add memory usage
Browse files- requirements.txt +2 -1
- visualizer_drag_gradio.py +21 -0
requirements.txt
CHANGED
|
@@ -4,4 +4,5 @@ Ninja
|
|
| 4 |
gradio
|
| 5 |
huggingface_hub
|
| 6 |
hf_transfer
|
| 7 |
-
Pillow==9.5.0
|
|
|
|
|
|
| 4 |
gradio
|
| 5 |
huggingface_hub
|
| 6 |
hf_transfer
|
| 7 |
+
Pillow==9.5.0
|
| 8 |
+
psutil
|
visualizer_drag_gradio.py
CHANGED
|
@@ -7,6 +7,8 @@ from functools import partial
|
|
| 7 |
from pathlib import Path
|
| 8 |
import time
|
| 9 |
|
|
|
|
|
|
|
| 10 |
import gradio as gr
|
| 11 |
import numpy as np
|
| 12 |
import torch
|
|
@@ -160,6 +162,24 @@ def preprocess_mask_info(global_state, image):
|
|
| 160 |
return global_state
|
| 161 |
|
| 162 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
# filter large models running on SPACES
|
| 164 |
allowed_checkpoints = [] # all checkpoints
|
| 165 |
if IS_SPACE:
|
|
@@ -557,6 +577,7 @@ with gr.Blocks() as app:
|
|
| 557 |
step_idx = 0
|
| 558 |
last_time = time.time()
|
| 559 |
while True:
|
|
|
|
| 560 |
# add a TIMEOUT break
|
| 561 |
print(f'Running time: {time.time() - last_time}')
|
| 562 |
if IS_SPACE and time.time() - last_time > TIMEOUT:
|
|
|
|
| 7 |
from pathlib import Path
|
| 8 |
import time
|
| 9 |
|
| 10 |
+
import psutil
|
| 11 |
+
|
| 12 |
import gradio as gr
|
| 13 |
import numpy as np
|
| 14 |
import torch
|
|
|
|
| 162 |
return global_state
|
| 163 |
|
| 164 |
|
| 165 |
+
def print_memory_usage():
|
| 166 |
+
# Print system memory usage
|
| 167 |
+
print(f"System memory usage: {psutil.virtual_memory().percent}%")
|
| 168 |
+
|
| 169 |
+
# Print GPU memory usage
|
| 170 |
+
if torch.cuda.is_available():
|
| 171 |
+
device = torch.device("cuda")
|
| 172 |
+
print(f"GPU memory usage: {torch.cuda.memory_allocated() / 1e9} GB")
|
| 173 |
+
print(
|
| 174 |
+
f"Max GPU memory usage: {torch.cuda.max_memory_allocated() / 1e9} GB")
|
| 175 |
+
device_properties = torch.cuda.get_device_properties(device)
|
| 176 |
+
available_memory = device_properties.total_memory - \
|
| 177 |
+
torch.cuda.max_memory_allocated()
|
| 178 |
+
print(f"Available GPU memory: {available_memory / 1e9} GB")
|
| 179 |
+
else:
|
| 180 |
+
print("No GPU available")
|
| 181 |
+
|
| 182 |
+
|
| 183 |
# filter large models running on SPACES
|
| 184 |
allowed_checkpoints = [] # all checkpoints
|
| 185 |
if IS_SPACE:
|
|
|
|
| 577 |
step_idx = 0
|
| 578 |
last_time = time.time()
|
| 579 |
while True:
|
| 580 |
+
print_memory_usage()
|
| 581 |
# add a TIMEOUT break
|
| 582 |
print(f'Running time: {time.time() - last_time}')
|
| 583 |
if IS_SPACE and time.time() - last_time > TIMEOUT:
|