Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import torch | |
| import os | |
| import random | |
| import time | |
| import math | |
| import spaces | |
| from glob import glob | |
| from pathlib import Path | |
| from typing import Optional, List, Union | |
| from diffusers import StableVideoDiffusionPipeline, StableVideoDragNUWAPipeline | |
| from diffusers.utils import export_to_video, export_to_gif | |
| from PIL import Image | |
| fps25Pipe = StableVideoDiffusionPipeline.from_pretrained( | |
| "vdo/stable-video-diffusion-img2vid-xt-1-1", torch_dtype=torch.float16, variant="fp16" | |
| ) | |
| fps25Pipe.to("cuda") | |
| fps14Pipe = StableVideoDiffusionPipeline.from_pretrained( | |
| "stabilityai/stable-video-diffusion-img2vid", torch_dtype=torch.float16, variant="fp16" | |
| ) | |
| fps14Pipe.to("cuda") | |
| dragnuwaPipe = StableVideoDragNUWAPipeline.from_pretrained( | |
| "a-r-r-o-w/dragnuwa-svd", torch_dtype=torch.float16, variant="fp16", low_cpu_mem_usage=False, device_map=None | |
| ) | |
| dragnuwaPipe.to("cuda") | |
| max_64_bit_int = 2**63 - 1 | |
| def animate( | |
| image: Image, | |
| seed: Optional[int] = 42, | |
| randomize_seed: bool = True, | |
| motion_bucket_id: int = 127, | |
| fps_id: int = 25, | |
| noise_aug_strength: float = 0.1, | |
| decoding_t: int = 3, | |
| video_format: str = "mp4", | |
| frame_format: str = "webp", | |
| version: str = "auto", | |
| width: int = 1024, | |
| height: int = 576, | |
| motion_control: bool = False, | |
| num_inference_steps: int = 25 | |
| ): | |
| start = time.time() | |
| if image is None: | |
| raise gr.Error("Please provide an image to animate.") | |
| output_folder = "outputs" | |
| image_data = resize_image(image, output_size=(width, height)) | |
| if image_data.mode == "RGBA": | |
| image_data = image_data.convert("RGB") | |
| if motion_control: | |
| image_data = [image_data] * 3 | |
| if randomize_seed: | |
| seed = random.randint(0, max_64_bit_int) | |
| if version == "auto": | |
| if 14 < fps_id: | |
| version = "svdxt" | |
| else: | |
| version = "svd" | |
| frames = animate_on_gpu( | |
| image_data, | |
| seed, | |
| motion_bucket_id, | |
| fps_id, | |
| noise_aug_strength, | |
| decoding_t, | |
| version, | |
| width, | |
| height, | |
| num_inference_steps | |
| ) | |
| os.makedirs(output_folder, exist_ok=True) | |
| base_count = len(glob(os.path.join(output_folder, "*." + video_format))) | |
| result_path = os.path.join(output_folder, f"{base_count:06d}." + video_format) | |
| if video_format == "gif": | |
| video_path = None | |
| gif_path = result_path | |
| export_to_gif(image=frames, output_gif_path=gif_path, fps=fps_id) | |
| else: | |
| video_path = result_path | |
| gif_path = None | |
| export_to_video(frames, video_path, fps=fps_id) | |
| end = time.time() | |
| secondes = int(end - start) | |
| minutes = math.floor(secondes / 60) | |
| secondes = secondes - (minutes * 60) | |
| hours = math.floor(minutes / 60) | |
| minutes = minutes - (hours * 60) | |
| information = ("Start the process again if you want a different result. " if randomize_seed else "") + \ | |
| "Wait 2 min before a new run to avoid quota penalty or use another computer. " + \ | |
| "The video has been generated in " + \ | |
| ((str(hours) + " h, ") if hours != 0 else "") + \ | |
| ((str(minutes) + " min, ") if hours != 0 or minutes != 0 else "") + \ | |
| str(secondes) + " sec." | |
| return [ | |
| # Display for video | |
| gr.update(value = video_path, visible = video_format != "gif"), | |
| # Display for gif | |
| gr.update(value = gif_path, visible = video_format == "gif"), | |
| # Download button | |
| gr.update(label = "πΎ Download animation in *." + video_format + " format", value=result_path, visible=True), | |
| # Frames | |
| gr.update(label = "Generated frames in *." + frame_format + " format", format = frame_format, value = frames, visible = True), | |
| # Used seed | |
| seed, | |
| # Information | |
| gr.update(value = information, visible = True), | |
| # Reset button | |
| gr.update(visible = True) | |
| ] | |
| def animate_on_gpu( | |
| image_data: Union[Image.Image, List[Image.Image]], | |
| seed: Optional[int] = 42, | |
| motion_bucket_id: int = 127, | |
| fps_id: int = 6, | |
| noise_aug_strength: float = 0.1, | |
| decoding_t: int = 3, | |
| version: str = "svdxt", | |
| width: int = 1024, | |
| height: int = 576, | |
| num_inference_steps: int = 25 | |
| ): | |
| generator = torch.manual_seed(seed) | |
| if version == "dragnuwa": | |
| return dragnuwaPipe(image_data, width=width, height=height, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=noise_aug_strength, num_frames=25, num_inference_steps=num_inference_steps).frames[0] | |
| elif version == "svdxt": | |
| return fps25Pipe(image_data, width=width, height=height, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=noise_aug_strength, num_frames=25, num_inference_steps=num_inference_steps).frames[0] | |
| else: | |
| return fps14Pipe(image_data, width=width, height=height, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=noise_aug_strength, num_frames=25, num_inference_steps=num_inference_steps).frames[0] | |
| def resize_image(image, output_size=(1024, 576)): | |
| # Do not touch the image if the size is good | |
| if image.width == output_size[0] and image.height == output_size[1]: | |
| return image | |
| # Calculate aspect ratios | |
| target_aspect = output_size[0] / output_size[1] # Aspect ratio of the desired size | |
| image_aspect = image.width / image.height # Aspect ratio of the original image | |
| # Resize if the original image is larger | |
| if image_aspect > target_aspect: | |
| # Resize the image to match the target height, maintaining aspect ratio | |
| new_height = output_size[1] | |
| new_width = int(new_height * image_aspect) | |
| resized_image = image.resize((new_width, new_height), Image.LANCZOS) | |
| # Calculate coordinates for cropping | |
| left = (new_width - output_size[0]) / 2 | |
| top = 0 | |
| right = (new_width + output_size[0]) / 2 | |
| bottom = output_size[1] | |
| else: | |
| # Resize the image to match the target width, maintaining aspect ratio | |
| new_width = output_size[0] | |
| new_height = int(new_width / image_aspect) | |
| resized_image = image.resize((new_width, new_height), Image.LANCZOS) | |
| # Calculate coordinates for cropping | |
| left = 0 | |
| top = (new_height - output_size[1]) / 2 | |
| right = output_size[0] | |
| bottom = (new_height + output_size[1]) / 2 | |
| # Crop the image | |
| return resized_image.crop((left, top, right, bottom)) | |
| def reset(): | |
| return [ | |
| None, | |
| random.randint(0, max_64_bit_int), | |
| True, | |
| 127, | |
| 6, | |
| 0.1, | |
| 3, | |
| "mp4", | |
| "webp", | |
| "auto", | |
| 1024, | |
| 576, | |
| False, | |
| 25 | |
| ] | |
| with gr.Blocks() as demo: | |
| gr.HTML(""" | |
| <h1><center>Image-to-Video</center></h1> | |
| <big><center>Animate your image into 25 frames of 1024x576 pixels freely, without account, without watermark and download the video</center></big> | |
| <br/> | |
| <p> | |
| This demo is based on <i>Stable Video Diffusion</i> artificial intelligence. | |
| No prompt or camera control is handled here. | |
| To control motions, rather use <i><a href="https://huggingface.co/spaces/TencentARC/MotionCtrl_SVD">MotionCtrl SVD</a></i>. | |
| If you need 128 frames, rather use <i><a href="https://huggingface.co/spaces/modelscope/ExVideo-SVD-128f-v1">ExVideo</a></i>. | |
| </p> | |
| """) | |
| with gr.Row(): | |
| with gr.Column(): | |
| image = gr.Image(label="Upload your image", type="pil") | |
| with gr.Accordion("Advanced options", open=False): | |
| width = gr.Slider(label="Width", info="Width of the video", value=1024, minimum=256, maximum=1024, step=8) | |
| height = gr.Slider(label="Height", info="Height of the video", value=576, minimum=256, maximum=576, step=8) | |
| motion_control = gr.Checkbox(label="Motion control (experimental)", info="Fix the camera", value=False) | |
| video_format = gr.Radio([["*.mp4", "mp4"], ["*.avi", "avi"], ["*.wmv", "wmv"], ["*.mkv", "mkv"], ["*.mov", "mov"], ["*.gif", "gif"]], label="Video format for result", info="File extention", value="mp4", interactive=True) | |
| frame_format = gr.Radio([["*.webp", "webp"], ["*.png", "png"], ["*.jpeg", "jpeg"], ["*.gif (unanimated)", "gif"], ["*.bmp", "bmp"]], label="Image format for frames", info="File extention", value="webp", interactive=True) | |
| fps_id = gr.Slider(label="Frames per second", info="The length of your video in seconds will be 25/fps", value=25, minimum=5, maximum=30) | |
| motion_bucket_id = gr.Slider(label="Motion bucket id", info="Controls how much motion to add/remove from the image", value=127, minimum=1, maximum=255) | |
| noise_aug_strength = gr.Slider(label="Noise strength", info="The noise to add", value=0.1, minimum=0, maximum=1, step=0.1) | |
| num_inference_steps = gr.Slider(label="Number inference steps", info="More denoising steps usually lead to a higher quality video at the expense of slower inference", value=25, minimum=1, maximum=100, step=1) | |
| decoding_t = gr.Slider(label="Decoding", info="Number of frames decoded at a time; this eats more VRAM; reduce if necessary", value=3, minimum=1, maximum=5, step=1) | |
| version = gr.Radio([["Auto", "auto"], ["ππ»ββοΈ SVD (trained on 14 f/s)", "svd"], ["ππ»ββοΈπ¨ SVD-XT (trained on 25 f/s)", "svdxt"], ["DragNUWA (unstable)", "dragnuwa"]], label="Model", info="Trained model", value="auto", interactive=True) | |
| seed = gr.Slider(label="Seed", value=42, randomize=True, minimum=0, maximum=max_64_bit_int, step=1) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| generate_btn = gr.Button(value="π Animate", variant="primary") | |
| reset_btn = gr.Button(value="π§Ή Reinit page", variant="stop", elem_id="reset_button", visible = False) | |
| with gr.Column(): | |
| video_output = gr.Video(label="Generated video", format="mp4", autoplay=True, show_download_button=False) | |
| gif_output = gr.Image(label="Generated video", format="gif", show_download_button=False, visible=False) | |
| download_button = gr.DownloadButton(label="πΎ Download video", visible=False) | |
| information_msg = gr.HTML(visible=False) | |
| gallery = gr.Gallery(label="Generated frames", visible=False) | |
| generate_btn.click(fn=animate, inputs=[ | |
| image, | |
| seed, | |
| randomize_seed, | |
| motion_bucket_id, | |
| fps_id, | |
| noise_aug_strength, | |
| decoding_t, | |
| video_format, | |
| frame_format, | |
| version, | |
| width, | |
| height, | |
| motion_control, | |
| num_inference_steps | |
| ], outputs=[ | |
| video_output, | |
| gif_output, | |
| download_button, | |
| gallery, | |
| seed, | |
| information_msg, | |
| reset_btn | |
| ], api_name="video") | |
| reset_btn.click(fn = reset, inputs = [], outputs = [ | |
| image, | |
| seed, | |
| randomize_seed, | |
| motion_bucket_id, | |
| fps_id, | |
| noise_aug_strength, | |
| decoding_t, | |
| video_format, | |
| frame_format, | |
| version, | |
| width, | |
| height, | |
| motion_control, | |
| num_inference_steps | |
| ], queue = False, show_progress = False) | |
| gr.Examples( | |
| examples=[ | |
| ["Examples/Fire.webp", 42, True, 127, 25, 0.1, 3, "mp4", "png", "auto", 1024, 576, False, 25], | |
| ["Examples/Water.png", 42, True, 127, 25, 0.1, 3, "mp4", "png", "auto", 1024, 576, False, 25], | |
| ["Examples/Town.jpeg", 42, True, 127, 25, 0.1, 3, "mp4", "png", "auto", 1024, 576, False, 25] | |
| ], | |
| inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id, noise_aug_strength, decoding_t, video_format, frame_format, version, width, height, motion_control, num_inference_steps], | |
| outputs=[video_output, gif_output, download_button, gallery, seed, information_msg, reset_btn], | |
| fn=animate, | |
| run_on_click=True, | |
| cache_examples=False, | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch(share=True, show_api=False) |