Lavlu118557 commited on
Commit
560e8f0
·
verified ·
1 Parent(s): a8f57bb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +52 -56
app.py CHANGED
@@ -1,70 +1,66 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
 
3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
 
5
- def respond(
6
- message,
7
- history: list[dict[str, str]],
8
- system_message,
9
- max_tokens,
10
- temperature,
11
- top_p,
12
- hf_token: gr.OAuthToken,
13
- ):
14
- """
15
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
16
- """
17
- client = git commit -am 'Update space' && git push, model="openai/gpt-oss-20b")
18
 
19
- messages = [{"role": "system", "content": system_message}]
20
 
21
- messages.extend(history)
 
 
 
 
 
 
 
 
22
 
23
- messages.append({"role": "user", "content": message})
 
 
 
24
 
25
- response = ""
 
 
 
 
 
 
 
26
 
27
- for message in client.chat_completion(
28
- messages,
29
- max_tokens=max_tokens,
30
- stream=True,
31
- temperature=temperature,
32
- top_p=top_p,
33
- ):
34
- choices = message.choices
35
- token = ""
36
- if len(choices) and choices[0].delta.content:
37
- token = choices[0].delta.content
38
 
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  chatbot = gr.ChatInterface(
47
  respond,
48
- type="messages",
49
- additional_inputs=[
50
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
51
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
52
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
53
- gr.Slider(
54
- minimum=0.1,
55
- maximum=1.0,
56
- value=0.95,
57
- step=0.05,
58
- label="Top-p (nucleus sampling)",
59
- ),
60
- ],
61
  )
62
 
63
- with gr.Blocks() as demo:
64
- with gr.Sidebar():
65
- gr.LoginButton()
66
- chatbot.render()
67
-
68
-
69
  if __name__ == "__main__":
70
- demo.launch()
 
1
  import gradio as gr
2
+ import yaml
3
+ import sqlite3
4
+ import difflib
5
+ import re
6
 
7
+ # ✅ Emotion detection (সাধারণ রুল-বেসড)
8
+ def detect_emotion(text):
9
+ text = text.lower()
10
+ if any(word in text for word in ["ভালো", "সুন্দর", "ধন্যবাদ", "আনন্দ"]):
11
+ return "আনন্দ"
12
+ elif any(word in text for word in ["দুঃখ", "কষ্ট", "হারিয়েছি", "চিন্তা"]):
13
+ return "দুঃখ"
14
+ elif any(word in text for word in ["রাগ", "বিরক্ত", "না", "খারাপ"]):
15
+ return "রাগ"
16
+ elif any(word in text for word in ["কি", "কেন", "কিভাবে", "বলো"]):
17
+ return "কৌতূহল"
18
+ else:
19
+ return "নিরপেক্ষ"
20
 
21
+ # ✅ YAML থেকে QA লোড করুন
22
+ def load_qa_yaml(path="bonolota_ai_dataset/qa.yaml"):
23
+ with open(path, "r", encoding="utf-8") as f:
24
+ return yaml.safe_load(f)
 
 
 
 
 
 
 
 
 
25
 
26
+ qa_data = load_qa_yaml()
27
 
28
+ # ✅ প্রশ্নের fuzzy match খুঁজে বের করুন
29
+ def fuzzy_match(query, qa_data, threshold=0.6):
30
+ questions = [item["question"] for item in qa_data]
31
+ matches = difflib.get_close_matches(query, questions, n=1, cutoff=threshold)
32
+ if matches:
33
+ for item in qa_data:
34
+ if item["question"] == matches[0]:
35
+ return item
36
+ return None
37
 
38
+ # চ্যাট রেসপন্স ফাংশন
39
+ def respond(message, history):
40
+ emotion = detect_emotion(message)
41
+ matched = fuzzy_match(message, qa_data)
42
 
43
+ if matched:
44
+ response = f"📖 উত্তর: {matched['answer']}\n😌 আবেগ: {matched['emotion']}"
45
+ if "voice_path" in matched:
46
+ response += f"\n🔊 ভয়েস: {matched['voice_path']}"
47
+ if "photo_path" in matched:
48
+ response += f"\n🖼️ ছবি: {matched['photo_path']}"
49
+ else:
50
+ response = f"😔 দুঃখিত, আমি এই প্রশ্নের উত্তর খুঁজে পেলাম না।\n🧠 আবেগ শনাক্ত: {emotion}"
51
 
52
+ history.append((message, response))
53
+ return "", history
 
 
 
 
 
 
 
 
 
54
 
55
+ # Gradio UI
 
 
 
 
 
 
56
  chatbot = gr.ChatInterface(
57
  respond,
58
+ title="🌿 Bonolota_AI (লোকাল বাংলা চ্যাটবট)",
59
+ theme="soft",
60
+ examples=["তোমার নাম কী?", "বাংলাদেশের রাজধানী কী?", "আমি খুব দুঃখিত", "তুমি কিভাবে কাজ করো?"],
61
+ cache_examples=False,
 
 
 
 
 
 
 
 
 
62
  )
63
 
64
+ # Launch
 
 
 
 
 
65
  if __name__ == "__main__":
66
+ chatbot.launch()