Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,25 +1,36 @@
|
|
| 1 |
-
|
| 2 |
import numpy as np
|
| 3 |
import cv2
|
|
|
|
| 4 |
import requests
|
| 5 |
import face_recognition
|
|
|
|
| 6 |
import os
|
| 7 |
-
import streamlit as st
|
| 8 |
|
| 9 |
# Set page title and description
|
| 10 |
st.set_page_config(
|
| 11 |
-
page_title="
|
| 12 |
page_icon="📷",
|
| 13 |
layout="centered",
|
| 14 |
initial_sidebar_state="collapsed"
|
| 15 |
)
|
| 16 |
-
st.title("Attendance System Using Face Recognition 📷")
|
| 17 |
-
st.markdown("This app recognizes faces in an image,
|
| 18 |
|
| 19 |
-
# Load
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
directory = "photos"
|
| 25 |
myList = os.listdir(directory)
|
|
@@ -30,103 +41,81 @@ for cls in myList:
|
|
| 30 |
curImg = cv2.imread(img_path)
|
| 31 |
Images.append(curImg)
|
| 32 |
classnames.append(os.path.splitext(cls)[0])
|
| 33 |
-
# Assume Aadhaar number is part of the image filename (e.g., "123456_john.jpg")
|
| 34 |
-
aadhar_numbers.append(cls.split('_')[0])
|
| 35 |
-
|
| 36 |
-
# Function to validate Aadhaar card number
|
| 37 |
-
def validate_aadhaar(aadhaar):
|
| 38 |
-
# Implement your Aadhaar card validation logic here
|
| 39 |
-
# For simplicity, let's assume any 6-digit number is a valid Aadhaar card
|
| 40 |
-
return len(aadhaar) == 6 and aadhaar.isdigit()
|
| 41 |
|
| 42 |
-
# Function to update
|
| 43 |
-
def update_data(name,
|
| 44 |
url = "https://huggingface.glitch.me"
|
| 45 |
url1 = "/update"
|
| 46 |
-
data = {'name': name, 'aadhaar': aadhaar_number}
|
| 47 |
-
response = requests.post(url + url1, data=data)
|
| 48 |
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
# Function to display image with overlay
|
| 55 |
-
def display_image_with_overlay(image, name):
|
| 56 |
-
|
| 57 |
-
# ...
|
| 58 |
-
|
| 59 |
-
# Apply styling with CSS
|
| 60 |
-
st.markdown('<style>img { animation: pulse 2s infinite; }</style>', unsafe_allow_html=True)
|
| 61 |
st.image(image, use_column_width=True, output_format="PNG")
|
| 62 |
|
| 63 |
-
# Take input Aadhaar card details
|
| 64 |
-
aadhaar_number = st.text_input("Enter your Last 6-digits Aadhaar Number:")
|
| 65 |
-
|
| 66 |
-
# Take picture using the camera
|
| 67 |
-
img_file_buffer = st.camera_input("Take a picture")
|
| 68 |
-
|
| 69 |
# Load images for face recognition
|
| 70 |
encodeListknown = [face_recognition.face_encodings(img)[0] for img in Images]
|
| 71 |
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
if validate_aadhaar(aadhaar_number):
|
| 75 |
-
test_image = Image.open(img_file_buffer)
|
| 76 |
-
image = np.asarray(test_image)
|
| 77 |
-
|
| 78 |
-
imgS = cv2.resize(image, (0, 0), None, 0.25, 0.25)
|
| 79 |
-
imgS = cv2.cvtColor(imgS, cv2.COLOR_BGR2RGB)
|
| 80 |
-
facesCurFrame = face_recognition.face_locations(imgS)
|
| 81 |
-
encodesCurFrame = face_recognition.face_encodings(imgS, facesCurFrame)
|
| 82 |
-
|
| 83 |
-
name = "Unknown" # Default name for unknown faces
|
| 84 |
-
match_found = False # Flag to track if a match is found
|
| 85 |
-
|
| 86 |
-
# Checking if faces are detected
|
| 87 |
-
if len(encodesCurFrame) > 0:
|
| 88 |
-
for encodeFace, faceLoc in zip(encodesCurFrame, facesCurFrame):
|
| 89 |
-
# Assuming that encodeListknown is defined and populated in your code
|
| 90 |
-
matches = face_recognition.compare_faces(encodeListknown, encodeFace)
|
| 91 |
-
faceDis = face_recognition.face_distance(encodeListknown, encodeFace)
|
| 92 |
-
matchIndex = np.argmin(faceDis)
|
| 93 |
-
|
| 94 |
-
if matches[matchIndex]:
|
| 95 |
-
name = classnames[matchIndex].upper()
|
| 96 |
-
|
| 97 |
-
# Check if Aadhaar number is found in the database
|
| 98 |
-
if aadhaar_number not in aadhar_numbers:
|
| 99 |
-
st.error("Face recognized, but Aadhaar number not found in the database.")
|
| 100 |
-
else:
|
| 101 |
-
# Update data only if a known face is detected and Aadhaar number is valid
|
| 102 |
-
update_data(name, aadhaar_number)
|
| 103 |
-
match_found = True # Set the flag to True
|
| 104 |
-
|
| 105 |
-
else:
|
| 106 |
-
# Face recognized, but not matched with Aadhaar number
|
| 107 |
-
st.error("Face recognized, but Aadhaar number does not match.")
|
| 108 |
-
|
| 109 |
-
y1, x2, y2, x1 = faceLoc
|
| 110 |
-
y1, x2, y2, x1 = y1 * 4, x2 * 4, y2 * 4, x1 * 4
|
| 111 |
-
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
| 112 |
-
cv2.rectangle(image, (x1, y2 - 35), (x2, y2), (0, 255, 0), cv2.FILLED)
|
| 113 |
-
cv2.putText(image, name, (x1 + 6, y2 - 6), cv2.FONT_HERSHEY_COMPLEX, 1, (255, 255, 255), 2)
|
| 114 |
-
|
| 115 |
-
display_image_with_overlay(image, name)
|
| 116 |
-
|
| 117 |
-
# Display the name corresponding to the entered Aadhaar number
|
| 118 |
-
if not match_found:
|
| 119 |
-
# Match Aadhaar number with the list
|
| 120 |
-
aadhar_index = aadhar_numbers.index(aadhaar_number) if aadhaar_number in aadhar_numbers else None
|
| 121 |
-
if aadhar_index is not None:
|
| 122 |
-
st.success(f"Match found: {classnames[aadhar_index]}")
|
| 123 |
-
else:
|
| 124 |
-
st.warning("Face not detected, and Aadhaar number not found in the database.")
|
| 125 |
-
else:
|
| 126 |
-
st.success(f"Face recognized: {name}")
|
| 127 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
else:
|
| 129 |
-
st.warning("
|
| 130 |
-
|
| 131 |
else:
|
| 132 |
-
st.
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
import numpy as np
|
| 3 |
import cv2
|
| 4 |
+
from PIL import Image
|
| 5 |
import requests
|
| 6 |
import face_recognition
|
| 7 |
+
from keras.models import load_model
|
| 8 |
import os
|
|
|
|
| 9 |
|
| 10 |
# Set page title and description
|
| 11 |
st.set_page_config(
|
| 12 |
+
page_title="Face Recognition Attendance System With Emotion Detection",
|
| 13 |
page_icon="📷",
|
| 14 |
layout="centered",
|
| 15 |
initial_sidebar_state="collapsed"
|
| 16 |
)
|
| 17 |
+
st.title("Attendance System Using Face Recognition and Emotion Detection 📷")
|
| 18 |
+
st.markdown("This app recognizes faces in an image, detects emotions, and updates attendance records with the current timestamp.")
|
| 19 |
|
| 20 |
+
# Load emotion detection model
|
| 21 |
+
@st.cache_resource
|
| 22 |
+
def load_emotion_model():
|
| 23 |
+
model = load_model('CNN_Model_acc_75.h5')
|
| 24 |
+
return model
|
| 25 |
+
|
| 26 |
+
emotion_model = load_emotion_model()
|
| 27 |
+
|
| 28 |
+
# Emotion labels
|
| 29 |
+
emotion_labels = ['angry', 'fear', 'happy', 'neutral', 'sad', 'surprise']
|
| 30 |
+
|
| 31 |
+
# Load known faces and classnames
|
| 32 |
+
Images = []
|
| 33 |
+
classnames = []
|
| 34 |
|
| 35 |
directory = "photos"
|
| 36 |
myList = os.listdir(directory)
|
|
|
|
| 41 |
curImg = cv2.imread(img_path)
|
| 42 |
Images.append(curImg)
|
| 43 |
classnames.append(os.path.splitext(cls)[0])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
+
# Function to update attendance data
|
| 46 |
+
def update_data(name, emotion):
|
| 47 |
url = "https://huggingface.glitch.me"
|
| 48 |
url1 = "/update"
|
|
|
|
|
|
|
| 49 |
|
| 50 |
+
data = {'name': name, 'emotion': emotion}
|
| 51 |
+
try:
|
| 52 |
+
response = requests.post(url + url1, data=data)
|
| 53 |
+
if response.status_code == 200:
|
| 54 |
+
st.success("Attendance updated successfully!")
|
| 55 |
+
else:
|
| 56 |
+
st.warning("Failed to update attendance!")
|
| 57 |
+
except Exception as e:
|
| 58 |
+
st.error(f"Error updating attendance: {e}")
|
| 59 |
|
| 60 |
# Function to display image with overlay
|
| 61 |
+
def display_image_with_overlay(image, name, emotion):
|
| 62 |
+
cv2.putText(image, f"{name} is feeling {emotion}", (20, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
st.image(image, use_column_width=True, output_format="PNG")
|
| 64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
# Load images for face recognition
|
| 66 |
encodeListknown = [face_recognition.face_encodings(img)[0] for img in Images]
|
| 67 |
|
| 68 |
+
# Upload image using the file uploader
|
| 69 |
+
img_file_buffer = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
+
if img_file_buffer is not None:
|
| 72 |
+
test_image = Image.open(img_file_buffer)
|
| 73 |
+
image = np.asarray(test_image)
|
| 74 |
+
|
| 75 |
+
imgS = cv2.resize(image, (0, 0), None, 0.25, 0.25)
|
| 76 |
+
imgS = cv2.cvtColor(imgS, cv2.COLOR_BGR2RGB)
|
| 77 |
+
facesCurFrame = face_recognition.face_locations(imgS)
|
| 78 |
+
encodesCurFrame = face_recognition.face_encodings(imgS, facesCurFrame)
|
| 79 |
+
|
| 80 |
+
name = "Unknown" # Default name for unknown faces
|
| 81 |
+
match_found = False # Flag to track if a match is found
|
| 82 |
+
|
| 83 |
+
# Emotion detection part
|
| 84 |
+
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
|
| 85 |
+
emotion = "Neutral" # Default emotion
|
| 86 |
+
|
| 87 |
+
if len(encodesCurFrame) > 0:
|
| 88 |
+
for encodeFace, faceLoc in zip(encodesCurFrame, facesCurFrame):
|
| 89 |
+
# Emotion detection
|
| 90 |
+
y1, x2, y2, x1 = faceLoc
|
| 91 |
+
roi = imgS[y1:y2, x1:x2]
|
| 92 |
+
roi = cv2.resize(roi, (48, 48)) # Resize to fit model
|
| 93 |
+
roi = cv2.cvtColor(roi, cv2.COLOR_BGR2RGB)
|
| 94 |
+
roi = np.expand_dims(roi, axis=0) / 255.0 # Preprocess the image
|
| 95 |
+
emotion_predictions = emotion_model.predict(roi)
|
| 96 |
+
emotion = emotion_labels[np.argmax(emotion_predictions)]
|
| 97 |
+
|
| 98 |
+
# Face recognition logic
|
| 99 |
+
matches = face_recognition.compare_faces(encodeListknown, encodeFace)
|
| 100 |
+
faceDis = face_recognition.face_distance(encodeListknown, encodeFace)
|
| 101 |
+
matchIndex = np.argmin(faceDis)
|
| 102 |
+
|
| 103 |
+
if matches[matchIndex]:
|
| 104 |
+
name = classnames[matchIndex].upper()
|
| 105 |
+
update_data(name, emotion)
|
| 106 |
+
match_found = True
|
| 107 |
+
|
| 108 |
+
y1, x2, y2, x1 = faceLoc
|
| 109 |
+
y1, x2, y2, x1 = y1 * 4, x2 * 4, y2 * 4, x1 * 4
|
| 110 |
+
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
| 111 |
+
cv2.rectangle(image, (x1, y2 - 35), (x2, y2), (0, 255, 0), cv2.FILLED)
|
| 112 |
+
cv2.putText(image, name, (x1 + 6, y2 - 6), cv2.FONT_HERSHEY_COMPLEX, 1, (255, 255, 255), 2)
|
| 113 |
+
|
| 114 |
+
display_image_with_overlay(image, name, emotion)
|
| 115 |
+
|
| 116 |
+
if match_found:
|
| 117 |
+
st.success(f"Face recognized: {name} and Emotion: {emotion}")
|
| 118 |
else:
|
| 119 |
+
st.warning("Face not detected, or no match found in the database.")
|
|
|
|
| 120 |
else:
|
| 121 |
+
st.warning("No faces detected in the image. Face recognition failed.")
|