PixNerd / app.py
Muinez's picture
Add duration param to save quota
ba84c88 verified
raw
history blame
6.3 kB
import random
import os
import time
import spaces
import torch
import argparse
from omegaconf import OmegaConf
from src.models.autoencoder.base import fp2uint8
from src.diffusion.base.guidance import simple_guidance_fn
from src.diffusion.flow_matching.adam_sampling import AdamLMSampler
from src.diffusion.flow_matching.scheduling import LinearScheduler
from PIL import Image
import gradio as gr
import tempfile
from huggingface_hub import snapshot_download
def instantiate_class(config):
kwargs = config.get("init_args", {})
class_module, class_name = config["class_path"].rsplit(".", 1)
module = __import__(class_module, fromlist=[class_name])
args_class = getattr(module, class_name)
return args_class(**kwargs)
def load_model(weight_dict, denoiser):
prefix = "ema_denoiser."
for k, v in denoiser.state_dict().items():
try:
v.copy_(weight_dict["state_dict"][prefix + k])
except:
print(f"Failed to copy {prefix + k} to denoiser weight")
return denoiser
class Pipeline:
def __init__(self, vae, denoiser, conditioner, resolution):
self.vae = vae
self.denoiser = denoiser.cuda()
self.conditioner = conditioner.cuda()
self.resolution = resolution
self.tmp_dir = tempfile.TemporaryDirectory(prefix="traj_gifs_")
# self.denoiser.compile()
def __del__(self):
self.tmp_dir.cleanup()
@spaces.GPU(duration=5)
@torch.no_grad()
@torch.autocast(device_type="cuda", dtype=torch.bfloat16)
def __call__(self, y, seed, num_steps, guidance, timeshift, order):
diffusion_sampler = AdamLMSampler(
order=order,
scheduler=LinearScheduler(),
guidance_fn=simple_guidance_fn,
num_steps=num_steps,
guidance=guidance,
timeshift=timeshift
)
generator = torch.Generator(device="cpu").manual_seed(seed)
xT = torch.randn((1, 3, 512, 512), device="cpu", dtype=torch.float32,
generator=generator).cuda()
start = time.time()
with torch.no_grad():
condition, uncondition = conditioner([y,]*1)
print("conditioner:",time.time() - start)
start = time.time()
# Sample images:
samples, trajs = diffusion_sampler(denoiser, xT, condition, uncondition, return_x_trajs=True)
print("diffusion:",time.time() - start)
def decode_images(samples):
samples = vae.decode(samples)
samples = fp2uint8(samples)
samples = samples.permute(0, 2, 3, 1).cpu().numpy()
images = []
for i in range(len(samples)):
image = Image.fromarray(samples[i])
images.append(image)
return images
# def decode_trajs(trajs):
# cat_trajs = torch.stack(trajs, dim=0).permute(1, 0, 2, 3, 4)
# animations = []
# for i in range(cat_trajs.shape[0]):
# frames = decode_images(
# cat_trajs[i]
# )
# # 生成唯一文件名(结合seed和样本索引,避免冲突)
# gif_filename = f"{random.randint(0, 100000)}.gif"
# gif_path = os.path.join(self.tmp_dir.name, gif_filename)
# frames[0].save(
# gif_path,
# format="GIF",
# append_images=frames[1:],
# save_all=True,
# duration=200,
# loop=0
# )
# animations.append(gif_path)
# return animations
images = decode_images(samples)
# animations = decode_trajs(trajs)
return images[0]
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="configs_t2i/sft_res512.yaml")
parser.add_argument("--resolution", type=int, default=512)
parser.add_argument("--model_id", type=str, default="MCG-NJU/PixNerd-XXL-P16-T2I")
parser.add_argument("--ckpt_path", type=str, default="models")
args = parser.parse_args()
if not os.path.exists(args.ckpt_path):
snapshot_download(repo_id=args.model_id, local_dir=args.ckpt_path)
ckpt_path = os.path.join(args.ckpt_path, "model.ckpt")
else:
ckpt_path = args.ckpt_path
config = OmegaConf.load(args.config)
vae_config = config.model.vae
denoiser_config = config.model.denoiser
conditioner_config = config.model.conditioner
vae = instantiate_class(vae_config)
denoiser = instantiate_class(denoiser_config)
conditioner = instantiate_class(conditioner_config)
ckpt = torch.load(ckpt_path, map_location="cpu")
denoiser = load_model(ckpt, denoiser)
denoiser = denoiser.cuda()
conditioner = conditioner.cuda()
vae = vae.cuda()
denoiser.eval()
pipeline = Pipeline(vae, denoiser, conditioner, args.resolution)
with gr.Blocks() as demo:
gr.Markdown(f"config:{args.config}\n\n ckpt_path:{args.ckpt_path}")
with gr.Row():
with gr.Column(scale=1):
num_steps = gr.Slider(minimum=1, maximum=100, step=1, label="num steps", value=25)
guidance = gr.Slider(minimum=0.1, maximum=10.0, step=0.1, label="CFG", value=4.0)
label = gr.Textbox(label="positive prompt", value="a photo of a cat")
seed = gr.Slider(minimum=0, maximum=1000000, step=1, label="seed", value=0)
timeshift = gr.Slider(minimum=0.1, maximum=5.0, step=0.1, label="timeshift", value=3.0)
order = gr.Slider(minimum=1, maximum=4, step=1, label="order", value=2)
with gr.Column(scale=1):
btn = gr.Button("Generate")
output_sample = gr.Image(label="Images")
# with gr.Column(scale=2):
# output_trajs = gr.Gallery(label="Trajs of Diffusion", columns=2, rows=2)
btn.click(fn=pipeline,
inputs=[
label,
seed,
num_steps,
guidance,
timeshift,
order
], outputs=[output_sample])
demo.launch()