Spaces:
Sleeping
Sleeping
add new backup
Browse files- Archive/Gallery_beta0920.py +718 -0
Archive/Gallery_beta0920.py
ADDED
|
@@ -0,0 +1,718 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import os
|
| 3 |
+
import requests
|
| 4 |
+
|
| 5 |
+
import altair as alt
|
| 6 |
+
import extra_streamlit_components as stx
|
| 7 |
+
import numpy as np
|
| 8 |
+
import pandas as pd
|
| 9 |
+
import streamlit as st
|
| 10 |
+
import streamlit.components.v1 as components
|
| 11 |
+
|
| 12 |
+
from bs4 import BeautifulSoup
|
| 13 |
+
from datasets import load_dataset, Dataset, load_from_disk
|
| 14 |
+
from huggingface_hub import login
|
| 15 |
+
from streamlit_agraph import agraph, Node, Edge, Config
|
| 16 |
+
from streamlit_extras.switch_page_button import switch_page
|
| 17 |
+
from streamlit_extras.no_default_selectbox import selectbox
|
| 18 |
+
from sklearn.svm import LinearSVC
|
| 19 |
+
|
| 20 |
+
SCORE_NAME_MAPPING = {'clip': 'clip_score', 'rank': 'msq_score', 'pop': 'model_download_count'}
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
class GalleryApp:
|
| 24 |
+
def __init__(self, promptBook, images_ds):
|
| 25 |
+
self.promptBook = promptBook
|
| 26 |
+
self.images_ds = images_ds
|
| 27 |
+
|
| 28 |
+
# init gallery state
|
| 29 |
+
if 'gallery_state' not in st.session_state:
|
| 30 |
+
st.session_state.gallery_state = {}
|
| 31 |
+
|
| 32 |
+
# initialize selected_dict
|
| 33 |
+
if 'selected_dict' not in st.session_state:
|
| 34 |
+
st.session_state['selected_dict'] = {}
|
| 35 |
+
|
| 36 |
+
if 'gallery_focus' not in st.session_state:
|
| 37 |
+
st.session_state.gallery_focus = {'tag': None, 'prompt': None}
|
| 38 |
+
|
| 39 |
+
def gallery_standard(self, items, col_num, info):
|
| 40 |
+
rows = len(items) // col_num + 1
|
| 41 |
+
containers = [st.container() for _ in range(rows)]
|
| 42 |
+
for idx in range(0, len(items), col_num):
|
| 43 |
+
row_idx = idx // col_num
|
| 44 |
+
with containers[row_idx]:
|
| 45 |
+
cols = st.columns(col_num)
|
| 46 |
+
for j in range(col_num):
|
| 47 |
+
if idx + j < len(items):
|
| 48 |
+
with cols[j]:
|
| 49 |
+
# show image
|
| 50 |
+
# image = self.images_ds[items.iloc[idx + j]['row_idx'].item()]['image']
|
| 51 |
+
image = f"https://modelcofferbucket.s3-accelerate.amazonaws.com/{items.iloc[idx + j]['image_id']}.png"
|
| 52 |
+
st.image(image, use_column_width=True)
|
| 53 |
+
|
| 54 |
+
# handel checkbox information
|
| 55 |
+
prompt_id = items.iloc[idx + j]['prompt_id']
|
| 56 |
+
modelVersion_id = items.iloc[idx + j]['modelVersion_id']
|
| 57 |
+
|
| 58 |
+
check_init = True if modelVersion_id in st.session_state.selected_dict.get(prompt_id, []) else False
|
| 59 |
+
|
| 60 |
+
# st.write("Position: ", idx + j)
|
| 61 |
+
|
| 62 |
+
# show checkbox
|
| 63 |
+
st.checkbox('Select', key=f'select_{prompt_id}_{modelVersion_id}', value=check_init)
|
| 64 |
+
|
| 65 |
+
# show selected info
|
| 66 |
+
for key in info:
|
| 67 |
+
st.write(f"**{key}**: {items.iloc[idx + j][key]}")
|
| 68 |
+
|
| 69 |
+
def gallery_graph(self, items):
|
| 70 |
+
items = load_tsne_coordinates(items)
|
| 71 |
+
|
| 72 |
+
# sort items to be popularity from low to high, so that most popular ones will be on the top
|
| 73 |
+
items = items.sort_values(by=['model_download_count'], ascending=True).reset_index(drop=True)
|
| 74 |
+
|
| 75 |
+
scale = 50
|
| 76 |
+
items.loc[:, 'x'] = items['x'] * scale
|
| 77 |
+
items.loc[:, 'y'] = items['y'] * scale
|
| 78 |
+
|
| 79 |
+
nodes = []
|
| 80 |
+
edges = []
|
| 81 |
+
|
| 82 |
+
for idx in items.index:
|
| 83 |
+
# if items.loc[idx, 'modelVersion_id'] in st.session_state.selected_dict.get(items.loc[idx, 'prompt_id'], 0):
|
| 84 |
+
# opacity = 0.2
|
| 85 |
+
# else:
|
| 86 |
+
# opacity = 1.0
|
| 87 |
+
|
| 88 |
+
nodes.append(Node(id=items.loc[idx, 'image_id'],
|
| 89 |
+
# label=str(items.loc[idx, 'model_name']),
|
| 90 |
+
title=f"model name: {items.loc[idx, 'model_name']}\nmodelVersion name: {items.loc[idx, 'modelVersion_name']}\nclip score: {items.loc[idx, 'clip_score']}\nmcos score: {items.loc[idx, 'mcos_score']}\npopularity: {items.loc[idx, 'model_download_count']}",
|
| 91 |
+
size=20,
|
| 92 |
+
shape='image',
|
| 93 |
+
image=f"https://modelcofferbucket.s3-accelerate.amazonaws.com/{items.loc[idx, 'image_id']}.png",
|
| 94 |
+
x=items.loc[idx, 'x'].item(),
|
| 95 |
+
y=items.loc[idx, 'y'].item(),
|
| 96 |
+
# fixed=True,
|
| 97 |
+
color={'background': '#E0E0E1', 'border': '#ffffff', 'highlight': {'border': '#F04542'}},
|
| 98 |
+
# opacity=opacity,
|
| 99 |
+
shadow={'enabled': True, 'color': 'rgba(0,0,0,0.4)', 'size': 10, 'x': 1, 'y': 1},
|
| 100 |
+
borderWidth=2,
|
| 101 |
+
shapeProperties={'useBorderWithImage': True},
|
| 102 |
+
)
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
config = Config(width='100%',
|
| 106 |
+
height='600',
|
| 107 |
+
directed=True,
|
| 108 |
+
physics=False,
|
| 109 |
+
hierarchical=False,
|
| 110 |
+
interaction={'navigationButtons': True, 'dragNodes': False, 'multiselect': False},
|
| 111 |
+
# **kwargs
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
return agraph(nodes=nodes,
|
| 115 |
+
edges=edges,
|
| 116 |
+
config=config,
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
def selection_panel(self, items):
|
| 120 |
+
# temperal function
|
| 121 |
+
|
| 122 |
+
selecters = st.columns([1, 4])
|
| 123 |
+
|
| 124 |
+
if 'score_weights' not in st.session_state:
|
| 125 |
+
# st.session_state.score_weights = [1.0, 0.8, 0.2, 0.8]
|
| 126 |
+
st.session_state.score_weights = [1.0, 0.8, 0.2]
|
| 127 |
+
|
| 128 |
+
# select sort type
|
| 129 |
+
with selecters[0]:
|
| 130 |
+
sort_type = st.selectbox('Sort by', ['Scores', 'IDs and Names'])
|
| 131 |
+
if sort_type == 'Scores':
|
| 132 |
+
sort_by = 'weighted_score_sum'
|
| 133 |
+
|
| 134 |
+
# select other options
|
| 135 |
+
with selecters[1]:
|
| 136 |
+
if sort_type == 'IDs and Names':
|
| 137 |
+
sub_selecters = st.columns([3])
|
| 138 |
+
# select sort by
|
| 139 |
+
with sub_selecters[0]:
|
| 140 |
+
sort_by = st.selectbox('Sort by',
|
| 141 |
+
['model_name', 'model_id', 'modelVersion_name', 'modelVersion_id', 'norm_nsfw'],
|
| 142 |
+
label_visibility='hidden')
|
| 143 |
+
|
| 144 |
+
continue_idx = 1
|
| 145 |
+
|
| 146 |
+
else:
|
| 147 |
+
# add custom weights
|
| 148 |
+
sub_selecters = st.columns([1, 1, 1])
|
| 149 |
+
|
| 150 |
+
with sub_selecters[0]:
|
| 151 |
+
clip_weight = st.number_input('Clip Score Weight', min_value=-100.0, max_value=100.0, value=1.0, step=0.1, help='the weight for normalized clip score')
|
| 152 |
+
with sub_selecters[1]:
|
| 153 |
+
mcos_weight = st.number_input('Dissimilarity Weight', min_value=-100.0, max_value=100.0, value=0.8, step=0.1, help='the weight for m(eam) s(imilarity) q(antile) score for measuring distinctiveness')
|
| 154 |
+
with sub_selecters[2]:
|
| 155 |
+
pop_weight = st.number_input('Popularity Weight', min_value=-100.0, max_value=100.0, value=0.2, step=0.1, help='the weight for normalized popularity score')
|
| 156 |
+
|
| 157 |
+
items.loc[:, 'weighted_score_sum'] = round(items[f'norm_clip'] * clip_weight + items[f'norm_mcos'] * mcos_weight + items[
|
| 158 |
+
'norm_pop'] * pop_weight, 4)
|
| 159 |
+
|
| 160 |
+
continue_idx = 3
|
| 161 |
+
|
| 162 |
+
# save latest weights
|
| 163 |
+
st.session_state.score_weights[0] = round(clip_weight, 2)
|
| 164 |
+
st.session_state.score_weights[1] = round(mcos_weight, 2)
|
| 165 |
+
st.session_state.score_weights[2] = round(pop_weight, 2)
|
| 166 |
+
|
| 167 |
+
# # select threshold
|
| 168 |
+
# with sub_selecters[continue_idx]:
|
| 169 |
+
# nsfw_threshold = st.number_input('NSFW Score Threshold', min_value=0.0, max_value=1.0, value=0.8, step=0.01, help='Only show models with nsfw score lower than this threshold, set 1.0 to show all images')
|
| 170 |
+
# items = items[items['norm_nsfw'] <= nsfw_threshold].reset_index(drop=True)
|
| 171 |
+
#
|
| 172 |
+
# # save latest threshold
|
| 173 |
+
# st.session_state.score_weights[3] = nsfw_threshold
|
| 174 |
+
|
| 175 |
+
# # draw a distribution histogram
|
| 176 |
+
# if sort_type == 'Scores':
|
| 177 |
+
# try:
|
| 178 |
+
# with st.expander('Show score distribution histogram and select score range'):
|
| 179 |
+
# st.write('**Score distribution histogram**')
|
| 180 |
+
# chart_space = st.container()
|
| 181 |
+
# # st.write('Select the range of scores to show')
|
| 182 |
+
# hist_data = pd.DataFrame(items[sort_by])
|
| 183 |
+
# mini = hist_data[sort_by].min().item()
|
| 184 |
+
# mini = mini//0.1 * 0.1
|
| 185 |
+
# maxi = hist_data[sort_by].max().item()
|
| 186 |
+
# maxi = maxi//0.1 * 0.1 + 0.1
|
| 187 |
+
# st.write('**Select the range of scores to show**')
|
| 188 |
+
# r = st.slider('Select the range of scores to show', min_value=mini, max_value=maxi, value=(mini, maxi), step=0.05, label_visibility='collapsed')
|
| 189 |
+
# with chart_space:
|
| 190 |
+
# st.altair_chart(altair_histogram(hist_data, sort_by, r[0], r[1]), use_container_width=True)
|
| 191 |
+
# # event_dict = altair_component(altair_chart=altair_histogram(hist_data, sort_by))
|
| 192 |
+
# # r = event_dict.get(sort_by)
|
| 193 |
+
# if r:
|
| 194 |
+
# items = items[(items[sort_by] >= r[0]) & (items[sort_by] <= r[1])].reset_index(drop=True)
|
| 195 |
+
# # st.write(r)
|
| 196 |
+
# except:
|
| 197 |
+
# pass
|
| 198 |
+
|
| 199 |
+
display_options = st.columns([1, 4])
|
| 200 |
+
|
| 201 |
+
with display_options[0]:
|
| 202 |
+
# select order
|
| 203 |
+
order = st.selectbox('Order', ['Ascending', 'Descending'], index=1 if sort_type == 'Scores' else 0)
|
| 204 |
+
if order == 'Ascending':
|
| 205 |
+
order = True
|
| 206 |
+
else:
|
| 207 |
+
order = False
|
| 208 |
+
|
| 209 |
+
with display_options[1]:
|
| 210 |
+
|
| 211 |
+
# select info to show
|
| 212 |
+
info = st.multiselect('Show Info',
|
| 213 |
+
['model_name', 'model_id', 'modelVersion_name', 'modelVersion_id',
|
| 214 |
+
'weighted_score_sum', 'model_download_count', 'clip_score', 'mcos_score',
|
| 215 |
+
'nsfw_score', 'norm_nsfw'],
|
| 216 |
+
default=sort_by)
|
| 217 |
+
|
| 218 |
+
# apply sorting to dataframe
|
| 219 |
+
items = items.sort_values(by=[sort_by], ascending=order).reset_index(drop=True)
|
| 220 |
+
|
| 221 |
+
# select number of columns
|
| 222 |
+
col_num = st.slider('Number of columns', min_value=1, max_value=9, value=4, step=1, key='col_num')
|
| 223 |
+
|
| 224 |
+
return items, info, col_num
|
| 225 |
+
|
| 226 |
+
def sidebar(self, items, prompt_id, note):
|
| 227 |
+
with st.sidebar:
|
| 228 |
+
# prompt_tags = self.promptBook['tag'].unique()
|
| 229 |
+
# # sort tags by alphabetical order
|
| 230 |
+
# prompt_tags = np.sort(prompt_tags)[::1]
|
| 231 |
+
#
|
| 232 |
+
# tag = st.selectbox('Select a tag', prompt_tags, index=5)
|
| 233 |
+
#
|
| 234 |
+
# items = self.promptBook[self.promptBook['tag'] == tag].reset_index(drop=True)
|
| 235 |
+
#
|
| 236 |
+
# prompts = np.sort(items['prompt'].unique())[::1]
|
| 237 |
+
#
|
| 238 |
+
# selected_prompt = st.selectbox('Select prompt', prompts, index=3)
|
| 239 |
+
|
| 240 |
+
# mode = st.radio('Select a mode', ['Gallery', 'Graph'], horizontal=True, index=1)
|
| 241 |
+
|
| 242 |
+
# items = items[items['prompt'] == selected_prompt].reset_index(drop=True)
|
| 243 |
+
|
| 244 |
+
# st.title('Model Visualization and Retrieval')
|
| 245 |
+
|
| 246 |
+
# show source
|
| 247 |
+
if isinstance(note, str):
|
| 248 |
+
if note.isdigit():
|
| 249 |
+
st.caption(f"`Source: civitai`")
|
| 250 |
+
else:
|
| 251 |
+
st.caption(f"`Source: {note}`")
|
| 252 |
+
else:
|
| 253 |
+
st.caption("`Source: Parti-prompts`")
|
| 254 |
+
|
| 255 |
+
# show image metadata
|
| 256 |
+
image_metadatas = ['prompt', 'negativePrompt', 'sampler', 'cfgScale', 'size', 'seed']
|
| 257 |
+
for key in image_metadatas:
|
| 258 |
+
label = ' '.join(key.split('_')).capitalize()
|
| 259 |
+
st.write(f"**{label}**")
|
| 260 |
+
if items[key][0] == ' ':
|
| 261 |
+
st.write('`None`')
|
| 262 |
+
else:
|
| 263 |
+
st.caption(f"{items[key][0]}")
|
| 264 |
+
|
| 265 |
+
# for note as civitai image id, add civitai reference
|
| 266 |
+
if isinstance(note, str) and note.isdigit():
|
| 267 |
+
try:
|
| 268 |
+
st.write(f'**[Civitai Reference](https://civitai.com/images/{note})**')
|
| 269 |
+
res = requests.get(f'https://civitai.com/images/{note}')
|
| 270 |
+
# st.write(res.text)
|
| 271 |
+
soup = BeautifulSoup(res.text, 'html.parser')
|
| 272 |
+
image_section = soup.find('div', {'class': 'mantine-12rlksp'})
|
| 273 |
+
image_url = image_section.find('img')['src']
|
| 274 |
+
st.image(image_url, use_column_width=True)
|
| 275 |
+
except:
|
| 276 |
+
pass
|
| 277 |
+
|
| 278 |
+
# return prompt_tags, tag, prompt_id, items
|
| 279 |
+
|
| 280 |
+
def app(self):
|
| 281 |
+
st.write('### Model Visualization and Retrieval')
|
| 282 |
+
# st.write('This is a gallery of images generated by the models')
|
| 283 |
+
|
| 284 |
+
# build the tabular view
|
| 285 |
+
prompt_tags = self.promptBook['tag'].unique()
|
| 286 |
+
# sort tags by alphabetical order
|
| 287 |
+
prompt_tags = np.sort(prompt_tags)[::1].tolist()
|
| 288 |
+
|
| 289 |
+
# chosen_data = [stx.TabBarItemData(id=tag, title=tag, description='') for tag in prompt_tags]
|
| 290 |
+
# tag = stx.tab_bar(chosen_data, key='tag', default='food')
|
| 291 |
+
|
| 292 |
+
# save tag to session state on change
|
| 293 |
+
tag = st.radio('Select a tag', prompt_tags, index=5, horizontal=True, key='tag', label_visibility='collapsed')
|
| 294 |
+
|
| 295 |
+
# tabs = st.tabs(prompt_tags)
|
| 296 |
+
# for i in range(len(prompt_tags)):
|
| 297 |
+
# with tabs[i]:
|
| 298 |
+
# tag = prompt_tags[i]
|
| 299 |
+
items = self.promptBook[self.promptBook['tag'] == tag].reset_index(drop=True)
|
| 300 |
+
|
| 301 |
+
prompts = np.sort(items['prompt'].unique())[::1].tolist()
|
| 302 |
+
|
| 303 |
+
# st.caption('Select a prompt')
|
| 304 |
+
subset_selector = st.columns([3, 1])
|
| 305 |
+
with subset_selector[0]:
|
| 306 |
+
selected_prompt = selectbox('Select prompt', prompts, key=f'prompt_{tag}', no_selection_label='---', label_visibility='collapsed', index=0)
|
| 307 |
+
# st.session_state.prompt_idx_last_time = prompts.index(selected_prompt) if selected_prompt else 0
|
| 308 |
+
|
| 309 |
+
if selected_prompt is None:
|
| 310 |
+
# st.markdown(':orange[Please select a prompt above👆]')
|
| 311 |
+
st.write('**Feel free to navigate among tags and pages! Your selection will be saved within one log-in session.**')
|
| 312 |
+
|
| 313 |
+
with subset_selector[-1]:
|
| 314 |
+
st.write(':orange[👈 **Please select a prompt**]')
|
| 315 |
+
|
| 316 |
+
else:
|
| 317 |
+
items = items[items['prompt'] == selected_prompt].reset_index(drop=True)
|
| 318 |
+
prompt_id = items['prompt_id'].unique()[0]
|
| 319 |
+
note = items['note'].unique()[0]
|
| 320 |
+
|
| 321 |
+
# add state to session state
|
| 322 |
+
if prompt_id not in st.session_state.gallery_state:
|
| 323 |
+
st.session_state.gallery_state[prompt_id] = 'graph'
|
| 324 |
+
|
| 325 |
+
# add focus to session state
|
| 326 |
+
st.session_state.gallery_focus['tag'] = tag
|
| 327 |
+
st.session_state.gallery_focus['prompt'] = selected_prompt
|
| 328 |
+
|
| 329 |
+
# add safety check for some prompts
|
| 330 |
+
safety_check = True
|
| 331 |
+
|
| 332 |
+
# load unsafe prompts
|
| 333 |
+
unsafe_prompts = json.load(open('./data/unsafe_prompts.json', 'r'))
|
| 334 |
+
for prompt_tag in prompt_tags:
|
| 335 |
+
if prompt_tag not in unsafe_prompts:
|
| 336 |
+
unsafe_prompts[prompt_tag] = []
|
| 337 |
+
# # manually add unsafe prompts
|
| 338 |
+
# unsafe_prompts['world knowledge'] = [83]
|
| 339 |
+
# unsafe_prompts['abstract'] = [1, 3]
|
| 340 |
+
|
| 341 |
+
if int(prompt_id.item()) in unsafe_prompts[tag]:
|
| 342 |
+
st.warning('This prompt may contain unsafe content. They might be offensive, depressing, or sexual.')
|
| 343 |
+
safety_check = st.checkbox('I understand that this prompt may contain unsafe content. Show these images anyway.', key=f'safety_{prompt_id}')
|
| 344 |
+
|
| 345 |
+
print('current state: ', st.session_state.gallery_state[prompt_id])
|
| 346 |
+
|
| 347 |
+
if st.session_state.gallery_state[prompt_id] == 'graph':
|
| 348 |
+
if safety_check:
|
| 349 |
+
self.graph_mode(prompt_id, items)
|
| 350 |
+
with subset_selector[-1]:
|
| 351 |
+
has_selection = False
|
| 352 |
+
try:
|
| 353 |
+
if len(st.session_state.selected_dict.get(prompt_id, [])) > 0:
|
| 354 |
+
has_selection = True
|
| 355 |
+
except:
|
| 356 |
+
pass
|
| 357 |
+
|
| 358 |
+
if has_selection:
|
| 359 |
+
checkout = st.button('Check out selections', use_container_width=True, type='primary')
|
| 360 |
+
if checkout:
|
| 361 |
+
print('checkout')
|
| 362 |
+
|
| 363 |
+
st.session_state.gallery_state[prompt_id] = 'gallery'
|
| 364 |
+
print(st.session_state.gallery_state[prompt_id])
|
| 365 |
+
st.experimental_rerun()
|
| 366 |
+
else:
|
| 367 |
+
st.write(':orange[👇 **Select images you like below**]')
|
| 368 |
+
|
| 369 |
+
elif st.session_state.gallery_state[prompt_id] == 'gallery':
|
| 370 |
+
items = items[items['modelVersion_id'].isin(st.session_state.selected_dict[prompt_id])].reset_index(
|
| 371 |
+
drop=True)
|
| 372 |
+
self.gallery_mode(prompt_id, items)
|
| 373 |
+
|
| 374 |
+
with subset_selector[-1]:
|
| 375 |
+
state_operations = st.columns([1, 1])
|
| 376 |
+
with state_operations[0]:
|
| 377 |
+
back = st.button('Back to 🖼️', use_container_width=True)
|
| 378 |
+
if back:
|
| 379 |
+
st.session_state.gallery_state[prompt_id] = 'graph'
|
| 380 |
+
st.experimental_rerun()
|
| 381 |
+
|
| 382 |
+
with state_operations[1]:
|
| 383 |
+
forward = st.button('Check out', use_container_width=True, type='primary', on_click=self.submit_actions, args=('Continue', prompt_id))
|
| 384 |
+
if forward:
|
| 385 |
+
switch_page('ranking')
|
| 386 |
+
|
| 387 |
+
try:
|
| 388 |
+
self.sidebar(items, prompt_id, note)
|
| 389 |
+
except:
|
| 390 |
+
pass
|
| 391 |
+
|
| 392 |
+
def graph_mode(self, prompt_id, items):
|
| 393 |
+
graph_cols = st.columns([3, 1])
|
| 394 |
+
# prompt = st.chat_input(f"Selected model version ids: {str(st.session_state.selected_dict.get(prompt_id, []))}",
|
| 395 |
+
# disabled=False, key=f'{prompt_id}')
|
| 396 |
+
# if prompt:
|
| 397 |
+
# switch_page("ranking")
|
| 398 |
+
|
| 399 |
+
with graph_cols[0]:
|
| 400 |
+
graph_space = st.empty()
|
| 401 |
+
|
| 402 |
+
with graph_space.container():
|
| 403 |
+
return_value = self.gallery_graph(items)
|
| 404 |
+
|
| 405 |
+
with graph_cols[1]:
|
| 406 |
+
if return_value:
|
| 407 |
+
with st.form(key=f'{prompt_id}'):
|
| 408 |
+
image_url = f"https://modelcofferbucket.s3-accelerate.amazonaws.com/{return_value}.png"
|
| 409 |
+
|
| 410 |
+
st.image(image_url)
|
| 411 |
+
|
| 412 |
+
item = items[items['image_id'] == return_value].reset_index(drop=True).iloc[0]
|
| 413 |
+
modelVersion_id = item['modelVersion_id']
|
| 414 |
+
|
| 415 |
+
# handle selection
|
| 416 |
+
if 'selected_dict' in st.session_state:
|
| 417 |
+
if item['prompt_id'] not in st.session_state.selected_dict:
|
| 418 |
+
st.session_state.selected_dict[item['prompt_id']] = []
|
| 419 |
+
|
| 420 |
+
if modelVersion_id in st.session_state.selected_dict[item['prompt_id']]:
|
| 421 |
+
checked = True
|
| 422 |
+
else:
|
| 423 |
+
checked = False
|
| 424 |
+
|
| 425 |
+
if checked:
|
| 426 |
+
# deselect = st.button('Deselect', key=f'select_{item["prompt_id"]}_{item["modelVersion_id"]}', use_container_width=True)
|
| 427 |
+
deselect = st.form_submit_button('Deselect', use_container_width=True)
|
| 428 |
+
if deselect:
|
| 429 |
+
st.session_state.selected_dict[item['prompt_id']].remove(item['modelVersion_id'])
|
| 430 |
+
self.remove_ranking_states(item['prompt_id'])
|
| 431 |
+
st.experimental_rerun()
|
| 432 |
+
|
| 433 |
+
else:
|
| 434 |
+
# select = st.button('Select', key=f'select_{item["prompt_id"]}_{item["modelVersion_id"]}', use_container_width=True, type='primary')
|
| 435 |
+
select = st.form_submit_button('Select', use_container_width=True, type='primary')
|
| 436 |
+
if select:
|
| 437 |
+
st.session_state.selected_dict[item['prompt_id']].append(item['modelVersion_id'])
|
| 438 |
+
self.remove_ranking_states(item['prompt_id'])
|
| 439 |
+
st.experimental_rerun()
|
| 440 |
+
|
| 441 |
+
# st.write(item)
|
| 442 |
+
infos = ['model_name', 'modelVersion_name', 'model_download_count', 'clip_score', 'mcos_score',
|
| 443 |
+
'nsfw_score']
|
| 444 |
+
|
| 445 |
+
infos_df = item[infos]
|
| 446 |
+
# rename columns
|
| 447 |
+
infos_df = infos_df.rename(index={'model_name': 'Model', 'modelVersion_name': 'Version', 'model_download_count': 'Downloads', 'clip_score': 'Clip Score', 'mcos_score': 'mcos Score', 'nsfw_score': 'NSFW Score'})
|
| 448 |
+
st.table(infos_df)
|
| 449 |
+
|
| 450 |
+
# for info in infos:
|
| 451 |
+
# st.write(f"**{info}**:")
|
| 452 |
+
# st.write(item[info])
|
| 453 |
+
|
| 454 |
+
else:
|
| 455 |
+
st.info('Please click on an image to show')
|
| 456 |
+
|
| 457 |
+
def gallery_mode(self, prompt_id, items):
|
| 458 |
+
items, info, col_num = self.selection_panel(items)
|
| 459 |
+
|
| 460 |
+
# if 'selected_dict' in st.session_state:
|
| 461 |
+
# # st.write('checked: ', str(st.session_state.selected_dict.get(prompt_id, [])))
|
| 462 |
+
# dynamic_weight_options = ['Grid Search', 'SVM', 'Greedy']
|
| 463 |
+
# dynamic_weight_panel = st.columns(len(dynamic_weight_options))
|
| 464 |
+
#
|
| 465 |
+
# if len(st.session_state.selected_dict.get(prompt_id, [])) > 0:
|
| 466 |
+
# btn_disable = False
|
| 467 |
+
# else:
|
| 468 |
+
# btn_disable = True
|
| 469 |
+
#
|
| 470 |
+
# for i in range(len(dynamic_weight_options)):
|
| 471 |
+
# method = dynamic_weight_options[i]
|
| 472 |
+
# with dynamic_weight_panel[i]:
|
| 473 |
+
# btn = st.button(method, use_container_width=True, disabled=btn_disable, on_click=self.dynamic_weight, args=(prompt_id, items, method))
|
| 474 |
+
|
| 475 |
+
# prompt = st.chat_input(f"Selected model version ids: {str(st.session_state.selected_dict.get(prompt_id, []))}", disabled=False, key=f'{prompt_id}')
|
| 476 |
+
# if prompt:
|
| 477 |
+
# switch_page("ranking")
|
| 478 |
+
|
| 479 |
+
# with st.form(key=f'{prompt_id}'):
|
| 480 |
+
# buttons = st.columns([1, 1, 1])
|
| 481 |
+
# buttons_space = st.columns([1, 1, 1])
|
| 482 |
+
gallery_space = st.empty()
|
| 483 |
+
|
| 484 |
+
# with buttons_space[0]:
|
| 485 |
+
# continue_btn = st.button('Proceed selections to ranking', use_container_width=True, type='primary')
|
| 486 |
+
# if continue_btn:
|
| 487 |
+
# # self.submit_actions('Continue', prompt_id)
|
| 488 |
+
# switch_page("ranking")
|
| 489 |
+
#
|
| 490 |
+
# with buttons_space[1]:
|
| 491 |
+
# deselect_btn = st.button('Deselect All', use_container_width=True)
|
| 492 |
+
# if deselect_btn:
|
| 493 |
+
# self.submit_actions('Deselect', prompt_id)
|
| 494 |
+
#
|
| 495 |
+
# with buttons_space[2]:
|
| 496 |
+
# refresh_btn = st.button('Refresh', on_click=gallery_space.empty, use_container_width=True)
|
| 497 |
+
|
| 498 |
+
with gallery_space.container():
|
| 499 |
+
self.gallery_standard(items, col_num, info)
|
| 500 |
+
|
| 501 |
+
def submit_actions(self, status, prompt_id):
|
| 502 |
+
# remove counter from session state
|
| 503 |
+
# st.session_state.pop('counter', None)
|
| 504 |
+
self.remove_ranking_states('prompt_id')
|
| 505 |
+
if status == 'Select':
|
| 506 |
+
modelVersions = self.promptBook[self.promptBook['prompt_id'] == prompt_id]['modelVersion_id'].unique()
|
| 507 |
+
st.session_state.selected_dict[prompt_id] = modelVersions.tolist()
|
| 508 |
+
print(st.session_state.selected_dict, 'select')
|
| 509 |
+
st.experimental_rerun()
|
| 510 |
+
elif status == 'Deselect':
|
| 511 |
+
st.session_state.selected_dict[prompt_id] = []
|
| 512 |
+
print(st.session_state.selected_dict, 'deselect')
|
| 513 |
+
st.experimental_rerun()
|
| 514 |
+
# self.promptBook.loc[self.promptBook['prompt_id'] == prompt_id, 'checked'] = False
|
| 515 |
+
elif status == 'Continue':
|
| 516 |
+
st.session_state.selected_dict[prompt_id] = []
|
| 517 |
+
for key in st.session_state:
|
| 518 |
+
keys = key.split('_')
|
| 519 |
+
if keys[0] == 'select' and keys[1] == str(prompt_id):
|
| 520 |
+
if st.session_state[key]:
|
| 521 |
+
st.session_state.selected_dict[prompt_id].append(int(keys[2]))
|
| 522 |
+
# switch_page("ranking")
|
| 523 |
+
print(st.session_state.selected_dict, 'continue')
|
| 524 |
+
# st.experimental_rerun()
|
| 525 |
+
|
| 526 |
+
def dynamic_weight(self, prompt_id, items, method='Grid Search'):
|
| 527 |
+
selected = items[
|
| 528 |
+
items['modelVersion_id'].isin(st.session_state.selected_dict[prompt_id])].reset_index(drop=True)
|
| 529 |
+
optimal_weight = [0, 0, 0]
|
| 530 |
+
|
| 531 |
+
if method == 'Grid Search':
|
| 532 |
+
# grid search method
|
| 533 |
+
top_ranking = len(items) * len(selected)
|
| 534 |
+
|
| 535 |
+
for clip_weight in np.arange(-1, 1, 0.1):
|
| 536 |
+
for mcos_weight in np.arange(-1, 1, 0.1):
|
| 537 |
+
for pop_weight in np.arange(-1, 1, 0.1):
|
| 538 |
+
|
| 539 |
+
weight_all = clip_weight*items[f'norm_clip'] + mcos_weight*items[f'norm_mcos'] + pop_weight*items['norm_pop']
|
| 540 |
+
weight_all_sorted = weight_all.sort_values(ascending=False).reset_index(drop=True)
|
| 541 |
+
# print('weight_all_sorted:', weight_all_sorted)
|
| 542 |
+
weight_selected = clip_weight*selected[f'norm_clip'] + mcos_weight*selected[f'norm_mcos'] + pop_weight*selected['norm_pop']
|
| 543 |
+
|
| 544 |
+
# get the index of values of weight_selected in weight_all_sorted
|
| 545 |
+
rankings = []
|
| 546 |
+
for weight in weight_selected:
|
| 547 |
+
rankings.append(weight_all_sorted.index[weight_all_sorted == weight].tolist()[0])
|
| 548 |
+
if sum(rankings) <= top_ranking:
|
| 549 |
+
top_ranking = sum(rankings)
|
| 550 |
+
print('current top ranking:', top_ranking, rankings)
|
| 551 |
+
optimal_weight = [clip_weight, mcos_weight, pop_weight]
|
| 552 |
+
print('optimal weight:', optimal_weight)
|
| 553 |
+
|
| 554 |
+
elif method == 'SVM':
|
| 555 |
+
# svm method
|
| 556 |
+
print('start svm method')
|
| 557 |
+
# get residual dataframe that contains models not selected
|
| 558 |
+
residual = items[~items['modelVersion_id'].isin(selected['modelVersion_id'])].reset_index(drop=True)
|
| 559 |
+
residual = residual[['norm_clip_crop', 'norm_mcos_crop', 'norm_pop']]
|
| 560 |
+
residual = residual.to_numpy()
|
| 561 |
+
selected = selected[['norm_clip_crop', 'norm_mcos_crop', 'norm_pop']]
|
| 562 |
+
selected = selected.to_numpy()
|
| 563 |
+
|
| 564 |
+
y = np.concatenate((np.full((len(selected), 1), -1), np.full((len(residual), 1), 1)), axis=0).ravel()
|
| 565 |
+
X = np.concatenate((selected, residual), axis=0)
|
| 566 |
+
|
| 567 |
+
# fit svm model, and get parameters for the hyperplane
|
| 568 |
+
clf = LinearSVC(random_state=0, C=1.0, fit_intercept=False, dual='auto')
|
| 569 |
+
clf.fit(X, y)
|
| 570 |
+
optimal_weight = clf.coef_[0].tolist()
|
| 571 |
+
print('optimal weight:', optimal_weight)
|
| 572 |
+
pass
|
| 573 |
+
|
| 574 |
+
elif method == 'Greedy':
|
| 575 |
+
for idx in selected.index:
|
| 576 |
+
# find which score is the highest, clip, mcos, or pop
|
| 577 |
+
clip_score = selected.loc[idx, 'norm_clip_crop']
|
| 578 |
+
mcos_score = selected.loc[idx, 'norm_mcos_crop']
|
| 579 |
+
pop_score = selected.loc[idx, 'norm_pop']
|
| 580 |
+
if clip_score >= mcos_score and clip_score >= pop_score:
|
| 581 |
+
optimal_weight[0] += 1
|
| 582 |
+
elif mcos_score >= clip_score and mcos_score >= pop_score:
|
| 583 |
+
optimal_weight[1] += 1
|
| 584 |
+
elif pop_score >= clip_score and pop_score >= mcos_score:
|
| 585 |
+
optimal_weight[2] += 1
|
| 586 |
+
|
| 587 |
+
# normalize optimal_weight
|
| 588 |
+
optimal_weight = [round(weight/len(selected), 2) for weight in optimal_weight]
|
| 589 |
+
print('optimal weight:', optimal_weight)
|
| 590 |
+
print('optimal weight:', optimal_weight)
|
| 591 |
+
|
| 592 |
+
st.session_state.score_weights[0: 3] = optimal_weight
|
| 593 |
+
|
| 594 |
+
|
| 595 |
+
def remove_ranking_states(self, prompt_id):
|
| 596 |
+
# for drag sort
|
| 597 |
+
try:
|
| 598 |
+
st.session_state.counter[prompt_id] = 0
|
| 599 |
+
st.session_state.ranking[prompt_id] = {}
|
| 600 |
+
print('remove ranking states')
|
| 601 |
+
except:
|
| 602 |
+
print('no sort ranking states to remove')
|
| 603 |
+
|
| 604 |
+
# for battles
|
| 605 |
+
try:
|
| 606 |
+
st.session_state.pointer[prompt_id] = {'left': 0, 'right': 1}
|
| 607 |
+
print('remove battles states')
|
| 608 |
+
except:
|
| 609 |
+
print('no battles states to remove')
|
| 610 |
+
|
| 611 |
+
# for page progress
|
| 612 |
+
try:
|
| 613 |
+
st.session_state.progress[prompt_id] = 'ranking'
|
| 614 |
+
print('reset page progress states')
|
| 615 |
+
except:
|
| 616 |
+
print('no page progress states to be reset')
|
| 617 |
+
|
| 618 |
+
|
| 619 |
+
# hist_data = pd.DataFrame(np.random.normal(42, 10, (200, 1)), columns=["x"])
|
| 620 |
+
@st.cache_resource
|
| 621 |
+
def altair_histogram(hist_data, sort_by, mini, maxi):
|
| 622 |
+
brushed = alt.selection_interval(encodings=['x'], name="brushed")
|
| 623 |
+
|
| 624 |
+
chart = (
|
| 625 |
+
alt.Chart(hist_data)
|
| 626 |
+
.mark_bar(opacity=0.7, cornerRadius=2)
|
| 627 |
+
.encode(alt.X(f"{sort_by}:Q", bin=alt.Bin(maxbins=25)), y="count()")
|
| 628 |
+
# .add_selection(brushed)
|
| 629 |
+
# .properties(width=800, height=300)
|
| 630 |
+
)
|
| 631 |
+
|
| 632 |
+
# Create a transparent rectangle for highlighting the range
|
| 633 |
+
highlight = (
|
| 634 |
+
alt.Chart(pd.DataFrame({'x1': [mini], 'x2': [maxi]}))
|
| 635 |
+
.mark_rect(opacity=0.3)
|
| 636 |
+
.encode(x='x1', x2='x2')
|
| 637 |
+
# .properties(width=800, height=300)
|
| 638 |
+
)
|
| 639 |
+
|
| 640 |
+
# Layer the chart and the highlight rectangle
|
| 641 |
+
layered_chart = alt.layer(chart, highlight)
|
| 642 |
+
|
| 643 |
+
return layered_chart
|
| 644 |
+
|
| 645 |
+
|
| 646 |
+
@st.cache_data
|
| 647 |
+
def load_hf_dataset(show_NSFW=False):
|
| 648 |
+
# login to huggingface
|
| 649 |
+
login(token=os.environ.get("HF_TOKEN"))
|
| 650 |
+
|
| 651 |
+
# load from huggingface
|
| 652 |
+
roster = pd.DataFrame(load_dataset('MAPS-research/GEMRec-Roster', split='train'))
|
| 653 |
+
promptBook = pd.DataFrame(load_dataset('MAPS-research/GEMRec-Metadata', split='train'))
|
| 654 |
+
# images_ds = load_from_disk(os.path.join(os.getcwd(), 'data', 'promptbook'))
|
| 655 |
+
images_ds = None # set to None for now since we use s3 bucket to store images
|
| 656 |
+
|
| 657 |
+
# # process dataset
|
| 658 |
+
# roster = roster[['model_id', 'model_name', 'modelVersion_id', 'modelVersion_name',
|
| 659 |
+
# 'model_download_count']].drop_duplicates().reset_index(drop=True)
|
| 660 |
+
|
| 661 |
+
# add 'custom_score_weights' column to promptBook if not exist
|
| 662 |
+
if 'weighted_score_sum' not in promptBook.columns:
|
| 663 |
+
promptBook.loc[:, 'weighted_score_sum'] = 0
|
| 664 |
+
|
| 665 |
+
# merge roster and promptbook
|
| 666 |
+
promptBook = promptBook.merge(roster[['model_id', 'model_name', 'modelVersion_id', 'modelVersion_name', 'model_download_count']],
|
| 667 |
+
on=['model_id', 'modelVersion_id'], how='left')
|
| 668 |
+
|
| 669 |
+
# add column to record current row index
|
| 670 |
+
promptBook.loc[:, 'row_idx'] = promptBook.index
|
| 671 |
+
|
| 672 |
+
# apply a nsfw filter
|
| 673 |
+
if not show_NSFW:
|
| 674 |
+
promptBook = promptBook[promptBook['norm_nsfw'] <= 0.8].reset_index(drop=True)
|
| 675 |
+
print('nsfw filter applied', len(promptBook))
|
| 676 |
+
|
| 677 |
+
# add a column that adds up 'norm_clip', 'norm_mcos', and 'norm_pop'
|
| 678 |
+
score_weights = [1.0, 0.8, 0.2]
|
| 679 |
+
promptBook.loc[:, 'total_score'] = round(promptBook['norm_clip'] * score_weights[0] + promptBook['norm_mcos'] * score_weights[1] + promptBook['norm_pop'] * score_weights[2], 4)
|
| 680 |
+
|
| 681 |
+
return roster, promptBook, images_ds
|
| 682 |
+
|
| 683 |
+
@st.cache_data
|
| 684 |
+
def load_tsne_coordinates(items):
|
| 685 |
+
# load tsne coordinates
|
| 686 |
+
tsne_df = pd.read_parquet('./data/feats_tsne.parquet')
|
| 687 |
+
|
| 688 |
+
# print(tsne_df['modelVersion_id'].dtype)
|
| 689 |
+
|
| 690 |
+
# print('before merge:', items)
|
| 691 |
+
items = items.merge(tsne_df, on=['modelVersion_id', 'prompt_id'], how='left')
|
| 692 |
+
# print('after merge:', items)
|
| 693 |
+
return items
|
| 694 |
+
|
| 695 |
+
|
| 696 |
+
if __name__ == "__main__":
|
| 697 |
+
st.set_page_config(page_title="Model Coffer Gallery", page_icon="🖼️", layout="wide")
|
| 698 |
+
|
| 699 |
+
if 'user_id' not in st.session_state:
|
| 700 |
+
st.warning('Please log in first.')
|
| 701 |
+
home_btn = st.button('Go to Home Page')
|
| 702 |
+
if home_btn:
|
| 703 |
+
switch_page("home")
|
| 704 |
+
else:
|
| 705 |
+
# st.write('You have already logged in as ' + st.session_state.user_id[0])
|
| 706 |
+
roster, promptBook, images_ds = load_hf_dataset(st.session_state.show_NSFW)
|
| 707 |
+
# print(promptBook.columns)
|
| 708 |
+
|
| 709 |
+
# # initialize selected_dict
|
| 710 |
+
# if 'selected_dict' not in st.session_state:
|
| 711 |
+
# st.session_state['selected_dict'] = {}
|
| 712 |
+
|
| 713 |
+
app = GalleryApp(promptBook=promptBook, images_ds=images_ds)
|
| 714 |
+
app.app()
|
| 715 |
+
|
| 716 |
+
with open('./css/style.css') as f:
|
| 717 |
+
st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True)
|
| 718 |
+
|