Update space
Browse files- README.md +1 -1
- app.py +6 -1
- src/leaderboard/read_evals.py +72 -0
README.md
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
---
|
| 2 |
-
title: Decentralized Arena
|
| 3 |
emoji: π₯
|
| 4 |
colorFrom: green
|
| 5 |
colorTo: indigo
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Decentralized Arena Leaderboard
|
| 3 |
emoji: π₯
|
| 4 |
colorFrom: green
|
| 5 |
colorTo: indigo
|
app.py
CHANGED
|
@@ -122,7 +122,12 @@ with demo:
|
|
| 122 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
| 123 |
|
| 124 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
leaderboard = overall_leaderboard(LEADERBOARD_DF)
|
| 127 |
|
| 128 |
with gr.TabItem("π’ Math", elem_id="math-tab-table", id=1):
|
|
|
|
| 122 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
| 123 |
|
| 124 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 125 |
+
|
| 126 |
+
with gr.TabItem("π
Overview", elem_id="llm-benchmark-tab-table", id=0):
|
| 127 |
+
leaderboard = overall_leaderboard(LEADERBOARD_DF)
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
with gr.TabItem("π― Overall", elem_id="llm-benchmark-tab-table", id=0):
|
| 131 |
leaderboard = overall_leaderboard(LEADERBOARD_DF)
|
| 132 |
|
| 133 |
with gr.TabItem("π’ Math", elem_id="math-tab-table", id=1):
|
src/leaderboard/read_evals.py
CHANGED
|
@@ -12,6 +12,50 @@ from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, Weigh
|
|
| 12 |
from src.submission.check_validity import is_model_on_hub
|
| 13 |
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
@dataclass
|
| 16 |
class EvalResult:
|
| 17 |
"""Represents one full evaluation. Built from a combination of the result and request file for a given run.
|
|
@@ -195,3 +239,31 @@ def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResu
|
|
| 195 |
|
| 196 |
return results
|
| 197 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
from src.submission.check_validity import is_model_on_hub
|
| 13 |
|
| 14 |
|
| 15 |
+
@dataclass
|
| 16 |
+
class ModelResult:
|
| 17 |
+
"""Represents one full evaluation. Built from a combination of the result and request file for a given run.
|
| 18 |
+
"""
|
| 19 |
+
eval_name: str
|
| 20 |
+
full_model: str
|
| 21 |
+
|
| 22 |
+
@classmethod
|
| 23 |
+
def init_from_jsonl_file(self, json_filepath):
|
| 24 |
+
try:
|
| 25 |
+
with open(json_filepath) as fp:
|
| 26 |
+
data = json.load(fp)
|
| 27 |
+
except:
|
| 28 |
+
data = eval(open(json_filepath).read()) # a list of dicts
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
return
|
| 34 |
+
|
| 35 |
+
def to_dict(self):
|
| 36 |
+
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
| 37 |
+
average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
|
| 38 |
+
data_dict = {
|
| 39 |
+
"eval_name": self.eval_name, # not a column, just a save name,
|
| 40 |
+
AutoEvalColumn.precision.name: self.precision.value.name,
|
| 41 |
+
AutoEvalColumn.model_type.name: self.model_type.value.name,
|
| 42 |
+
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
|
| 43 |
+
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
|
| 44 |
+
AutoEvalColumn.architecture.name: self.architecture,
|
| 45 |
+
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
| 46 |
+
AutoEvalColumn.revision.name: self.revision,
|
| 47 |
+
AutoEvalColumn.average.name: average,
|
| 48 |
+
AutoEvalColumn.license.name: self.license,
|
| 49 |
+
AutoEvalColumn.likes.name: self.likes,
|
| 50 |
+
AutoEvalColumn.params.name: self.num_params,
|
| 51 |
+
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
|
| 52 |
+
}
|
| 53 |
+
|
| 54 |
+
for task in Tasks:
|
| 55 |
+
data_dict[task.value.col_name] = self.results[task.value.benchmark]
|
| 56 |
+
|
| 57 |
+
return data_dict
|
| 58 |
+
|
| 59 |
@dataclass
|
| 60 |
class EvalResult:
|
| 61 |
"""Represents one full evaluation. Built from a combination of the result and request file for a given run.
|
|
|
|
| 239 |
|
| 240 |
return results
|
| 241 |
|
| 242 |
+
|
| 243 |
+
def get_raw_model_results(results_path: str) -> list[EvalResult]:
|
| 244 |
+
"""From the path of the results folder root, extract all needed info for results"""
|
| 245 |
+
model_result_filepaths = results_path
|
| 246 |
+
|
| 247 |
+
eval_results = {}
|
| 248 |
+
|
| 249 |
+
for model_result_filepath in model_result_filepaths:
|
| 250 |
+
# Creation of result
|
| 251 |
+
eval_result = EvalResult.init_from_json_file(model_result_filepath)
|
| 252 |
+
|
| 253 |
+
# Store results of same eval together
|
| 254 |
+
eval_name = eval_result.eval_name
|
| 255 |
+
if eval_name in eval_results.keys():
|
| 256 |
+
eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
|
| 257 |
+
else:
|
| 258 |
+
eval_results[eval_name] = eval_result
|
| 259 |
+
|
| 260 |
+
results = []
|
| 261 |
+
for v in eval_results.values():
|
| 262 |
+
try:
|
| 263 |
+
v.to_dict() # we test if the dict version is complete
|
| 264 |
+
results.append(v)
|
| 265 |
+
except KeyError: # not all eval values present
|
| 266 |
+
continue
|
| 267 |
+
|
| 268 |
+
return results
|
| 269 |
+
|