Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,342 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import io
|
| 3 |
import base64
|
|
@@ -37,7 +376,7 @@ from rfdetr import RFDETRSegPreview
|
|
| 37 |
app = Flask(__name__, static_folder="static", static_url_path="/")
|
| 38 |
|
| 39 |
# Checkpoint URL & local path
|
| 40 |
-
CHECKPOINT_URL = "https://huggingface.co/Subh775/Segment-Tulsi-TFs/resolve/main/checkpoint_best_total.pth"
|
| 41 |
CHECKPOINT_PATH = os.path.join("/tmp", "checkpoint_best_total.pth")
|
| 42 |
|
| 43 |
MODEL_LOCK = threading.Lock()
|
|
@@ -198,7 +537,7 @@ def predict():
|
|
| 198 |
"""
|
| 199 |
Accepts:
|
| 200 |
- multipart/form-data with file field "file"
|
| 201 |
-
- or JSON {"image": "<data:url...>", "conf": 0.
|
| 202 |
Returns JSON:
|
| 203 |
{"annotated": "<data:image/png;base64,...>", "confidences": [..], "count": N}
|
| 204 |
"""
|
|
@@ -215,7 +554,9 @@ def predict():
|
|
| 215 |
|
| 216 |
# Parse input
|
| 217 |
img: Optional[Image.Image] = None
|
| 218 |
-
conf_threshold = 0.
|
|
|
|
|
|
|
| 219 |
|
| 220 |
# Check if file uploaded
|
| 221 |
if "file" in request.files:
|
|
@@ -228,6 +569,8 @@ def predict():
|
|
| 228 |
print(f"[ERROR] {error_msg}")
|
| 229 |
return jsonify({"error": error_msg}), 400
|
| 230 |
conf_threshold = float(request.form.get("conf", conf_threshold))
|
|
|
|
|
|
|
| 231 |
else:
|
| 232 |
# Try JSON payload
|
| 233 |
payload = request.get_json(silent=True)
|
|
@@ -241,6 +584,8 @@ def predict():
|
|
| 241 |
print(f"[ERROR] {error_msg}")
|
| 242 |
return jsonify({"error": error_msg}), 400
|
| 243 |
conf_threshold = float(payload.get("conf", conf_threshold))
|
|
|
|
|
|
|
| 244 |
|
| 245 |
print(f"[INFO] Image size: {img.size}, Confidence threshold: {conf_threshold}")
|
| 246 |
|
|
|
|
| 1 |
+
# import os
|
| 2 |
+
# import io
|
| 3 |
+
# import base64
|
| 4 |
+
# import threading
|
| 5 |
+
# import traceback
|
| 6 |
+
# import gc
|
| 7 |
+
# from typing import Optional
|
| 8 |
+
|
| 9 |
+
# from flask import Flask, request, jsonify, send_from_directory
|
| 10 |
+
# from PIL import Image
|
| 11 |
+
# import numpy as np
|
| 12 |
+
# import requests
|
| 13 |
+
# import torch
|
| 14 |
+
|
| 15 |
+
# # Set environment variables for CPU-only operation
|
| 16 |
+
# os.environ.setdefault("MPLCONFIGDIR", "/tmp/.matplotlib")
|
| 17 |
+
# os.environ.setdefault("FONTCONFIG_PATH", "/tmp/.fontconfig")
|
| 18 |
+
# os.environ.setdefault("FONTCONFIG_FILE", "/etc/fonts/fonts.conf")
|
| 19 |
+
# os.environ.setdefault("CUDA_VISIBLE_DEVICES", "")
|
| 20 |
+
# os.environ.setdefault("OMP_NUM_THREADS", "4")
|
| 21 |
+
# os.environ.setdefault("MKL_NUM_THREADS", "4")
|
| 22 |
+
# os.environ.setdefault("OPENBLAS_NUM_THREADS", "4")
|
| 23 |
+
|
| 24 |
+
# # Create writable fontconfig cache
|
| 25 |
+
# os.makedirs("/tmp/.fontconfig", exist_ok=True)
|
| 26 |
+
# os.makedirs("/tmp/.matplotlib", exist_ok=True)
|
| 27 |
+
|
| 28 |
+
# # Limit torch threads
|
| 29 |
+
# try:
|
| 30 |
+
# torch.set_num_threads(4)
|
| 31 |
+
# except Exception:
|
| 32 |
+
# pass
|
| 33 |
+
|
| 34 |
+
# import supervision as sv
|
| 35 |
+
# from rfdetr import RFDETRSegPreview
|
| 36 |
+
|
| 37 |
+
# app = Flask(__name__, static_folder="static", static_url_path="/")
|
| 38 |
+
|
| 39 |
+
# # Checkpoint URL & local path
|
| 40 |
+
# CHECKPOINT_URL = "https://huggingface.co/Subh775/Segment-Tulsi-TFs/resolve/main/checkpoint_best_total.pth"
|
| 41 |
+
# CHECKPOINT_PATH = os.path.join("/tmp", "checkpoint_best_total.pth")
|
| 42 |
+
|
| 43 |
+
# MODEL_LOCK = threading.Lock()
|
| 44 |
+
# MODEL = None
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
# def download_file(url: str, dst: str, chunk_size: int = 8192):
|
| 48 |
+
# """Download file if not exists"""
|
| 49 |
+
# if os.path.exists(dst) and os.path.getsize(dst) > 0:
|
| 50 |
+
# print(f"[INFO] Checkpoint already exists at {dst}")
|
| 51 |
+
# return dst
|
| 52 |
+
# print(f"[INFO] Downloading weights from {url} -> {dst}")
|
| 53 |
+
# try:
|
| 54 |
+
# r = requests.get(url, stream=True, timeout=180)
|
| 55 |
+
# r.raise_for_status()
|
| 56 |
+
# with open(dst, "wb") as fh:
|
| 57 |
+
# for chunk in r.iter_content(chunk_size=chunk_size):
|
| 58 |
+
# if chunk:
|
| 59 |
+
# fh.write(chunk)
|
| 60 |
+
# print("[INFO] Download complete.")
|
| 61 |
+
# return dst
|
| 62 |
+
# except Exception as e:
|
| 63 |
+
# print(f"[ERROR] Download failed: {e}")
|
| 64 |
+
# raise
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
# def init_model():
|
| 68 |
+
# """Lazily initialize the RF-DETR model and cache it in global MODEL."""
|
| 69 |
+
# global MODEL
|
| 70 |
+
# with MODEL_LOCK:
|
| 71 |
+
# if MODEL is not None:
|
| 72 |
+
# print("[INFO] Model already loaded, returning cached instance")
|
| 73 |
+
# return MODEL
|
| 74 |
+
# try:
|
| 75 |
+
# # Ensure checkpoint present
|
| 76 |
+
# if not os.path.exists(CHECKPOINT_PATH):
|
| 77 |
+
# print("[INFO] Checkpoint not found, downloading...")
|
| 78 |
+
# download_file(CHECKPOINT_URL, CHECKPOINT_PATH)
|
| 79 |
+
# else:
|
| 80 |
+
# print(f"[INFO] Using existing checkpoint at {CHECKPOINT_PATH}")
|
| 81 |
+
|
| 82 |
+
# print("[INFO] Loading RF-DETR model (CPU mode)...")
|
| 83 |
+
# MODEL = RFDETRSegPreview(pretrain_weights=CHECKPOINT_PATH)
|
| 84 |
+
|
| 85 |
+
# # Try to optimize for inference
|
| 86 |
+
# try:
|
| 87 |
+
# print("[INFO] Optimizing model for inference...")
|
| 88 |
+
# MODEL.optimize_for_inference()
|
| 89 |
+
# print("[INFO] Model optimization complete")
|
| 90 |
+
# except Exception as e:
|
| 91 |
+
# print(f"[WARN] optimize_for_inference() skipped/failed: {e}")
|
| 92 |
+
|
| 93 |
+
# print("[INFO] Model ready for inference")
|
| 94 |
+
# return MODEL
|
| 95 |
+
# except Exception as e:
|
| 96 |
+
# print(f"[ERROR] Model initialization failed: {e}")
|
| 97 |
+
# traceback.print_exc()
|
| 98 |
+
# raise
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
# def decode_data_url(data_url: str) -> Image.Image:
|
| 102 |
+
# """Decode data URL to PIL Image"""
|
| 103 |
+
# if data_url.startswith("data:"):
|
| 104 |
+
# _, b64 = data_url.split(",", 1)
|
| 105 |
+
# data = base64.b64decode(b64)
|
| 106 |
+
# else:
|
| 107 |
+
# try:
|
| 108 |
+
# data = base64.b64decode(data_url)
|
| 109 |
+
# except Exception:
|
| 110 |
+
# raise ValueError("Invalid image data")
|
| 111 |
+
# return Image.open(io.BytesIO(data)).convert("RGB")
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
# def encode_pil_to_dataurl(pil_img: Image.Image, fmt="PNG") -> str:
|
| 115 |
+
# """Encode PIL Image to data URL"""
|
| 116 |
+
# buf = io.BytesIO()
|
| 117 |
+
# pil_img.save(buf, format=fmt, optimize=False)
|
| 118 |
+
# buf.seek(0)
|
| 119 |
+
# return "data:image/{};base64,".format(fmt.lower()) + base64.b64encode(buf.getvalue()).decode("ascii")
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
# def annotate_segmentation(image: Image.Image, detections: sv.Detections) -> Image.Image:
|
| 123 |
+
# """
|
| 124 |
+
# Annotate image with segmentation masks using supervision library.
|
| 125 |
+
# This matches the visualization from rfdetr_seg_infer.py script.
|
| 126 |
+
# """
|
| 127 |
+
# try:
|
| 128 |
+
# # Define color palette
|
| 129 |
+
# palette = sv.ColorPalette.from_hex([
|
| 130 |
+
# "#ffff00", "#ff9b00", "#ff8080", "#ff66b2", "#ff66ff", "#b266ff",
|
| 131 |
+
# "#9999ff", "#3399ff", "#66ffff", "#33ff99", "#66ff66", "#99ff00",
|
| 132 |
+
# ])
|
| 133 |
+
|
| 134 |
+
# # Calculate optimal text scale based on image resolution
|
| 135 |
+
# text_scale = sv.calculate_optimal_text_scale(resolution_wh=image.size)
|
| 136 |
+
|
| 137 |
+
# print(f"[INFO] Creating annotators with text_scale={text_scale}")
|
| 138 |
+
|
| 139 |
+
# # Create annotators
|
| 140 |
+
# mask_annotator = sv.MaskAnnotator(color=palette)
|
| 141 |
+
# polygon_annotator = sv.PolygonAnnotator(color=sv.Color.WHITE)
|
| 142 |
+
# label_annotator = sv.LabelAnnotator(
|
| 143 |
+
# color=palette,
|
| 144 |
+
# text_color=sv.Color.BLACK,
|
| 145 |
+
# text_scale=text_scale,
|
| 146 |
+
# text_position=sv.Position.CENTER_OF_MASS
|
| 147 |
+
# )
|
| 148 |
+
|
| 149 |
+
# # Create labels with confidence scores
|
| 150 |
+
# labels = [
|
| 151 |
+
# f"Tulsi {float(conf):.2f}"
|
| 152 |
+
# for conf in detections.confidence
|
| 153 |
+
# ]
|
| 154 |
+
|
| 155 |
+
# print(f"[INFO] Annotating {len(labels)} detections")
|
| 156 |
+
|
| 157 |
+
# # Apply annotations step by step
|
| 158 |
+
# out = image.copy()
|
| 159 |
+
# print("[INFO] Applying mask annotation...")
|
| 160 |
+
# out = mask_annotator.annotate(out, detections)
|
| 161 |
+
# print("[INFO] Applying polygon annotation...")
|
| 162 |
+
# out = polygon_annotator.annotate(out, detections)
|
| 163 |
+
# print("[INFO] Applying label annotation...")
|
| 164 |
+
# out = label_annotator.annotate(out, detections, labels)
|
| 165 |
+
|
| 166 |
+
# print("[INFO] Annotation complete")
|
| 167 |
+
# return out
|
| 168 |
+
|
| 169 |
+
# except Exception as e:
|
| 170 |
+
# print(f"[ERROR] Annotation failed: {e}")
|
| 171 |
+
# traceback.print_exc()
|
| 172 |
+
# # Return original image if annotation fails
|
| 173 |
+
# return image
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
# @app.route("/", methods=["GET"])
|
| 177 |
+
# def index():
|
| 178 |
+
# """Serve the static UI"""
|
| 179 |
+
# index_path = os.path.join(app.static_folder or "static", "index.html")
|
| 180 |
+
# if os.path.exists(index_path):
|
| 181 |
+
# return send_from_directory(app.static_folder, "index.html")
|
| 182 |
+
# return jsonify({"message": "RF-DETR Segmentation API is running.", "status": "ready"})
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
# @app.route("/health", methods=["GET"])
|
| 186 |
+
# def health():
|
| 187 |
+
# """Health check endpoint"""
|
| 188 |
+
# model_loaded = MODEL is not None
|
| 189 |
+
# return jsonify({
|
| 190 |
+
# "status": "healthy",
|
| 191 |
+
# "model_loaded": model_loaded,
|
| 192 |
+
# "checkpoint_exists": os.path.exists(CHECKPOINT_PATH)
|
| 193 |
+
# })
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
# @app.route("/predict", methods=["POST"])
|
| 197 |
+
# def predict():
|
| 198 |
+
# """
|
| 199 |
+
# Accepts:
|
| 200 |
+
# - multipart/form-data with file field "file"
|
| 201 |
+
# - or JSON {"image": "<data:url...>", "conf": 0.05}
|
| 202 |
+
# Returns JSON:
|
| 203 |
+
# {"annotated": "<data:image/png;base64,...>", "confidences": [..], "count": N}
|
| 204 |
+
# """
|
| 205 |
+
# print("\n[INFO] ========== New prediction request ==========")
|
| 206 |
+
|
| 207 |
+
# try:
|
| 208 |
+
# print("[INFO] Initializing model...")
|
| 209 |
+
# model = init_model()
|
| 210 |
+
# print("[INFO] Model ready")
|
| 211 |
+
# except Exception as e:
|
| 212 |
+
# error_msg = f"Model initialization failed: {e}"
|
| 213 |
+
# print(f"[ERROR] {error_msg}")
|
| 214 |
+
# return jsonify({"error": error_msg}), 500
|
| 215 |
+
|
| 216 |
+
# # Parse input
|
| 217 |
+
# img: Optional[Image.Image] = None
|
| 218 |
+
# conf_threshold = 0.05
|
| 219 |
+
|
| 220 |
+
# # Check if file uploaded
|
| 221 |
+
# if "file" in request.files:
|
| 222 |
+
# file = request.files["file"]
|
| 223 |
+
# print(f"[INFO] Processing uploaded file: {file.filename}")
|
| 224 |
+
# try:
|
| 225 |
+
# img = Image.open(file.stream).convert("RGB")
|
| 226 |
+
# except Exception as e:
|
| 227 |
+
# error_msg = f"Invalid uploaded image: {e}"
|
| 228 |
+
# print(f"[ERROR] {error_msg}")
|
| 229 |
+
# return jsonify({"error": error_msg}), 400
|
| 230 |
+
# conf_threshold = float(request.form.get("conf", conf_threshold))
|
| 231 |
+
# else:
|
| 232 |
+
# # Try JSON payload
|
| 233 |
+
# payload = request.get_json(silent=True)
|
| 234 |
+
# if not payload or "image" not in payload:
|
| 235 |
+
# return jsonify({"error": "No image provided. Upload 'file' or JSON with 'image' data-url."}), 400
|
| 236 |
+
# try:
|
| 237 |
+
# print("[INFO] Decoding image from data URL...")
|
| 238 |
+
# img = decode_data_url(payload["image"])
|
| 239 |
+
# except Exception as e:
|
| 240 |
+
# error_msg = f"Invalid image data: {e}"
|
| 241 |
+
# print(f"[ERROR] {error_msg}")
|
| 242 |
+
# return jsonify({"error": error_msg}), 400
|
| 243 |
+
# conf_threshold = float(payload.get("conf", conf_threshold))
|
| 244 |
+
|
| 245 |
+
# print(f"[INFO] Image size: {img.size}, Confidence threshold: {conf_threshold}")
|
| 246 |
+
|
| 247 |
+
# # Optionally downscale large images to reduce memory usage
|
| 248 |
+
# MAX_SIZE = 1024
|
| 249 |
+
# if max(img.size) > MAX_SIZE:
|
| 250 |
+
# w, h = img.size
|
| 251 |
+
# scale = MAX_SIZE / float(max(w, h))
|
| 252 |
+
# new_w, new_h = int(round(w * scale)), int(round(h * scale))
|
| 253 |
+
# print(f"[INFO] Resizing image from {w}x{h} to {new_w}x{new_h}")
|
| 254 |
+
# img = img.resize((new_w, new_h), Image.Resampling.LANCZOS)
|
| 255 |
+
|
| 256 |
+
# # Run inference with no_grad for memory efficiency
|
| 257 |
+
# try:
|
| 258 |
+
# print("[INFO] Running inference...")
|
| 259 |
+
# with torch.no_grad():
|
| 260 |
+
# detections = model.predict(img, threshold=conf_threshold)
|
| 261 |
+
|
| 262 |
+
# print(f"[INFO] Raw detections: {len(detections)} objects")
|
| 263 |
+
|
| 264 |
+
# # Check if detections exist
|
| 265 |
+
# if len(detections) == 0 or not hasattr(detections, 'confidence') or len(detections.confidence) == 0:
|
| 266 |
+
# print("[INFO] No detections above threshold")
|
| 267 |
+
# # Return original image
|
| 268 |
+
# data_url = encode_pil_to_dataurl(img, fmt="PNG")
|
| 269 |
+
# return jsonify({
|
| 270 |
+
# "annotated": data_url,
|
| 271 |
+
# "confidences": [],
|
| 272 |
+
# "count": 0
|
| 273 |
+
# })
|
| 274 |
+
|
| 275 |
+
# print(f"[INFO] Detections have {len(detections.confidence)} confidence scores")
|
| 276 |
+
# print(f"[INFO] Confidence range: {min(detections.confidence):.3f} - {max(detections.confidence):.3f}")
|
| 277 |
+
|
| 278 |
+
# # Check if masks exist
|
| 279 |
+
# if hasattr(detections, 'masks') and detections.masks is not None:
|
| 280 |
+
# print(f"[INFO] Masks present: shape={np.array(detections.masks).shape if hasattr(detections.masks, '__len__') else 'unknown'}")
|
| 281 |
+
# else:
|
| 282 |
+
# print("[WARN] No masks found in detections!")
|
| 283 |
+
|
| 284 |
+
# # Annotate image using supervision library
|
| 285 |
+
# print("[INFO] Starting annotation...")
|
| 286 |
+
# annotated_pil = annotate_segmentation(img, detections)
|
| 287 |
+
|
| 288 |
+
# # Extract confidence scores
|
| 289 |
+
# confidences = [float(conf) for conf in detections.confidence]
|
| 290 |
+
# print(f"[INFO] Final confidences: {confidences}")
|
| 291 |
+
|
| 292 |
+
# # Encode to data URL
|
| 293 |
+
# print("[INFO] Encoding annotated image...")
|
| 294 |
+
# data_url = encode_pil_to_dataurl(annotated_pil, fmt="PNG")
|
| 295 |
+
|
| 296 |
+
# # Clean up
|
| 297 |
+
# del detections
|
| 298 |
+
# gc.collect()
|
| 299 |
+
|
| 300 |
+
# print(f"[INFO] ========== Prediction complete: {len(confidences)} leaves detected ==========\n")
|
| 301 |
+
|
| 302 |
+
# return jsonify({
|
| 303 |
+
# "annotated": data_url,
|
| 304 |
+
# "confidences": confidences,
|
| 305 |
+
# "count": len(confidences)
|
| 306 |
+
# })
|
| 307 |
+
|
| 308 |
+
# except Exception as e:
|
| 309 |
+
# error_msg = f"Inference failed: {e}"
|
| 310 |
+
# print(f"[ERROR] {error_msg}")
|
| 311 |
+
# traceback.print_exc()
|
| 312 |
+
# return jsonify({"error": error_msg}), 500
|
| 313 |
+
|
| 314 |
+
|
| 315 |
+
# if __name__ == "__main__":
|
| 316 |
+
# print("\n" + "="*60)
|
| 317 |
+
# print("Starting Tulsi Leaf Segmentation Server")
|
| 318 |
+
# print("="*60 + "\n")
|
| 319 |
+
|
| 320 |
+
# # Warm model in background thread
|
| 321 |
+
# def warm():
|
| 322 |
+
# try:
|
| 323 |
+
# print("[INFO] Starting model warmup in background...")
|
| 324 |
+
# init_model()
|
| 325 |
+
# print("[INFO] ✓ Model warmup complete - ready for predictions")
|
| 326 |
+
# except Exception as e:
|
| 327 |
+
# print(f"[ERROR] ✗ Model warmup failed: {e}")
|
| 328 |
+
# traceback.print_exc()
|
| 329 |
+
|
| 330 |
+
# threading.Thread(target=warm, daemon=True).start()
|
| 331 |
+
|
| 332 |
+
# # Run Flask app
|
| 333 |
+
# app.run(
|
| 334 |
+
# host="0.0.0.0",
|
| 335 |
+
# port=int(os.environ.get("PORT", 7860)),
|
| 336 |
+
# debug=False
|
| 337 |
+
# )
|
| 338 |
+
|
| 339 |
+
|
| 340 |
import os
|
| 341 |
import io
|
| 342 |
import base64
|
|
|
|
| 376 |
app = Flask(__name__, static_folder="static", static_url_path="/")
|
| 377 |
|
| 378 |
# Checkpoint URL & local path
|
| 379 |
+
CHECKPOINT_URL = "https://huggingface.co/Subh775/Segment-Tulsi-TFs-3/resolve/main/checkpoint_best_total.pth"
|
| 380 |
CHECKPOINT_PATH = os.path.join("/tmp", "checkpoint_best_total.pth")
|
| 381 |
|
| 382 |
MODEL_LOCK = threading.Lock()
|
|
|
|
| 537 |
"""
|
| 538 |
Accepts:
|
| 539 |
- multipart/form-data with file field "file"
|
| 540 |
+
- or JSON {"image": "<data:url...>", "conf": 0.25, "show_labels": true, "show_confidence": true}
|
| 541 |
Returns JSON:
|
| 542 |
{"annotated": "<data:image/png;base64,...>", "confidences": [..], "count": N}
|
| 543 |
"""
|
|
|
|
| 554 |
|
| 555 |
# Parse input
|
| 556 |
img: Optional[Image.Image] = None
|
| 557 |
+
conf_threshold = 0.25
|
| 558 |
+
show_labels = True
|
| 559 |
+
show_confidence = True
|
| 560 |
|
| 561 |
# Check if file uploaded
|
| 562 |
if "file" in request.files:
|
|
|
|
| 569 |
print(f"[ERROR] {error_msg}")
|
| 570 |
return jsonify({"error": error_msg}), 400
|
| 571 |
conf_threshold = float(request.form.get("conf", conf_threshold))
|
| 572 |
+
show_labels = request.form.get("show_labels", "true").lower() == "true"
|
| 573 |
+
show_confidence = request.form.get("show_confidence", "true").lower() == "true"
|
| 574 |
else:
|
| 575 |
# Try JSON payload
|
| 576 |
payload = request.get_json(silent=True)
|
|
|
|
| 584 |
print(f"[ERROR] {error_msg}")
|
| 585 |
return jsonify({"error": error_msg}), 400
|
| 586 |
conf_threshold = float(payload.get("conf", conf_threshold))
|
| 587 |
+
show_labels = payload.get("show_labels", True)
|
| 588 |
+
show_confidence = payload.get("show_confidence", True)
|
| 589 |
|
| 590 |
print(f"[INFO] Image size: {img.size}, Confidence threshold: {conf_threshold}")
|
| 591 |
|