置部分 ---
|
| 12 |
-
VECTOR_STORE_PATH = "vector_store"
|
| 13 |
-
EMBEDDING_MODEL = "BAAI/bge-large-zh-v1.5"
|
| 14 |
-
GGUF_MODEL_REPO = "li-plus/chatglm3-6b-gguf"
|
| 15 |
-
GGUF_MODEL_FILE = "chatglm3-6b.
|
| 16 |
-
|
| 17 |
-
#
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
"""
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
#
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
gr.
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
# 使用queue()可以处理并发请求,让应用更稳定
|
| 116 |
demo.queue().launch()
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from langchain.prompts import PromptTemplate
|
| 4 |
+
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
|
| 5 |
+
from langchain_community.vectorstores import FAISS
|
| 6 |
+
from langchain.chains import RetrievalQA
|
| 7 |
+
from langchain_community.llms import LlamaCpp
|
| 8 |
+
from huggingface_hub import hf_hub_download
|
| 9 |
+
import os
|
| 10 |
+
|
| 11 |
+
# --- 1. 配置部分 ---
|
| 12 |
+
VECTOR_STORE_PATH = "vector_store"
|
| 13 |
+
EMBEDDING_MODEL = "BAAI/bge-large-zh-v1.5"
|
| 14 |
+
GGUF_MODEL_REPO = "li-plus/chatglm3-6b-gguf"
|
| 15 |
+
GGUF_MODEL_FILE = "chatglm3-6b.Q4_K_M.gguf"
|
| 16 |
+
# --- 2. 加载RAG核心管道 ---
|
| 17 |
+
# 将所有耗时操作封装起来,只在应用启动时执行一次
|
| 18 |
+
def load_rag_chain():
|
| 19 |
+
print("开始加载RAG管道...")
|
| 20 |
+
|
| 21 |
+
# 检查向量数据库是否存在
|
| 22 |
+
if not os.path.exists(VECTOR_STORE_PATH):
|
| 23 |
+
raise FileNotFoundError(
|
| 24 |
+
f"错误:向量数据库文件夹 '{VECTOR_STORE_PATH}' 未找到!"
|
| 25 |
+
"请确保你已经将本地生成的 'vector_store' 文件夹与 'app.py' 一起上传。"
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
# 加载Embedding模型
|
| 29 |
+
print(f"--> 正在加载Embedding模型: {EMBEDDING_MODEL}")
|
| 30 |
+
embeddings = HuggingFaceBgeEmbeddings(
|
| 31 |
+
model_name=EMBEDDING_MODEL,
|
| 32 |
+
model_kwargs={'device': 'cpu'},
|
| 33 |
+
encode_kwargs={'normalize_embeddings': True}
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
# 加载本地的FAISS向量数据库
|
| 37 |
+
print(f"--> 正在从 '{VECTOR_STORE_PATH}' 加载向量数据库...")
|
| 38 |
+
vector_store = FAISS.load_local(
|
| 39 |
+
VECTOR_STORE_PATH,
|
| 40 |
+
embeddings,
|
| 41 |
+
allow_dangerous_deserialization=True
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
# 从Hugging Face Hub下载GGUF模型文件
|
| 45 |
+
print(f"--> 开始下载/加载GGUF模型: {GGUF_MODEL_FILE} from {GGUF_MODEL_REPO}")
|
| 46 |
+
model_path = hf_hub_download(
|
| 47 |
+
repo_id=GGUF_MODEL_REPO,
|
| 48 |
+
filename=GGUF_MODEL_FILE,
|
| 49 |
+
local_dir="models", # 模型会下载到服务器的这个文件夹
|
| 50 |
+
local_dir_use_symlinks=False
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
# 初始化LlamaCpp模型加载器
|
| 54 |
+
print("--> 模型文件准备就绪,正在初始化LlamaCpp...")
|
| 55 |
+
llm = LlamaCpp(
|
| 56 |
+
model_path=model_path,
|
| 57 |
+
n_gpu_layers=0, # 强制在CPU上运行
|
| 58 |
+
n_batch=512, # 批处理大小
|
| 59 |
+
n_ctx=4096, # 上下文窗口大小
|
| 60 |
+
f16_kv=True, # 对性能有帮助
|
| 61 |
+
verbose=False # 设为False以保持日志干净
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
# 定义Prompt模板
|
| 65 |
+
prompt_template = """System: 你是AI客服“粤小智”。请严格根据“背景知识”回答“用户问题”,语言通俗、步骤清晰。如果知识不足,请回答“抱歉,关于您的问题,我的知识库暂时没有相关信息。”
|
| 66 |
+
|
| 67 |
+
背景知识:
|
| 68 |
+
{context}
|
| 69 |
+
|
| 70 |
+
用户问题:
|
| 71 |
+
{question}
|
| 72 |
+
|
| 73 |
+
你的回答:
|
| 74 |
+
"""
|
| 75 |
+
PROMPT = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
|
| 76 |
+
|
| 77 |
+
# 创建完整的RAG问答链
|
| 78 |
+
qa_chain = RetrievalQA.from_chain_type(
|
| 79 |
+
llm=llm,
|
| 80 |
+
chain_type="stuff",
|
| 81 |
+
retriever=vector_store.as_retriever(search_kwargs={"k": 3}), # 每次检索3个最相关的文档块
|
| 82 |
+
chain_type_kwargs={"prompt": PROMPT},
|
| 83 |
+
return_source_documents=False # 线上运行时不返回源文档
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
print("✅ RAG管道加载完毕,应用准备就绪!")
|
| 87 |
+
return qa_chain
|
| 88 |
+
|
| 89 |
+
# --- 3. Gradio应用逻辑 ---
|
| 90 |
+
# 在应用启动时,执行一次加载操作
|
| 91 |
+
RAG_CHAIN = load_rag_chain()
|
| 92 |
+
|
| 93 |
+
# 定义与Gradio界面交互的函数
|
| 94 |
+
def predict(message, history):
|
| 95 |
+
print(f"收到用户消息: '{message}'")
|
| 96 |
+
if not message:
|
| 97 |
+
return ""
|
| 98 |
+
result = RAG_CHAIN.invoke({"query": message})
|
| 99 |
+
response = result.get('result', "抱歉,处理时出现内部错误。").strip()
|
| 100 |
+
print(f"模型生成回答: '{response}'")
|
| 101 |
+
return response
|
| 102 |
+
|
| 103 |
+
# --- 4. 搭建并启动Gradio界面 ---
|
| 104 |
+
with gr.Blocks(theme=gr.themes.Soft(), css=".gradio-container {background: linear-gradient(to right, #74ebd5, #ACB6E5)}") as demo:
|
| 105 |
+
gr.Markdown("# 粤政云服务智能向导 - 我是粤小智 🤖")
|
| 106 |
+
gr.ChatInterface(
|
| 107 |
+
predict,
|
| 108 |
+
title="粤小智客服",
|
| 109 |
+
description="您好!可以向我提问关于粤政云平台使用的问题。",
|
| 110 |
+
examples=["我想建个网站,该怎么申请服务器?", "如何重置我的云主机密码?", "我的应用访问变慢了怎么办?"]
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
print("正在启动Garamio界面...")
|
| 114 |
+
# 使用queue()可以处理并发请求,让应用更稳定
|
|
|
|
| 115 |
demo.queue().launch()
|